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A B S T R A C T

Longitudinal cluster-randomized designs have been popular tools for comparative effective research in clinical
trials. The methodologies for the three-level hierarchical design with longitudinal outcomes need to be better
understood under more pragmatic settings; that is, with a small number of clusters, heterogeneous cluster
sizes, and missing outcomes. Generalized estimating equations (GEEs) have been frequently used when the
distribution of data and the correlation model are unknown. Standard GEEs lead to bias and an inflated type I
error rate due to the small number of available clinics and non-completely random missing data in longitudinal
outcomes. We evaluate the performance of inverse probability weighted (IPW) estimating equations, with and
without augmentation, for two types of missing data in continuous outcomes and individual-level treatment
allocation mechanisms combined with two bias-corrected variance estimators. Our intensive simulation results
suggest that the proposed augmented IPW method with bias-corrected variance estimation successfully prevents
the inflation of false positive findings and improves efficiency when the number of clinics is small, with
moderate to severe missing outcomes. Our findings are expected to aid researchers in choosing appropriate
analysis methods for three-level longitudinal cluster-randomized designs. The proposed approaches were
applied to analyze data from a longitudinal cluster-randomized clinical trial involving adults with serious
mental illnesses.
1. Introduction

In 2016, an estimated 10.4 million adults in the United States (4.2%
of the population) experienced serious mental illnesses (SMIs, [1]),
and 6.7 million of these individuals (64.8%) received mental health
treatment [2]. The lack of high-quality medical care can increase the
risk of early chronic medical conditions, hospitalization, and prema-
ture deaths in adults with SMI [3]. A comparative effectiveness study
(‘‘Optimal Health (OH)’’) was designed to evaluate the effects of two
active treatment strategies on longitudinal changes in several patient
care outcomes over two years in adults with SMI [3,4]. A cluster-
randomization design was used to prevent contamination between
treatment groups within the same clinic and evaluate implementation
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in more pragmatic settings. Eleven community mental health providers
(CMHs, clinics) were randomly assigned to one of the two treatment
groups. Our study is motivated by the OH study.

Longitudinal cluster-randomized controlled trials (CRTs) are fre-
quently used because they have several advantages over individually
randomized controlled trials in comparative effectiveness studies [5].
However, additional challenges inherent in the study design require
careful analysis. For example, a small number of clusters can lead
to inflated type I error rates [6–8], and missing data in longitudi-
nal outcomes can lead to biased estimates or loss of efficiency, if
overlooked. Two common approaches for CRT analysis include the
generalized linear mixed model (GLMM) [9] and generalized estimating
equation (GEE) [10]. Because of the small number of clusters, Gatsonis
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and Morton [11] suggested that the assumption of normality regard-
ing random effects in GLMM might be impractical (p.143). Preisser
et al. [12] suggested that population-averaged modeling involving
estimating equations was more appropriate for analyzing treatment
effects in cluster-randomized designs where treatment is a cluster-
specific covariate. Accordingly, we focused on the GEE approach for
longitudinal CRTs.

Recent statistical advances in CRTs have been observed in both
classical [13–16] and Bayesian approaches [17,18]; however, the ma-
jority of statistical methods developed for CRTs have been limited
to a two-level (for example, participants are nested within clinics)
or three-level (participants are nested within doctors and doctors are
further nested within clinics) hierarchical design without longitudinal
outcomes. Several studies have focused on using advanced GEE to
correct the bias due to a small number of clusters [6,12,19–23] or
missing outcomes [16,24]. However, in these studies, several meth-
ods were evaluated without addressing various problematic features
that occur simultaneously in longitudinal CRTs; for example, small
number of clusters, heterogeneous cluster sizes, three-level hierarchical
design, missing longitudinal outcomes, and change in treatment effects
over time. Specifically, Lu et al. [19] compared two bias-corrected
variance estimators using GEE for marginal mean models including
treatment-by-time interactions, assuming equal cluster sizes and no
missing outcomes. Ford and Westgate [23] provided an intensive com-
parison of various bias-correction methods with GEE for two-level
longitudinal continuous, binary, or Poisson distributed outcomes as-
suming no missing data. Seaman and Copas [24] evaluated several
methods, including an augmented inverse probability weighted (AIPW)
estimating equation, for handling monotone missing data in two-level
longitudinal studies. Prague et al. [25] further investigated the perfor-
mance of various weighted GEEs in simpler design settings and found
that the AIPW estimating equation, in combination with bias-corrected
variance estimators, showed superior performance while inferring the
main treatment effects. To the best of our knowledge, however, GEE
methods for three-level longitudinal CRTs with missing outcomes and
a small number of clusters and which allow for unequal cluster sizes,
have not been well studied. Therefore, we investigated whether and
how such estimating equation approaches using inverse probability
weighted estimators could infer treatment effects in three-level longi-
tudinal CRTs, under more pragmatic constraints with a small number
of clusters, heterogeneous cluster sizes, and missing outcomes.

Two commonly assumed states of missing data (‘‘missingness’’) are
(1) missing completely at random (MCAR) (for example, missing data
in longitudinal outcomes occur completely by chance) (2) missing at
random (MAR) (for example, missing data in longitudinal outcomes de-
pend only on observed data, such as fully observed covariates and past
observed outcomes) [26]. We considered two MAR mechanisms. First,
we considered the covariate-dependent MAR (hereafter ‘‘CD-MAR’’)
mechanism, in which missingness depends on baseline covariates only.
Our methods under CD-MAR allow intermittent missingness in out-
comes as well as missingness due to dropout. Second, we considered the
outcome and covariate dependent MAR, in which missingness depends
on previously observed outcomes as well as baseline covariates (‘‘OCD-
MAR’’). It is challenging to model nonmonotone missing patterns in
the OCD-MAR mechanism, and it becomes even more difficult when
there are many missing patterns with small subgroup sizes for each
missing pattern, as observed in the OH study. Therefore, our study for
the OCD-MAR was limited to monotone missingness. By ‘‘monotone
missing mechanism’’ we mean that missingness at a particular time
point implies missingness in all subsequent time points.

The rest of the paper is organized as follows: In Section 2, we
describe our motivation study. In Section 3, we introduce two bias-
corrected variance estimators and three IPW estimating equations in
three-level longitudinal CRTs. Results of simulation studies evaluating
the finite sample performance of these methods are presented in Sec-
tion 4. In Section 5, we apply the proposed methods to the Optimal
Health study. We conclude with a discussion of our findings and suggest
2

future research topics in Section 6.
2. Motivating study: Optimal health for adults with SMI

The OH study is a multicenter longitudinal CRT in which the effects
of two evidence-based interventions for adult SMI, Provider-Supported
Care (PS) and Patient Self-Directed Care (SD), were compared in a
patient population in Pennsylvania (USA) in 2013-2016 [3,4]. In the
PS intervention, a full-time registered nurse provided consultation to
wellness coaches as well as wellness support and education to indi-
vidual participants. In the SD intervention, the participants took a
more active role in managing their health by using self-management
toolkits and content tailored to their needs, through a web portal.
Eleven CMHs (clinics) were randomized to one of the two interven-
tions: Five CMHs (713 participants) were allocated to the PS group
and six CMHs (516 participants) to the SD group. The coefficient of
variation (cv) of clinic size was 0.71 (cv = standard deviation/mean
=79.24/111.73). Individual participant data were gathered every six
months, over a period of two years following enrollment; thus, there
were five timepoints of outcome measurements: a baseline and four
follow-up measurements at months 6, 12, 18, and 24. Therefore, the
data have a three-level hierarchical structure, where visits are nested
within participants that are nested within CMHs; CMHs are further
nested within interventions by cluster-randomization of the CMHs.
Although there is general agreement that the health of adults with
SMI can be effectively managed through either PS and SD cares, there
was no studies in which longitudinal changes are compared between
the two models of care. The researchers in the OH study primarily
aimed to investigate if and how the longitudinal changes in patient care
outcomes differ between the PS and SD groups.

In the present study, we focused on three specific outcomes: the
patient activation measure (PAM), quality of life enjoyment and sat-
isfaction questionnaire (Q-LES-Q-18: Quality of life, QSF), and patient
assessment of chronic illness care (PACIC) score. PAM is a 22-item
measure that assesses the confidence and ability of patients to manage
their health. The QSF score captures life satisfaction over the past week
(%). PACIC measures patient satisfaction with care. The overall missing
rates are 43.8% for PAM (PS: 39.7%/ SD: 49.4%), 40.1% for QSF
(PS:35.2%/ SD: 46.9%), and 32.7% for PACIC (PS: 28.4%/ SD:38.7%)
scores. More information on the missing data of the OH study is given
in Tables 10–14 in Supplementary Materials.

3. Statistical methods

3.1. GEE with robust variance estimator

Let {𝑌𝑖𝑗𝑘, 𝑅𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘, 𝐴𝑖, 𝑍𝑇
𝑖𝑗𝑘} denote the data from the 𝑘th visit (𝑘 =

1,… , 𝑟𝑖𝑗 , 𝑟𝑖𝑗 ≤ 𝐾) for the 𝑗th participant (𝑗 = 1,… , 𝑚𝑖) in the 𝑖th
linic (𝑖 = 1,… , 𝑛), where 𝑌𝑖𝑗𝑘 is a continuous longitudinal outcome,
𝑅𝑖𝑗𝑘 indicates observation of 𝑌𝑖𝑗𝑘 (1 for observation; 0 for missing), 𝑇𝑖𝑗𝑘
indicates time of visit, 𝐴𝑖 indicates the treatment assigned to the clinic
𝑖, and 𝑍𝑖𝑗𝑘 is a p-dimensional vector of baseline covariates. Although
our method can be extended for more general settings, we describe our
method for binary treatment, with 𝐴 = 1 or 0, and continuous outcome
settings in this article.

We aim to infer the regression coefficient of treatment effects in
the marginal mean of the outcomes, 𝜇 = (𝜇1,… , 𝜇𝑛)𝑇 , within the GEE
framework. Given longitudinally measured continuous outcomes, the
mean model has been expressed using a generalized linear regression
model as follows:

𝜇(𝑋𝑖𝑗𝑘; 𝜷) = 𝑋𝑖𝑗𝑘𝜷 = 𝛽0 + 𝛽1𝐴𝑖 + 𝛽2𝑇𝑖𝑗𝑘 + 𝛽3𝐴𝑖 × 𝑇𝑖𝑗𝑘, (1)

here 𝜷 ∈ 𝐑𝑝, 𝑋𝑖𝑗𝑘 = {1, 𝐴𝑖, 𝑇𝑖𝑗𝑘, 𝐴𝑖 × 𝑇𝑖𝑗𝑘}. We first test for the
reatment-by-time interaction effect. In the absence of the interaction
ffect (𝛽3 = 0), we test for the main effect of treatment with 𝑋𝑖𝑗𝑘 =

{1, 𝐴𝑖, 𝑇𝑖𝑗𝑘}. The standard GEE [10] solves ∑𝑛
𝑖=1 𝑈𝑖(𝛽) =

𝑛
∑

𝑖=1
𝐷𝑇
𝑖 𝑉

−1
𝑖 {𝑌𝑖 −
𝜇𝑖(𝛽)} = 0, where 𝜇𝑖(𝛽) = 𝜇(𝑋𝑖; 𝛽), 𝐷𝑖 = {𝜕𝜇𝑖(𝛽)∕𝜕𝛽}, and 𝑉𝑖 is
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the variance–covariance matrix of outcomes in the 𝑖th clinic. Here 𝑌𝑖
nd 𝑋𝑖 are �̃�𝑖 =

∑𝑚𝑖
𝑗=1 𝑟𝑖𝑗 -dimensional vector and �̃�𝑖 × 𝑝 dimensional

matrix for the 𝑖th clinic, respectively. Under some regularity conditions
and MCAR, the GEE estimator achieves the consistency of 𝛽 when the
number of clinics is sufficiently large, usually greater than 50, without
the joint distribution of the outcomes being specified as long as the
mean model 𝜇(𝑋𝑖𝑗𝑘; 𝛽) is correct [10].

We consider two working correlation structures. First, we assume
an exchangeable correlation structure for within-clinic and within-
participant correlations. We estimate the variance–covariance matrix,
𝑉𝑖, by extending the variance component estimation method proposed
by Kloke et al. [27] from the two-level into the three-level hierarchical
structure. The variance component estimation method requires some
assumptions, such as continuous random errors with zero mean, finite
second moments, and an exchangeable covariance structure. However,
the approach is nonparametric, and the normality assumption for the
joint distribution of correlated outcomes is not needed. We describe
the proposed estimation procedure for the variance–covariance matrix
in Section 1.1 of Supplementary Materials. Second, we consider an
exchangeable correlation among participants within the same clinic and
autoregressive of order 1 (AR(1)) correlation among within-participant
visits. Details regarding the AR(1) structure are provided in Section 1.2
of Supplementary Materials.

The robust sandwich variance estimator has the following form:
𝑉 𝑅 = 𝛺−1 (∑𝑛

𝑖=1𝐷
𝑇
𝑖 𝑉

−1
𝑖 𝜖𝑖𝜖𝑇𝑖 𝑉

−1
𝑖 𝐷𝑖

)

𝛺−1, where 𝜖𝑖 = 𝑌𝑖 − 𝜇𝑖(𝛽) and 𝛺 =
∑𝑛
𝑖=1𝐷

𝑇
𝑖 𝑉

−1
𝑖 𝐷𝑖. For a single parameter of interest, the Wald t-test rejects

the null hypothesis, 𝐻0 ∶ 𝛽𝑞 = 0, if |𝑡𝑅| = |𝛽𝑞∕
√

𝑉 𝑅(𝛽𝑞)| > 𝑡1−𝛼∕2(df),
where 𝑉 𝑅(𝛽𝑞) is the 𝑞th diagonal element of 𝑉 𝑅 corresponding to 𝛽𝑞 and
df is a degree of freedom. To test the vector of parameters 𝐻0 ∶ 𝐿𝛽 = 0
using a matrix of linear contrast 𝐿 with a rank 𝓁, F-tests with 𝓁 degrees
of freedom can be used, where 𝐹 = (𝐿𝛽)𝑇 {𝐿𝑉 𝑅𝐿𝑇 }−1𝐿𝛽∕𝓁.

3.2. Bias-corrected sandwich variance estimators

The robust variance estimator tends to underestimate the true co-
variance matrix that can lead to inflated type I error rates and un-
dercoverage of confidence intervals due to its large variation when
𝑛 is small [6,28]. In practice, it can be difficult to recruit a suffi-
cient number of clinics to conduct a longitudinal CRT (only 11 clinics
were included in the OH study). We use two bias-corrected sandwich
variance estimators to reduce the risk of inflated type I errors due
to the small number of clinics: KC bias-corrected [6,19,29] and MD
bias-corrected estimators [6,19,30].

𝑉 𝐾𝐶 = 𝛺−1

{ 𝑛
∑

𝑖=1
𝐷𝑇
𝑖 𝑉

−1
𝑖 (𝐼𝑖 −𝐻𝑖)−1∕2𝜖𝑖𝜖𝑇𝑖 (𝐼𝑖 −𝐻𝑖)−1∕2𝑉 −1

𝑖 𝐷𝑖

}

𝛺−1,

𝑉𝑀𝐷 = 𝛺−1

{ 𝑛
∑

𝑖=1
𝐷𝑇
𝑖 𝑉

−1
𝑖 (𝐼𝑖 −𝐻𝑖)−1𝜖𝑖𝜖𝑇𝑖 (𝐼𝑖 −𝐻𝑖)−1𝑉 −1

𝑖 𝐷𝑖

}

𝛺−1, (2)

where 𝐻𝑖 = 𝐷𝑖𝛺−1𝐷𝑇
𝑖 𝑉

−1
𝑖 and 𝐼𝑖 is the identity matrix for the 𝑖th clinic.

3.3. The inverse probability weighted estimating equation

In longitudinal studies, the MCAR assumption is frequently vi-
olated, and the standard GEE might fail to produce consistent re-
sults [10]. Here, we first assume longitudinally collected data follow
the CD-MAR mechanism, and we apply the inverse probability weight-
ing approach [31,32]. We then present the modified IPW and AIPW
estimating equations for the monotone OCD-MAR mechanism.

Assuming the CD-MAR mechanism, Prague et al. [25] proposed the
following IPW estimating equation and robust variance estimator:
𝑛
∑

𝑖=1
𝑈𝑖,𝐼𝑃𝑊 (𝛽) =

𝑛
∑

𝑖=1
𝐷𝑇
𝑖 𝑉

−1
𝑖 𝑊𝑖(𝜉){𝑌𝑖 − 𝜇𝑖(𝛽)} = 0, (3)

𝑉 𝑅
𝐼𝑃𝑊 = 𝛺−1

1

{ 𝑛
∑

𝐷𝑇
𝑖 𝑉

−1
𝑖 𝑊𝑖(𝜉)𝜖𝑖𝜖𝑇𝑖 𝑊𝑖(𝜉)𝑉 −1

𝑖 𝐷𝑖

}

𝛺−1
1 , (4)
3

𝑖=1 a
where the weight matrix 𝑊𝑖(𝜉) = diag
{

𝑅𝑖𝑗𝑘∕𝜋𝑖𝑗𝑘(𝑋𝑖𝑗𝑘, 𝑍𝑖𝑗𝑘; 𝜉)
}

, the
missingness model 𝜋𝑖𝑗𝑘 = P(𝑅𝑖𝑗𝑘 = 1|𝑋𝑖𝑗𝑘, 𝑍𝑖𝑗𝑘; 𝜉), and 𝛺1 =
∑𝑛
𝑖=1𝐷

𝑇
𝑖 𝑉

−1
𝑖 𝑊𝑖(𝜉)𝐷𝑖. Assuming the CD-MAR mechanism, standard lo-

gistic regression models have been commonly used to predict 𝜋, and
the inverse of 𝜋 is used to weigh the observed outcomes. To improve
the unstable features of IPW estimators, we used a stabilized weight ap-
proach [33] and defined the weight as 𝑊𝑖(𝜉) = diag
{

P(𝑅𝑖𝑗𝑘 = 1)𝑅𝑖𝑗𝑘∕𝜋𝑖𝑗𝑘(𝑋𝑖𝑗𝑘, 𝑍𝑖𝑗𝑘; 𝜉)
}

. Under a correctly specified miss-
ingness model and MAR, the IPW estimator is consistent and normally
distributed. We then modified (4) for two bias-correction methods:

𝑉 𝐾𝐶
𝐼𝑃𝑊 = 𝛺−1

1

{ 𝑛
∑

𝑖=1
𝐷𝑇
𝑖 𝑉

−1
𝑖 𝑊𝑖(𝜉)(𝐼𝑖 −𝐻𝑊

𝑖 )−1∕2𝜖𝑖𝜖𝑇𝑖 (𝐼𝑖 −𝐻
𝑊
𝑖 )−1∕2

𝑊𝑖(𝜉)𝑉 −1
𝑖 𝐷𝑖

}

𝛺−1
1 ,

𝑉𝑀𝐷
𝐼𝑃𝑊 = 𝛺−1

1

{ 𝑛
∑

𝑖=1
𝐷𝑇
𝑖 𝑉

−1
𝑖 𝑊𝑖(𝜉)(𝐼𝑖 −𝐻𝑊

𝑖 )−1𝜖𝑖𝜖𝑇𝑖 (𝐼𝑖 −𝐻
𝑊
𝑖 )−1

𝑊𝑖(𝜉)𝑉 −1
𝑖 𝐷𝑖

}

𝛺−1
1 , (5)

where 𝐻𝑊
𝑖 = 𝐷𝑖𝛺−1

1 𝐷𝑇
𝑖 𝑊𝑖(𝜉)𝑉 −1

𝑖 . The variance estimators are com-
puted at fixed inverse probability weights (𝜉) for illustrative purposes.
Failing to account for the variability of weights can lead to a more
conservative inference [24,32]. More details on bias-corrected vari-
ance estimators for IPW estimators are provided in Section 1.3 of
Supplementary Materials.

Compared to the IPW estimator, the AIPW estimator improves
efficiency and robustness against a misspecified working missingness
model via an appropriate augmentation for missingness [31,32]. We
denote the outcome model as 𝐵𝑖(𝜂) = 𝐵(𝑋𝑖𝑗𝑘, 𝑍𝑖𝑗𝑘; 𝜂) for a regression
function 𝐵 and a vector of parameters 𝜂. If the outcome regression

odel is correctly specified, 𝐵(𝑋𝑖𝑗𝑘, 𝑍𝑖𝑗𝑘; 𝜂) = E(𝑌𝑖𝑗𝑘|𝑋𝑖𝑗𝑘, 𝑍𝑖𝑗𝑘). Let
= (𝛽, 𝜉, 𝜂). We solved the following AIPW estimating equation with

ugmentation for missingness:

𝑛
∑

𝑖=1
𝑈𝑀
𝑖,𝐴𝐼𝑃𝑊 (𝜃) =

𝑛
∑

𝑖=1
[𝐷𝑇

𝑖 𝑉
−1
𝑖 𝑊𝑖(𝜉){𝑌𝑖 − 𝐵𝑖(𝜂)} +𝐷𝑇

𝑖 𝑉
−1
𝑖

{

𝐵𝑖(𝜂) − 𝜇𝑖(𝛽)
}

] = 0.

(6)

The AIPW estimator exhibits double-robustness that produces con-
istent estimates for 𝛽, when either the outcome model 𝐵 or missingness
odel 𝜋 is specified correctly [31,32] given the mean model is correct.
rague et al. [25] proposed a modified AIPW estimator to augment
issingness under CD-MAR and the treatment allocation mechanism

n a two-level CRT:

𝑛
∑

𝑖=1
𝑈𝑀𝐴
𝑖,𝐴𝐼𝑃𝑊 (𝜃) =

𝑛
∑

𝑖=1
[𝐷𝑇

𝑖 𝑉
−1
𝑖 𝑊𝑖(𝜉){𝑌𝑖 − 𝐵𝑖(𝜂)} (7)

+
∑

𝑎=0,1
𝑝𝑎(1 − 𝑝)1−𝑎𝐷𝑖(𝑎)𝑇 𝑉 −1

𝑖 (𝑎)
{

𝐵𝑖(𝑎; 𝜂) − 𝜇𝑖(𝑎; 𝛽)
}

] = 0,

here 𝑝 = P(𝐴 = 𝑎), for 𝑎 = 0, 1. The simulation study in Prague
t al. [25] showed that the AIPW estimating Eq. (7) could perform
ore effectively than the AIPW estimating equation augmented for
issingness alone (6), with covariate interference, in case where the

ovariates of a participant could impact outcomes of other participants
ithin the same clinic (that is, for any two participants 𝑗 and 𝑘,
≠ 𝑘 from the same clinic 𝑖, E(𝑌𝑖𝑗 |𝑋𝑖𝑗 ) ≠ E(𝑌𝑖𝑗 |𝑋𝑖𝑗 , 𝑋𝑖𝑘)). Although
e have not considered covariate interference in our study, Prague’s
IPW estimator is expected to be beneficial due to the additional
ugmentation of the treatment allocation mechanism in the presence
f baseline imbalances among clinics.

To compute the variance estimator of AIPW estimating equations,

vector of estimating functions involving nuisance parameters (𝜉, 𝜂)
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Table 1
Details of the simulation settings. Two sets of data were generated for each simulation setting(# of clinics and missing rates). First, data
under the null (no treatment-by-time interaction effect) were generated to investigate the type I error rates. Second, data under the alternative
(significant treatment-by-time interaction effect) hypothesis were generated to investigate the power and coverage probabilities. In all scenarios,
the clinic size varies, ranging from 30 to 300 participants (an average of 165 per clinic with cv = 0.5). In all data generated under CD-MAR,
within-clinic and within-participant ICCs were approximately 0.04 and 0.4, respectively. In all data generated under OCD-MAR, within-clinic
and within-participant ICCs were around 0.044 and 0.48, respectively.

Missing # of % of Description
mechanism clusters missing

CD-MAR

10 25% Small # of clinics, 25% missing under CD-MAR
50% Small # of clinics, 50% missing under CD-MAR

20 25% Moderate # of clinics, 25% missing under CD-MAR
50% Moderate # of clinics, 50% missing under CD-MAR

50 25% Large # of clinics, 25% missing under CD-MAR
50% Large # of clinics, 50% missing under CD-MAR

OCD-MAR

10 25% Small # of clinics, 25% missing under monotone OCD-MAR
50% Small # of clinics, 50% missing under monotone OCD-MAR

20 25% Moderate# of clinics, 25% missing under monotone OCD-MAR
50% Moderate # of clinics, 50% missing under monotone OCD-MAR

50 25% Large # of clinics, 25% missing under monotone OCD-MAR
50% Large # of clinics, 50% missing under monotone OCD-MAR
in the missingness and outcome models is used [25]. The estimating
function for 𝜃 is

𝜓𝑖(𝜃) =
(

𝑈𝑖,𝐴𝐼𝑃𝑊 (𝑌𝑖, 𝑅𝑖, 𝑋𝑖, 𝑍𝑖; 𝛽, 𝜉, 𝜂), 𝑆𝑊𝑖 (𝑋𝑖, 𝑍𝑖; 𝜉), 𝑆𝐵𝑖 (𝑋𝑖, 𝑍𝑖; 𝜂)
)𝑇 ,

(8)

where 𝑆𝑊 and 𝑆𝐵 are score equations of 𝜉 and 𝜂 in the missingness and
outcome models, respectively. We estimate variance empirically using
the nuisance-adjusted sandwich variance estimator proposed by Prague
et al. [25]:

V̂ar(�̂�) =
⎡

⎢

⎢

⎣
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⎥
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(9)

e then modify (9) by using it in combination with two bias-corrected
ethods. Let 𝐻𝐴𝑊

𝑖 = 𝐷𝑖𝛺−1
2 𝐷𝑖𝑊𝑖(𝜉)𝑉 −1

𝑖 , where 𝛺2 =
∑𝑛
𝑖=1𝐷

𝑇
𝑖 𝑉

−1
𝑖 𝑊𝑖(𝜉)𝐷𝑖. For KC bias-corrected variance, we replace

𝑈𝑖,𝐴𝐼𝑃𝑊 in (8) with 𝑈𝐾𝐶
𝑖,𝐴𝐼𝑃𝑊 = 𝐷𝑇

𝑖 𝑉
−1
𝑖 𝑊𝑖(𝜉)(𝐼𝑖−𝐻𝐴𝑊

𝑖 )−1∕2{𝑌𝑖−𝐵𝑖(𝜂)}+
∑

𝑎=0,1 𝑝
𝑎(1 − 𝑝)1−𝑎𝐷𝑖(𝑎)𝑇 𝑉 −1

𝑖 (𝑎){𝐼𝑖 − 𝐻𝐴𝑊
𝑖 (𝑎)}−1∕2

{

𝐵𝑖(𝑎; 𝜂) − 𝜇𝑖(𝑎; 𝛽)
}

.
For MD bias-correction, the term (𝐼𝑖 − 𝐻𝐴𝑊

𝑖 )−1∕2 is replaced with
(𝐼𝑖 − 𝐻𝐴𝑊

𝑖 )−1. The R package CRTgeeDR [34] implements similar
IPW and AIPW methods with the bias correction of Fay and Graubard
(FG) [35] for two-level CRTs under CD-MAR.

We also considered estimating equations under the OCD-MAR mech-
anism. We modified the IPW and AIPW estimating equations from
Tsiatis [32] and Seaman and Copas [24] for longitudinal CRTs and
bias-corrected variance estimations. We implemented two additional
estimators: Weighted GEE (WGEE) and GEE with mean imputation
(MIGEE) using Paik’s imputation approach [36]. We present the mod-
ified IPW and AIPW estimating equations and bias-corrected variance
estimators for OCD-MAR in Section 1.4 of Supplementary Materials.

4. Simulation study

4.1. Simulation settings

We conducted two sets of simulation studies to evaluate the finite
sample performance of the equations that estimate the treatment-by-
time interaction effect in the marginal mean model (1) in longitudinal
CRTs, when data follow either CD-MAR or monotone OCD-MAR. We
compared the following methods: (1) standard GEE, (2) inverse prob-
ability weighted estimating equation (IPW), (3) augmented inverse

𝑀

4

probability weighted estimating equation for the missingness(AIPW ),
combined with the robust, KC, and MD bias-corrected variance estima-
tors. For the first simulation study under CD-MAR, we also compared
the AIPW estimating equation for the missingness and treatment allo-
cation mechanism (AIPW𝑀𝐴). As well, for the second simulation study
under monotone OCD-MAR, we compared the WGEE and GEE with
Paik’s imputation approach. All of the estimators are shown in Table
1 of Supplementary Materials.

We considered different simulation scenarios by varying (1) the
number of clinics (𝑛 = 10 for small, 20 for moderate, or 50 for large) and
(2) the overall missing rate in outcomes (25% for moderate and 50%
for severe). We generated some baseline imbalance between groups. As
observed in the OH study, clinic sizes is variable, ranging from 30 to
300 participants (an average of 165 per clinic with cv=0.5), and there
may be up to five visits per participant. We performed the Monte Carlo
(MC) simulation 1,000 times and we rejected the null hypothesis of
no treatment-by-time interaction effects, using the Wald t-statistic at a
significance level of 0.05. The degree of freedom is approximated by
Satterthwaite’s method [37] unless specified otherwise. Table 1 sum-
marizes all simulation scenarios. We provide details of the simulation
settings in Section 2 of Supplementary Materials.

4.2. Simulation results

Results under CD-MAR: In Table 2, the bias and variance estimates are
shown, simulating the results of both a small and moderate number of
clinics under the null hypothesis, with the overall missing rates of 25%
and 50%. Results of simulations with a large number of clinics are given
in Table 4 of Supplementary Materials. The IPW and AIPW estimating
equations under the correct working models improve the bias of the
GEE method, which is associated with violating the MCAR assumption.
The doubly robust property protects the AIPW method from a signif-
icant bias when either the missingness or outcome model is correctly
specified. The results show large biases in the IPW method with the
misspecified working missingness model and in the AIPW method with
both misspecified working missingness and outcome models. Compared
to the empirical variance estimates of 𝛽3, denoted by ‘‘MC Var’’, robust
variance estimators tend to underestimate the variance, given a small
number of clinics. The underestimation is particularly severe for the
GEE method, at a high missingness rate. Both bias-corrected estima-
tors improve variance estimation over robust estimators, with more
conservative results using the MD bias-correction.

The type I error rates, powers, and coverage probabilities of the 95%
confidence interval for treatment-by-time interaction tests are provided
in Figs. 1 and 2 for 𝑛 = 10 and 20. The results obtained when 𝑛 =
50 are shown in Figure 1 of Supplementary Materials. Given a small

number of clinics, the GEE method shows severely inflated type I error
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Table 2
The results of the simulation study with the number of clinics 𝐧 = 𝟏𝟎 and 𝟐𝟎 under the null hypothesis of zero treatment-by-time interaction effect are shown at the overall
missing rate of 25% and 50% under CD-MAR. Three estimating equations are compared: (standard) generalized estimating equations(GEE), inverse probability weighted estimating
equations (IPW), and inverse probability weighted estimating equations augmented for missingness and the treatment allocation mechanism (AIPW𝑀𝐴). Three variance estimators
are compared for each estimating equation: Robust estimator and bias-corrected sandwich variance estimators using KC and MD. GEE.F denotes the result of standard GEE applied
to the complete data set (no missing outcomes). ‘‘M‘‘, ‘‘O’’, and ‘‘MO" denote estimators with an incorrectly specified working missingness model, an incorrectly specified working
outcome regression model, and both incorrectly specified working models. Average bias estimates (Bias), Monte Carlo variance estimates (MC variance), and average estimated
variances of 𝛽3 using the three variance estimators (Estimated variance) over 1000 MC replications are reported. MC Var is the benchmark measurement of the variance estimation.
Estimators with zero bias and variance estimation close to the MC Var are more desirable. Estimators with significant bias and/or underestimated variance due to missingness
mechanism violation or a small number of clusters are highlighted in bold.

Method Number of clinics = 10 Number of clinics = 20

Bias MC Estimated variance Bias MC Estimated variance

Var Robust KC MD Var Robust KC MD
(benchmark) (benchmark)

25% missing

GEE.F −0.002 0.006 0.005 0.007 0.009 −0.001 0.003 0.003 0.003 0.004
GEE −0.099 0.011 0.007 0.009 0.013 −0.097 0.006 0.004 0.005 0.005

IPW −0.002 0.029 0.02 0.043 0.091 −0.007 0.013 0.011 0.019 0.031
IPW.M −0.164 0.020 0.027 0.026 0.032 −0.163 0.009 0.016 0.016 0.016

AIPW𝑀𝐴 0.002 0.016 0.013 0.029 0.061 −0.004 0.007 0.007 0.012 0.02
AIPW𝑀𝐴.M −0.003 0.010 0.014 0.014 0.015 −0.002 0.005 0.008 0.008 0.008
AIPW𝑀𝐴.O −0.009 0.022 0.014 0.036 0.077 −0.014 0.009 0.007 0.013 0.022
AIPW𝑀𝐴.MO −0.155 0.016 0.018 0.017 0.018 −0.155 0.007 0.01 0.01 0.01

50% missing

GEE.F −0.001 0.006 0.005 0.006 0.009 0 0.003 0.003 0.003 0.004
GEE −0.133 0.022 0.007 0.01 0.013 −0.127 0.012 0.004 0.005 0.005

IPW −0.011 0.107 0.071 0.472 1.854 −0.005 0.063 0.051 0.189 0.471
IPW.M −0.205 0.076 0.121 0.119 0.145 −0.19 0.040 0.075 0.077 0.083

AIPW 0.001 0.028 0.018 0.111 0.431 0.001 0.016 0.012 0.043 0.105
AIPW𝑀𝐴.M 0 0.015 0.022 0.024 0.03 0.003 0.008 0.013 0.014 0.016
AIPW𝑀𝐴.O −0.031 0.041 0.019 0.116 0.408 −0.028 0.024 0.012 0.052 0.13
AIPW𝑀𝐴.MO −0.185 0.031 0.028 0.03 0.036 −0.181 0.016 0.016 0.017 0.019
t
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rates, even in combination with MD bias-correction, particularly at high
missing rates. The IPW and AIPW estimating equations with the bias-
corrected variance estimators successfully control the type I error rate
at 0.05 under correctly specified working models. The doubly robust
property ensures good performance of AIPW estimating equations when
either the working missingness or outcome model is correctly specified.
Overall, the AIPW method is more powerful than the IPW method at
a similar type I error rate, with coverage probabilities closer to the
nominal level (0.95). The gaps in performance measures among the
variance estimators decrease as the number of clinics increases, which
is consistent with the general theory of bias-corrected methods [6,29,
30]. The results of the AIPW method augmented for missingness are
similar but slightly worse than those from the AIPW method augmented
for both missingness and treatment allocation mechanism.

In our simulation study, the main cause of bias in estimating 𝛽
depends on the estimating equations: in GEE, due to the violation of
MCAR; in the IPW methods, due to the misspecified working missing-
ness model; and in the AIPW method, when working models for both
missingness and outcome models are incorrectly specified. The robust
variance estimator tends to underestimate the variance of 𝛽 given a
small number of clusters. Consequently, the biases in regression param-
eters and variance estimation associated with missingness mechanisms,
a small number of clusters, and misspecified working models produce
poor type I error rate, power, and coverage probability. The IPW and
AIPW methods combined with bias-corrected variance estimators could
reduce such biases and improve the inference.

Results under OCD-MAR &monotone missingness: The overall finite
sample performance of the proposed methods under monotone OCD-
MAR is similar to that under CD-MAR; hence so, we report a few
new observations. When the probability of missingness is highly de-
pendent on previously observed outcomes under the monotone missing
mechanism, the type I error of GEE and all estimating equations with
incorrectly specified working models is extremely high, even in combi-
nation with a conservative MD bias-corrected estimator. Unlike results
5

(

with CD-MAR data, the bias estimate in the IPW method is relatively
smaller than that in other estimators when the working missingness
model is incorrectly specified. Including participants who completed all
visits might reduce the impact of the misspecified missingness model,
although it leads to a slight loss of efficiency under the correctly
specified models in the IPW method. We also note that the finite
sample performance of the IPW approach under the monotone OCD-
MAR mechanism depends not only on missing rates but also on the
pattern of missing data. We observed that the missingness model using
logistic regression performs poorly in terms of estimating missingness
probability when the number of missing cases at time 𝑡 + 1 among
those observed at time 𝑡 is small. The poor performance is due to
he fact that the maximum likelihood estimation using the logistic
egression model produces a bias with extremely unbalanced outcomes
in our setting, significantly few missing cases are observed at time 𝑡+1
mong those with observed outcomes at time 𝑡). We used the penalized
ogistic regression approach proposed by Firth [38] (see Section 1.5 of
upplementary Materials) through R packages brglm [39] to reduce
ias, with very few missing cases between measurement times. More
imulation results regarding monotone OCD-MAR can be found in
ection 2.2, Tables 6–8, and Figures 2–4 in Supplementary Materials.

. Data analysis: Application to the optimal health study

We applied the proposed methods to infer treatment effects on
hree outcomes: PAM, QSF, and PACIC score. PAM is the primary
utcome, and the analysis results of PAM using the GLMM with the
obust variance estimator can be found in Schuster et al. [3]. QSF and
ACIC are secondary outcomes; the analysis results were not presented
n Schuster et al. [3]. Building on the work of Schuster et al. [3], we
ested the data for treatment-by-time interaction effects.

Based on our knowledge of the OH study and similar CTRs reported
n the literature, we tested the data assuming the MAR mechanism.

e applied the proposed methods for the CD-MAR mechanism because

1) nonmonotone missingness patterns are observed from the three
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Fig. 1. The simulation results with 𝐧 = 𝟏𝟎 at the overall missing rate of 25% and 50% under CD-MAR. Three estimating equations are compared: (standard) generalized estimating
quation(GEE), inverse probability weighted estimating equation (IPW), and IPW augmented for missingness and treatment allocation mechanism (AIPW). For each estimating
quation, three variance estimators are compared: The robust estimator (Robust: Blue) and bias-corrected sandwich estimators using KC (KC:Red) and MD (MD: Green). GEE.F
enotes the result of standard GEE applied to the complete data set (no missing outcomes). ‘‘M’’, ‘‘O’’, and ‘‘MO’’ denote estimators with an incorrectly specified working missingness
odel, working outcome model, and both working models, respectively.
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utcomes (Tables 11-14, Supplementary Materials) and (2) multiple
aseline covariates are significantly associated with the missingness of
hree outcomes (Table 15, Supplementary Materials). Certain baseline
utcomes are associated with the missingness of the outcomes at 6
onths in the case of PAM and QSF. Nevertheless, it was challeng-

ng to model OCD-MAR for the nonmonotone missingness patterns
resented. Exchangeable and AR(1) correlation structures were used
or within-clinic and within-participant correlations, respectively. Ex-
loratory analyses show non-linear change patterns in three outcomes
ver time. Therefore, the variable time was treated as discrete, and
he four degrees of freedom F-test was used for testing treatment-by-
ime interaction effects at the significance level of 0.05. The mean
6

s

odel for three outcomes is 𝜇(𝑋; 𝛽) = 𝛽0 + 𝛽1𝐴 + 𝛽2𝑀6 + 𝛽3𝑀12 +
4𝑀18 + 𝛽5𝑀24 + 𝐴(𝛽6𝑀6 + 𝛽7𝑀12 + 𝛽8𝑀18 + 𝛽9𝑀24), where 𝐴 =
{Patient Self-Directed Care} and 𝑀𝑡 indicates the follow-up months:
, 12, 18, and 24.

For the missingness and outcome working models, we considered
he 14 baseline covariates that were included in the regression model
escribed by Schuster et al. [3]: age, race, gender, the severity level
f mental illness, 80% Medicaid eligibility in the 12 months from
aseline, indicators of anxiety disorder and substance use, engagement
evel in interventions, four interpersonal support evaluation list (ISEL)
cores (self-esteem, belonging, appraisal, tangible), medical stability
core, and the indicator of the social security income with Medicare.
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Fig. 2. The simulation results with 𝐧 = 𝟐𝟎 at the overall missing rate of 25% and 50% under CD-MAR. Three estimating equations are compared: (standard) generalized estimating
quation(GEE), inverse probability weighted estimating equation (IPW), and IPW augmented for missingness and treatment allocation mechanism (AIPW). For each estimating
quation, three variance estimators are compared: The robust estimator (Robust: Blue) and bias-corrected sandwich estimators using KC (KC:Red) and MD (MD: Green). GEE.F
enotes the result of standard GEE applied to the full data set (no missing outcomes). ‘‘M’’, ‘‘O’’, and ‘‘MO’’ denote estimators with an incorrectly specified working missingness
odel, working outcome model, and both working models, respectively. The type I error rates under 𝐻0 ∶ 𝛽3 = 0, and the power and coverage probability of the 95% confidence

nterval under 𝐻1 ∶ 𝛽3 = 0.4 are computed using 1,000 MC replications.
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e present the analysis results for 1,120 participants (91.13%) with
omplete baseline covariates. We provide more information regard-
ng the OH study and preliminary analysis results in Section 3.1 of
upplementary Materials.

In applying the methods, we found some discrepancies between the
est results of treatment-by-time interaction effects in the three out-
omes. There was strong evidence of the different effects of treatment
n changes in PAM scores. In all estimating equations using the robust
nd KC bias-corrected variance estimators, the data indicate a signifi-
antly different effect of the treatment on the changes in PAM scores
ver time (Table 3). This result is consistent with the results described
7

y Schuster et al. [3], in which the GLMM was used with the robust
ariance estimator. The test results remain significant for all estimators
xcept for the IPW method in combination with the MD bias-corrected
stimator. The changes in QSF score differed significantly for the two
reatment groups in all estimating equations except the IPW method,
ven in combination with the most conservative MD bias-correction
Table 16, Supplementary Materials). The difference is not large enough
hen the IPW method is used with KC or MD bias-corrections. The

hanges in PACIC score differed significantly with treatment groups
ver time when GEE or either of the two AIPW methods were combined
ith robust or KC bias-corrected estimators (Table 17, Supplementary
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Fig. 3. Estimated mean score changes over time in the Optimal Health study by intervention groups: PAM, QSF, and PACIC scores. The mean curve is computed by plugging in
the estimated regression coefficients to the mean model using the results of AIPW𝑀𝐴.
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Materials). The difference is not large enough when either the MD
bias-corrected method or the IPW method (regardless of the variance
estimators) is used. The curves of the predicted mean values, based on
the AIPW𝑀𝐴 results, are given in Fig. 3. The curves indicate that the
PS group is expected to show a more rapid increase, initially, in the
PAM and QSF scores at first, and this increase is then sustained over
time. The PAM and QSF scores are expected to increase slowly in the
SD group.

We learned from the simulation results and previous reports that the
GEE approach could lead to an inflated type I error rate, even with the
MD bias-corrected estimator, when the number of clinics is small (for
example, 𝑛 = 10) or the missing rate in outcomes is high. The results of
the AIPW methods, combined with bias-corrected estimators, could be
conservative and reduce the risk of inflated type I errors.

6. Conclusion

The results of this study provide an in-depth comparison of the
performance of the three most popular estimating equations combined
with three variance estimators to analyze data from three-level lon-
gitudinal CRTs. We utilized empirical evaluations under pragmatic
constraints; that is, a small number of clusters, heterogeneous cluster
sizes, and missing outcomes under two different missingness mecha-
nisms. Our simulation results show that the proposed IPW methods with
bias-corrected variance estimators can improve bias due to the violation
of the MCAR assumption and underestimated variance associated with
a small number of clinics in GEE combined with the robust variance
estimator in the considered complex settings. Given its doubly-robust
property, we recommend the AIPW estimating equations combined
with KC bias-correction when the number of clinics is moderately small,
in the presence of moderate missing outcomes under MAR, and with
a moderate variation in clinic sizes. The AIPW estimating equations
combined with MD bias-correction would be more appropriate for
preventing the inflation of false positive findings when the number of
clinics is as small as 10, with severe missing outcomes. The MD bias-
correction can compensate for the variability of the robust estimator
due to its overcorrection for the bias associated with a small number
of clinics and severe missing rates [19].
8

f

We also investigated whether and how the performance of the
proposed methods under the three-level longitudinal CRTs with more
pragmatic constraints can differ from the results of previous reports
in relatively simpler settings, such as two-level CRTs. It is difficult to
compare directly with the results in published studies, due to deviations
in several features. However, the results in our study suggest that the
IPW and AIPW estimating equation approaches with the bias-correction
method can improve the inference of treatment effects in three-level
longitudinal CRTs; the performances of these methods under more
pragmatic constraints (with a small number of clusters and missing
outcomes) are quite consistent with the results of previous reports in
relatively simpler settings. We demonstrated the double robustness of
the AIPW estimating equation in a more complex design than that
of Prague et al. [25]; specifically, three-level longitudinal CRTs under
the CD-MAR and monotone OCD-MAR mechanisms. Although the MD
bias-correction method tends to overestimate the variance compared
to the KC bias-correction method, it performs well with respect to
type I error rate and coverage probability. This result is consistent
with the results obtained in a simpler design by Lu et al. [19]. Our
findings with the KC and MD bias-correction methods can differ from
those of certain earlier reports due to several different features, such
as heterogeneous clinic sizes, three-level hierarchical designs, missing
longitudinal outcomes under MAR, and the use of AIPW methods. For
example, in the absence of missing outcomes, Li et al. [6] recommended
that the standard GEE with KC bias-correction would be preferred when
using data with a small to moderate variation of cluster sizes (cv < 0.6),
ven for 10 clusters; otherwise, more conservative methods, such as
G bias-correction [35], should be considered. Our results show that
he underestimated variance created by a small number of clusters is
till significant for 10 clusters and moderate variation in cluster sizes
hen the KC-bias correction is used to analyze data from the three-level

ongitudinal CRTs with a moderate to substantial number of missing
utcomes under the two MAR mechanisms.

Our study has several notable limitations that should be considered
n future research. We considered a relatively simple missingness model
hrough logistic regression. Modified estimating equations and miss-
ngness models should be considered to handle more complex missing
echanisms that may depend on time-varying covariates, OCD-MAR
or nonmonotone missingness, or non-MAR mechanisms. Second, we
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Table 3
Test results of the treatment-by-time interaction effect on the Patient Activation Measure (PAM) in the Optimal Health study. Four estimating equations are compared: (standard)
eneralized estimating equation (GEE), inverse probability weighted estimating equation (IPW), inverse probability weighted estimating equation augmented for missingness alone
AIPW𝑀 ) and missingness and treatment allocation mechanism (AIPW𝑀𝐴). Three variance estimators are compared for each estimating equation: Robust sandwich estimator and
ias-corrected sandwich variance estimators using KC and MD. CS and AR(1) correlation models are used for within-clinic and within-participant correlations, respectively. The
egression model includes treatment, discrete-time variable, and their interaction term, considering the baseline as a reference level. Coefficient and standard error estimates of all
egression parameters in the mean model, F-statistics, and 4 degrees of freedom Wald test result of treatment-by-time interaction effect are reported.
Estimator Term Robust KC MD

Coefficient SE F-value SE F-value SE F-value

GEE

Intercept 56.016 1.025 1.234 1.501
Treatment (SD) 1.703 1.308 1.524 1.795
Month of 6 (𝑀6) 1.949 0.531 0.674 0.870
Month of 12 (𝑀12) 0.538 0.893 1.147 1.487
Month of 18 (𝑀18) 1.016 1.101 1.401 1.799
Month of 24 (𝑀24) 1.731 0.952 1.209 1.552
Trt ×Time: 𝑀6 −2.344 0.660 33.136*** 0.804 27.659*** 0.997 22.956***
Trt ×Time: 𝑀12 0.573 1.041 1.289 1.621
Trt ×Time: 𝑀18 0.718 1.343 1.637 2.027
Trt ×Time: 𝑀24 −1.988 1.170 1.423 1.760

IPW

Intercept 56.121 1.206 10.107 21.613
Treatment (SD) 1.967 1.746 10.733 22.560
Month of 6 (𝑀6) 2.357 0.398 0.466 1.603
Month of 12 (𝑀12) 0.792 1.069 1.432 1.648
Month of 18 (𝑀18) 2.298 1.265 1.550 4.641
Month of 24 (𝑀24) 3.572 1.490 2.033 5.918
Trt ×Time: 𝑀6 −2.586 0.798 6.647*** 0.812 2.927* 1.839 1.482
Trt ×Time: 𝑀12 0.366 1.460 1.992 2.547
Trt ×Time: 𝑀18 0.241 1.938 2.446 5.221
Trt ×Time: 𝑀24 −3.835 2.157 3.152 6.810

AIPW𝑀

Intercept 56.601 0.784 3.837 6.440
Treatment (SD) 1.518 0.966 4.170 7.009
Month of 6 (𝑀6) 2.095 0.259 0.184 0.565
Month of 12 (𝑀12) 0.820 0.633 0.771 0.794
Month of 18 (𝑀18) 1.814 0.736 0.670 1.677
Month of 24 (𝑀24) 2.414 0.747 0.859 2.400
Trt ×Time: 𝑀6 −2.281 0.432 14.808*** 0.432 8.690*** 0.764 4.556**
Trt ×Time: 𝑀12 0.028 0.677 0.889 1.063
Trt ×Time: 𝑀18 0.294 0.929 0.939 1.851
Trt ×Time: 𝑀24 −3.054 0.941 1.260 2.744

AIPW𝑀𝐴

Intercept 56.754 0.632 2.908 4.791
Treatment (SD) 1.246 0.757 3.409 5.732
Month of 6 (𝑀6) 2.095 0.282 0.171 0.486
Month of 12 (𝑀12) 0.820 0.693 0.842 0.697
Month of 18 (𝑀18) 1.814 0.720 0.664 1.678
Month of 24 (𝑀24) 2.414 0.733 0.879 2.400
Trt ×Time: 𝑀6 −2.281 0.493 13.025*** 0.412 10.927*** 0.581 6.745***
Trt ×Time: 𝑀12 0.028 0.692 0.921 0.949
Trt ×Time: 𝑀18 0.294 0.918 0.944 1.788
Trt ×Time: 𝑀24 −3.054 1.006 1.168 2.479

Using 4 degrees of freedom F-test for the treatment-by-time interaction effect.
***Denote significance at the 0.001 levels, respectively.
**Denote significance at the 0.01 levels, respectively.
*Denote significance at the 0.05 levels, respectively.
assume that participants within the same clinic have an exchangeable
correlation in the analysis of the OH study. The data of care managers
for individual participants and visits are unavailable in the OH study.
If data on care managers are available, one can extend our methods
for a four-level hierarchical design to account for within-care manager
correlations. Finally, no attempt was made to extend the methods
to study more complex covariance structures due to the difficulty in
estimating the variance components without a normality assumption.
It is important to model the correlation structure correctly to achieve
the efficiency of the robust variance estimators in longitudinal CRTs.
Further research is warranted to handle these problems and will be left
for future study.

Despite these limitations, our results can be useful for choosing the
appropriate methods for preventing potential biases and type I error
inflation due to the MAR missingness and the small number of clus-
ters for the longitudinal CRT analysis. Another area deserving further
work is the sample size calculation for three-level longitudinal CRTs.
For example, the sample size calculation has been commonly done
9

based on the asymptotic normality assumption of the Z-test statistics
using model-based variance estimators. The AIPW methods with bias-
corrected variance estimators can be used to analyze data to prevent
the inflation of false positive rates. This may lead to a lower actual
statistical power than the target power estimated using the Z-statistics
and model-based variance estimators, given the missing outcomes and
the small number of clinics for the large variation in clinic sizes. In such
a case, a carefully designed MC simulation using the proposed method
can help to estimate the statistical power more accurately.
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