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Gene expression data typically are large, complex, and highly noisy. Their dimension is high with several thousand genes (i.e.,
features) but with only a limited number of observations (i.e., samples). Although the classical principal component analysis (PCA)
method is widely used as a first standard step in dimension reduction and in supervised and unsupervised classification, it suffers
from several shortcomings in the case of data sets involving undersized samples, since the sample covariance matrix degenerates
and becomes singular. In this paper we address these limitations within the context of probabilistic PCA (PPCA) by introducing
and developing a new and novel approach using maximum entropy covariance matrix and its hybridized smoothed covariance
estimators. To reduce the dimensionality of the data and to choose the number of probabilistic PCs (PPCs) to be retained, we
further introduce and develop celebrated Akaike’s information criterion (AIC), consistent Akaike’s information criterion (CAIC),
and the information theoreticmeasure of complexity (ICOMP) criterion of Bozdogan. Six publicly available undersized benchmark
data sets were analyzed to show the utility, flexibility, and versatility of our approach with hybridized smoothed covariance matrix
estimators, which do not degenerate to perform the PPCA to reduce the dimension and to carry out supervised classification of
cancer groups in high dimensions.

1. Introduction

The study of gene expression has been greatly facilitated
by DNA microarray technology. Since DNA microarrays
measure the expression of thousands of genes simultaneously,
there is a great need to develop analytical methodology to
analyze and to exploit the information contained in gene
expression data [1, 2]. With the wealth of gene expression
data from microarrays being produced, more and more new
prediction, classification, and clustering techniques are being
used for the analysis of the data [3]. Dimension reduction
techniques such as principal component analysis (PCA) and
several extended forms of PCA such as probabilistic principal
component analysis (PPCA), kernel principal component
analysis (KPCA) have also been proposed to analyze gene
expression data. For more on these methods we refer the
readers to Raychaudhuri et al. [1], Yeung and Ruzzo [2],

Chen et al. [4], Yang et al. [5], Ma and Kosorok [6], and Nya-
mundanda et al. [7]. Although these methods are commonly
used in the literature, they all inherently have their own
idiosyncratic statistical difficulties in analyzing undersized
samples in high dimensions due to singularity of the covari-
ance matrix, where these difficulties have not been satisfacto-
rily addressed in the literature. For SVM type kernelmethods,
although they are useful tools, they have their own limitations
in the sense that they are not easily interpretable since the
kernel transformation is not one-to-one and onto and the
transformation is not invertible. Moreover, for a given data
set the choice of the optimal kernel function and the tuning
parameters in kernel-based methods has been arbitrary and
has remained an unresolved academic research problem in
the literature until the recent work of Liu and Bozdogan [8]
and Liberati et al. [9].
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The main idea of the classical PCA, for example, is to
reduce the dimensionality of a data set consisting of a large
number of interrelated variables, while retaining as much as
possible the variation present in the data set. This is achieved
by transforming the data to a new set of variables, the princi-
pal components (PCs), which are uncorrelated and ordered
[10]. By applying PCA, one is implicitly assuming that the
desired information is exactly provided by the percent vari-
ance explained. But such an assumption has been questioned
and criticized by Scholz [11] in gene expression data analysis.
Other nonexhaustive limitations of PCA can be briefly
described as follows.

(i) When the sample size 𝑛 is much smaller than the
number of features (i.e., genes), 𝑝, that is, when we
have 𝑛 ≪ 𝑝, the maximum likelihood (ML) estimator
of the covariance matrix is neither invertible nor well
conditioned.

(ii) Therefore, the classical PCA does not work well
since the estimated covariance matrix becomes rank
deficient. Such a case in the literature is known as
undersized sample problem in high dimensions [12].

(iii) PCA suffers from a probabilistic interpretation. That
is, it does not have an underlying probability density
model.

Estimation of the covariance matrices for small sample
size and high dimensions, that is, the 𝑛 ≪ 𝑝 problem, is
a difficult problem that has recently attracted the attention
of many researchers. This problem is prevalent in genomics,
microarray data, gene sequencing, medical data mining, and
other bioinformatics areas as well as in econometrics and
predictive business modeling. This problem is numerically
one of the most challenging problems that require new and
efficient computational methods.

Due to the curse of dimensionality, almost all of the
classical multivariate statistical methods break down and
degenerate.This means that the covariance matrix of the data
cannot be computed and, as a result, one obtains only poor
classification and cluster analysis results.Themain reason for
this problem is the high noise created by the irrelevant or
redundant genes (i.e., features) present in the data.

In this paper, therefore, our main objectives are several-
fold to address the limitations of the standard classic PCA
and to develop and introduce a new and novel dimension
reduction technique for cancer classification. These are as
follows.

(i) To resolve the problem of small sample size and large
number of dimensions, that is, the 𝑛 ≪ 𝑝 problem,
we introduce several smoothed (or robust) covari-
ance estimators and their hybridized forms with
the neglected maximum entropy (ME) covariance
matrix.

(ii) We introduce and use probabilistic principal compo-
nent analysis (PPCA) as an alternative to the classic
PCA. PPCA is a probabilistic formulation of PCA
based on a Gaussian latent variable model. PPCA was
developed in the late 1990s and popularized by the

work of Tipping and Bishop [13, 14]. PPCA is flexible
and has the associated likelihood measure as the
quantum of information in the data, which is needed
in the model selection criteria and their computa-
tions.

(iii) A central issue in gene expression data is the dimen-
sion reduction before any classification or clustering
procedures are meaningfully applied, especially when
𝑛 ≪ 𝑝. In the literature, the task of dimensionality
selection has not been solved in a satisfactory way for
undersized gene expression data in high dimensions.
To this end, we introduce and develop celebrated
Akaike’s information criterion (AIC) [15], consistent
Akaike’s information criterion (CAIC) of Bozdogan
[16], and the information theoretic measure of com-
plexity (ICOMP) criterion of Bozdogan [17, 18] in
PPCA model to choose the number of probabilistic
PC components to be retained.

(iv) Later the PPCs chosen by the information criteria are
used as inputs in cancer classification using linear dis-
criminant analysis (LDA) and quadratic discriminant
analysis (QDA). The performance of these methods
is compared on the well-known six benchmark gene
expression data sets to emphasize the importance
of the role of dimension reduction to resolve the
“curse of dimensionality” of Bellman [19] in cancer
classification problems.

Our method has distinct advantages over the previously
proposed methods in that we provide analytical means of
choosing the number of PPCs via the novel application of
information theoretic model selection criteria to reduce the
dimension automatically that can be retained and utilized
in cancer classification based on sound statistical modeling
procedures. We use the entire data set with its high dimen-
sions rather than clusterwise splitting or partitioning of the
variables in the analysis process due to the high dimensional-
ity. Our approach has the generalizability property to non-
Gaussian latent variable models, probabilistic independent
component analysis (PICA), sparse probabilistic principal
component analysis (SPPCA), and other methods. The pro-
posed approach is efficient and computationally cost effective;
the results obtained are easy to interpret in the original data
space and can be used in other supervised or unsupervised
cancer classification procedures.

2. Materials and Methods

2.1. Smoothed and Hybridized Covariance Estimators

2.1.1. Maximum Likelihood Covariance Estimation. Let 𝑋 be
(𝑛 × 𝑝) data matrix. When the data are modeled proba-
bilistically as Gaussian or other elliptically contoured (EC)
distributions (non-Gaussians), such as Multivariate t (Mt),
multivariate power exponential (MPE), multivariate Cauchy
(MC), and multivariate Laplace (MLp), we must estimate the
covariancematrix,Σ.When the sample size 𝑛 is much smaller
than the dimension or the number of variables (genes), 𝑝, the
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usual samplemaximum likelihood (ML) estimator ofΣ, given
in matrix form

Σ̂MLE ≡ 𝑆 =

1

𝑛

𝑋

[𝐼
𝑝
−

1

𝑛

11

]𝑋, (1)

becomes unstable, ill-conditioned, nonpositive definite, and
even singular. In (1), 𝑋 denotes the transpose of 𝑋, 𝐼

𝑝
is

the (𝑝 × 𝑝) identity matrix, and 1 is a column vector of
one of 𝑝-dimensions. In such a case, we cannot compute
the inverse covariance matrix or what is referred to as the
“precision matrix,” which is needed in practically all multi-
variate analysis, which includes supervised and unsupervised
classification and kernel-basedmethods, amongmany others.
This situation is especially true inmany applicationswherewe
have undersized sample problem.

The “precision matrix,” that is, Σ̂
−1

MLE, depends on the
determinant of Σ̂MLE and has a bias

𝐸 (






Σ̂MLE






) = |Σ| [1 −

𝑝 (𝑝 + 1)

2𝑛

+ 𝑂 (𝑛
−2
)] (2)

that needs to be reduced to regularize the estimated covari-
ance matrix [20].

2.1.2. Naı̈ve Ridge Estimators of the Covariance Matrix. The
usual initial resolution to singular or ill-conditioned covari-
ancematrix problemhas been the “naı̈ve” ridge regularization

Σ̂
𝑅
= Σ̂ML + 𝛾𝐼

𝑝
, (3)

where 𝛾 > 0 is the ridge parameter and Σ̂
𝑅
indicates the ridge

or regularized covariance estimator. This estimator tries to
work to counteract the ill conditioned covariance by adjusting
the eigenvalues ofΣ. Usually, the ridge parameter, 𝛾, is chosen
to be very small. How large should 𝛾 be and how small can 𝛾

be have remained arbitrary and do not work well in “large 𝑝
small 𝑛” problems.

2.1.3. Smoothed Covariance Estimators. As an alternative
to the “naı̈ve” ridge regularization, many methods have
been proposed to improve the estimation of the covariance
matrix. All these approaches rely on the concept of shrinkage
estimators and perfecting them dating back to the early work
of James and Stein [21] and Stein [22] which is known as
the “Steinian type shrinkage,” which is implicit also in many
Bayesian methods as well as in the maximum entropy (ME)
covariance estimation.

The idea of shrinkage estimation of the covariancematrix
or what we call smoothed covariance estimators (SCEs) is
to take convex combination (i.e., weighted average) of the
sample estimator of Σ, Σ̂, with a suitably chosen target
diagonalmatrix𝐷.The shrinkage or smoothed estimator of the
covariance matrix then becomes a convex combination of Σ̂
with some chosen target𝐷 given by

Σ̂
𝑆
= (1 − 𝜌) Σ̂ + 𝜌𝐷, (4)

where 𝜌 is the optimal shrinkage coefficient (or intensity)
which is a parameter between 0 and 1; that is, 0 < 𝜌 < 1. It can

be a function of the observations. The matrix𝐷 is referred to
as the shrinkage target. Its naı̈ve form can be taken to be

𝐷 =

tr (Σ̂)
𝑝

𝐼
𝑝
= (

1

𝑝

𝑝

∑

𝑗=1

𝜆
𝑗
)𝐼
𝑝
= 𝜆𝐼
𝑝
, (5)

where tr(⋅) denotes the trace of thematrix,𝜆
𝑗
, 𝑗 = 1, . . . , 𝑝 are

the eigenvalues of the estimated sample covariance matrix,
and 𝜆 is the arithmetic mean of the eigenvalues.

The interpretation of the general form of the smoothed
covariance matrix estimation in (4) is that it provides a more
baseline level of variance and covariance estimation when
the sample size is much smaller than the dimension of the
data. By using such a weighted average, we put less weight
on extremely high or low values in the estimated covariance
matrix Σ̂. This reduces the influence of extremely high or low
values and provides a more robust and smoothed estimator.
Such a structure minimizes the mean squared error (MSE);
that is,

𝐸 [






Σ̂ − Σ







2

𝐹
] , (6)

where ‖⋅‖2
𝐹
denotes the squared Frobenius norm. It is difficult

to compute the MSE of Σ̂without additional constraints such
as the shrinkage or smoothed covariance estimator Σ̂

𝑆
.

Inwhat follows, in this paper, we introduce several robust,
regularized, or smoothed covariance estimators of the form
given in (4), which have been developed under several linear
and quadratic loss functions.

Selected improved (or smoothed) estimates of the covari-
ancematrix via shrinkage fromBozdogan andHowe [23] and
Bozdogan [18] are as follows.

(i) Maximum Likelihood/Empirical Bayes (MLE/EB) Covari-
ance Estimator. Consider

Σ̂MLE/EB = Σ̂MLE +

𝑝 − 1

𝑛 tr (Σ̂MLE)
𝐼
𝑝
, (7)

where tr(⋅) denotes the trace of the covariancematrix and 𝐼
𝑝
is

the (𝑝×𝑝) identity matrix. Σ̂MLE/EB covariance estimator was
proposed by Haff [24]. When a small amount of perturbation
is all that is required, Σ̂MLE/EB has a certain appeal. It is clear
that this is of the same form as the näıve ridge regularization.

(ii) Maximum Entropy (ME) Covariance Matrix. Consider

Σ̂ME = 𝐶 + 𝐷, (8)

where𝐶 is the usual (nonnegative definite) dispersionmatrix
and 𝐷 is a (positive definite) diagonal matrix with positive
elements on the diagonal. These positive elements take the
form of a weighted sum of squared differences between
successive primary midpoints of the variables and these ele-
ments serve as a ridge in the ME covariance matrix. In other
words, the construction of ME covariance matrix automat-
ically produces the ridge component directly from the data
without the worry of how to choose the ridge parameter as
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is the case in the usual ridge type of estimators. The main
motivation of introducing the ME covariance matrix estima-
tor, which has been ignored in the statistical literature, is that
it makes the singular and ill-conditioned covariance matrix
positive definite when we have undersized sample data such
as the case in gene expression data sets. What is also inter-
esting about the ME covariance matrix is that it uses linear
and nonlinear order statistics (OS) in its computation by fully
exploiting the information in the data set. The computation
of the ME covariance matrix in terms of the CPU time is fast
and efficient for high dimensional data and it is not heavy.
A Matlab module has been written for the computation of
theME covariancematrix and utilized in our analysis in what
follows.

For more on the ME covariance matrix we refer the
readers to Theil and Laitinen [25], Fiebig [12], and Theil and
Fiebig [26].

(iii) Stipulated Ridge Covariance Estimator (SRE). Consider

Σ̂SRE = Σ̂MLE + 𝑝 (𝑝 − 1) [2𝑛 tr (Σ̂MLE)]
−1

𝐼
𝑝
. (9)

We note that bias 𝐸(|Σ̂SRE|) = |Σ|[1 + 𝑂(𝑛
−2
)] and 𝑝(𝑝 −

1)[2𝑛 tr(Σ̂MLE)]
−1

= 𝑂(𝑛
−1
).

(iv) Stipulated Diagonal Covariance Estimator (SDE). Con-
sider

Σ̂SDE = (1 − 𝜌) Σ̂MLE + 𝜌Diag (Σ̂MLE) , (10)

where 𝜌 = 𝑝(𝑝 − 1)[2𝑛(tr𝑅−1 − 𝑝)]
−1 and 𝑅 =

Diag−1/2(Σ̂MLE)Σ̂MLEDiag
−1/2

(Σ̂MLE) is the correlationmatrix.
For SDE, we also note that the bias𝐸(|Σ̂SDE|) = |Σ|[1+𝑂(𝑛

−2
)]

and 𝜌 = 𝑂(𝑛
−1
).

The SRE and SDE covariance estimators are due to
Shurygin [20] (last student of Kolmogorov). SDE avoids scale
dependence of the units of measurement of the variables.

(v) Convex Sum Covariance Estimator (CSE). Preceding the
series of the work of Ledoit and Wolf [27, 28], based on
the quadratic loss function used by Press [29], Chen [30]
proposed a convex sum covariance matrix estimator (CSE)
given by

Σ̂CSE =

𝑛

𝑛 + 𝑚

Σ̂ + (1 −

𝑛

𝑛 + 𝑚

)𝐷 = 𝜌Σ̂ + (1 − 𝜌)𝐷, (11)

where

𝐷 =

tr (Σ̂)
𝑝

𝐼
𝑝
. (12)

For 𝑝 ≥ 2 dimensions,𝑚 is chosen to be

0 < 𝑚 <

2 [𝑝 (1 + 𝛽) − 2]

𝑝 − 𝛽

, (13)

where 𝛽 data adaptively is computed:

𝛽 =

(tr Σ̂)
2

tr (Σ̂2)
. (14)

This estimator improves upon the usual covariance by
shrinking all the estimated eigenvalues toward their common
mean. One obvious advantage of this estimator is that it is
operational even when 𝑛 ≪ 𝑝; that is, the sample size is much
smaller than the dimension.

(vi) Bozdogan’s [31] Convex Sum Covariance Estimator
(BCSE). Consider

Σ̂BCSE = 𝜌Σ̂ + (1 − 𝜌)𝐷, (15)

where 𝜌 = 1/𝛼 and 𝛼 is the sum of the squared deviations of
each dimension and is given by

𝛼 =

1

𝑛 − 1

𝑝

∑

𝑗=1

Var (𝑥
𝑗
) . (16)

As is well known, sumof squared deviations allows the overall
variability in a data set to be attributed to different types or
sources of variability, with the relative importance of each
being quantified by the size of each component of the overall
sum of squares.We calculate the sum of squares per degree of
freedom or the variance and then divide by the total degree of
freedom to get (16), which is used in the estimated shrinkage
target.

(vii) Eigenvalue Stabilization of the Covariance Matrix
(Thomaz [32]) (STA). Stabilization algorithm is as follows.

(1) Find the eigenvectors (𝑉) and eigenvalues (Λ) of the
covariance matrix.

(2) Compute the mean or average eigenvalue 𝜆 of the
covariance matrix:

𝜆 =

1

𝑝

𝑝

∑

𝑗=1

𝜆
𝑗
=

1

𝑝

tr (Σ̂) . (17)

(3) Form a new matrix of eigenvalues based on the
following largest dispersion values:

Λ
∗
=

[

[

[

[

[

[

[

[

max (𝜆
1
, 𝜆) 0 ⋅ ⋅ ⋅ 0

0 d ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ max (𝜆
𝑝
, 𝜆)

]

]

]

]

]

]

]

]

. (18)

(4) Finally, reform the modified newly stabilized covari-
ance matrix:

Σ̂STA = 𝑉Λ
∗
𝑉. (19)

There are other smoothed covariance matrices. For space
considerations, the ones above that we are studying in this
paper will suffice for the results in this paper.
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2.1.4. Hybridized Smoothed ME Covariance Estimator. We
can choose any of the smoothed covariance estimators
and stabilize their eigenvalues with the STA algorithm
above. However, in this paper more specifically we propose
focussing our attention on the ME covariance matrix and
stabilizing its eigenvalues using the eigenvalue stabilization
of Thomaz [32]. Then, we hybridize our result with other
smoothed covariance matrix estimators in reducing the
dimension of the undersized data in high dimensions in
the PPCA model using the information theoretic model
selection criteria.The rationale andmathematical motivation
of stabilization plus hybridization are to improve further in a
straightforward way the smaller and less reliable eigenvalues
of the estimated covariance matrix while trying to keep most
of its larger eigenvalues unchanged before smoothing to guar-
antee that the eigenvalues of a nonnegative definite matrix
do not become negative and to achieve positive definiteness
via shrinkage.These hybrid regularized covariance estimators
greatly enhance supervised and unsupervised classification
error rates after the dimension reduction and for general
inferences in multivariate modeling.

For example, we stabilize the ME covariance matrix and
obtain

Σ̂ME STA = 𝑉Λ
∗
𝑉. (20)

Then, we hybridize Σ̂ME STA, say, with the convex sum covari-
ance estimator (CSE) and compute

Σ̂HCE ≡ Σ̂ME STA CSE =

𝑛

𝑛 + 𝑚

Σ̂ME STA

+ (1 −

𝑛

𝑛 + 𝑚

)[

tr (Σ̂ME STA)

𝑝

] 𝐼
𝑝
.

(21)

We call such a process “hybridized covariance estimator,”
Σ̂HCE. Similarly, we can hybridize other smoothed covariance
estimators. These hybridized smoothed (or robust) estima-
tors of the covariance matrix overcome the singularity of the
covariance matrix for undersized gene expression data sets
and avoid negative eigenvalues.

As an illustration of our proposed approach to resolve the
undersized sample problem, we discard the group structure
of the colon benchmark data set for the time being and
compute the usual sample covariance matrix, Σ̂. Then, to
remedy the singularity problem, we compute the maximum
entropy (ME) covariance matrix, Σ̂ME. Later, we hybridize
the ME covariance matrix with other smoothed (or robust)
covariance estimators.We denote this by Σ̂HCE as in (21). Now
we compute the eigenvalues of these covariance estimators
and compare them with the eigenvalues of the MLE type
smoothed covariance estimator. Our results for both MLE
based smoothed covariance matrices and the hybridization
of the ME covariance with the smoothed covariances for the
colon cancer data set are shown in Figures 1(a)-1(b).

Looking at Figure 1, we note that the eigenvalues of Σ̂
are all zeros after the first eigenvalue that further shows the
severe singularity since the colon data set is undersized. To
remedy this problem, we can see that maximum entropy

(ME) covariance matrix, Σ̂ME, recovers the singularity. ME
covariance matrix estimator hybridization, Σ̂HCE, with other
smoothed covariances improves the singularity further and
also makes the covariance nonsingular which shows the
recovery of the singularity with our approach. The corre-
sponding eigenvalues of the final covariance estimator Σ̂HCE
are well conditioned and are positive providing a positive
definite covariance matrix that can be inverted.

It is important to emphasize here that our proposed
approach works for practically all the undersized benchmark
gene expression data sets. It has distinct advantage over
currently used methods for recovering the singularity of the
estimated covariance matrices in undersized gene expression
data sets or in general. It is analytical and numerically stable.
It is easy to compute and efficient.

2.2. Information Complexity: ICOMP Criterion. In general
statistical modeling and model evaluation problems, the
concept of model complexity plays an important role. At the
philosophical level, complexity involves notions such as con-
nectivity patterns and the interactions of model components.
Without a measure of overall model complexity, prediction
of model behavior and assessing model quality is difficult.
This requires detailed statistical analysis and computation to
choose the best fittingmodel among a portfolio of competing
models for a given finite sample [33].

The development of information theoretic measure of
complexity (ICOMP) criterion has been motivated in part by
Akaike’s classic information criterion (AIC) given by

AIC (𝑘) = −2 log 𝐿 (
̂
𝜃
𝑘
) + 2𝑚 (𝑘) , (22)

where 𝐿(
̂
𝜃
𝑘
) is the maximized likelihood function, ̂𝜃

𝑘
is the

maximum likelihood estimate of the parameter vector 𝜃
𝑘

under the model𝑀
𝑘
, and𝑚(𝑘) is the number of independent

parameters estimated when 𝑀
𝑘
is the model and in part by

information complexity concepts and indices.
Bozdogan [16] improved and extended AIC analytically

in two ways without violating Akaike’s principles using the
established results in mathematical statistics. One of these
extensions that make AIC asymptotically consistent is CAIC
which is defined by

CAIC (𝑘) = −2 log 𝐿 (
̂
𝜃
𝑘
) + 𝑚 (𝑘) [log (𝑛) + 1] . (23)

We note that, in AIC and CAIC, the compromise takes place
between the maximized log likelihood, that is, −2 log 𝐿(̂𝜃

𝑘
)

(the lack-of-fit component) and 𝑚(𝑘), the number of free
parameters, and 𝑚(𝑘)[log(𝑛) + 1], the penalty term, where
log(𝑛) is the natural logarithm of the sample size 𝑛, respec-
tively.

In contrast to AIC andCAIC, the information complexity
ICOMP criterion is based on covariance complexity index
of van Emden [34]. Instead of penalizing the number of
free parameters directly, ICOMP penalizes the covariance
complexity of the model.

ICOMP is defined by

ICOMP (𝑘) = −2 log 𝐿 (
̂
𝜃
𝑘
) + 2𝐶

1
(Σ̂Model) , (24)
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Eigenvalues for MLE hybridizations
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Eigenvalues for ME hybridizations
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Figure 1: The eigenvalues for MLE and ME covariance matrices and their hybridizations with other smoothed covariance matrices.

where Σ̂Model = ̂Cov(̂𝜃
𝑘
) is the estimated covariance matrix

of the model and 𝐶
1
(Σ̂Model) is the maximal entropic com-

plexity given by

𝐶
1
(Σ̂Model) =

𝑠

2

log[
tr Σ̂Model

𝑠

] −

1

2

log 

Σ̂Model






, (25)

where 𝑠 = rank(Σ̂Model).
Hence, ICOMP in its idealized form is an additive

composition of a term which measures the lack of fit (i.e.,
inference uncertainty), a second term which measures the
complexity of the covariance matrix of the parameter estimates
of a model, which represents the parametric uncertainty of
a model. It provides a more judicious penalty term and
balances the overfitting and underfitting risks of a model
compared to that of AIC. Indeed, this new approach provides
an entropic general data-adaptive penalty functional, which is
random and is an improvement over a fixed choice of penalty
functional such as in AIC or its variants.

There are several forms and theoretical justifications of
ICOMP. In this paper, we introduce and score only the
consistent form of ICOMP, CICOMP given by

CICOMP = −2 log 𝐿 (
̂
𝜃
𝑘
) + 𝑘 + 𝑘 log (𝑛) + 2𝐶

1𝐹
(Σ̂Model)

= CAIC + 2𝐶
1𝐹

(Σ̂Model) .

(26)

In (26), 𝐶
1𝐹
(Σ̂Model) represents the second order Frobenius

norm characterization of the original complexity 𝐶
1
(Σ̂Model)

of Σ̂Model and in terms of eigenvalues, it is given by

𝐶
1𝐹

(Σ̂Model) =

1

4𝜆
𝑎

2

𝑠

∑

𝑗=1

(𝜆
𝑗
− 𝜆
𝑎
)

2

, (27)

where 𝜆
𝑎
is the arithmetic mean of the eigenvalues of Σ̂Model.

We note that 𝐶
1𝐹
(Σ̂Model) is scale-invariant and

𝐶
1𝐹
(Σ̂Model) ≥ 0 with 𝐶

1𝐹
(Σ̂Model) = 0 when all 𝜆

𝑗
= 𝜆
𝑎
. Also,

𝐶
1𝐹
(Σ̂Model)measures the relative variation in the eigenvalues

rather than absolute variation of the eigenvalues. For more
details on the analytical developments of these information
complexity criteria, we will refer the readers to Bozdogan
[16–18, 23, 31, 33, 35–40].

A model with the minimum information criteria score is
chosen to be the best model among the competing alternative
models.

When 𝑛 ≪ 𝑝, in the next section, we introduce and
develop a novel approach to reduce the dimension of large
microarray data sets for supervised and unsupervised classi-
fication. Although the use of the classic principal component
analysis (PCA) has been commonly used method for dimen-
sion reduction, it is problematic especially in gene expression
data analysis since the data sets are extremely undersized
and high dimensional. The eigenvalue 𝜆

𝑗
is not a good

estimator of the variance of the 𝑗th PC, since the estimated
covariance matrix Σ̂ is singular with 𝑝 − 𝑛 + 1 degenerate
zero eigenvalues. In this sense, in the literature the task of
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dimensionality selection has not been solved in a satisfactory
way for undersized samples.

2.3. Dimension Reduction with Probabilistic Principal
Component Analysis (PPCA)

2.3.1. Gaussian Latent Variable Model. Probabilistic princi-
pal component analysis (PPCA) is a Gaussian probabilistic
generalization of PCA. It has been used in many areas.
In its formulation PPCA presumes a linear latent variable
model relating an observed variable with a latent variable
that is inferred only from observed variable through a linear
mapping called factor loading. PPCA offers several advan-
tages over the PCA. These include hybridized regularization
procedures such as the one proposed in this paper, model
selection for dimension reduction, easy interpretation of the
results, and its generalizability to other distributional models
other than the Gaussian model. PPCA can also be viewed as
a marginal density or a predictive model in its setup.

In this paper, we use the maximum likelihood estimates
(MLEs) of the parameters of PPCA.TheMLE approach com-
putationally is efficient and works well for high dimensional
data.

To bemore specific, following Tipping and Bishop [13, 14]
in matrix notation, we express the probabilistic principal
component analysis (PPCA) model as a mapping (or trans-
formation) from latent space into the data space via

𝑥 = Λ𝑓 + 𝜇 + 𝜀, (28)

where 𝑥 is a (𝑝 × 1) vector of high dimensional observed
variables (genes), Λ is a (𝑝 × 𝑚) factor loading matrix that
represents a linear transformation, that is, Λ : 𝑓 → 𝑥, 𝑓 is
(𝑚 × 1) latent variable, 𝜇 is a (𝑝 × 1) mean vector, and 𝜀 is
(𝑝 × 1) multivariate Gaussian random error (or noise) for 𝑥
independent of the latent variable 𝑓.

We note that the latent variable model in (28) clearly
shows the idea of dimensionality reduction since a high
dimensional observation vector 𝑥 can be represented by a
low-dimensional latent variable 𝑓 through the mapping Λ

such that 𝑚 ≤ 𝑝, where 𝑚 is the number of latent variables
(PPCs) and 𝑝 is the dimension of the data.

In order to be able to introduce the probabilisticmodeling
of 𝑥, we assume that

(i) the probability density of 𝑓 is a unit spherical Gaus-
sian: 𝑓 ∼ 𝑁(0, 𝐼

𝑚
),

(ii) the probability density of 𝜀 is spherical Gaussian: 𝜀 ∼

𝑁(0, Ψ) = 𝑁(0, 𝜎
2
𝐼
𝑝
).

Finally, the observed variable 𝑥 ends up with a Gaussian
probability model

𝑥 ∼ 𝑁(𝜇, ΛΛ

+ 𝜎
2
𝐼
𝑝
) , (29)

where the (𝑝×𝑝) covariancematrix of the observation vector
𝑥 is

Cov (𝑥) ≡ Σ = ΛΛ

+ 𝜎
2
𝐼
𝑝
. (30)

2.3.2. Probability Model. The probability distribution 𝑝(𝑥 |

𝑓) is formulated with the help of the probability model of the
random error 𝜀 given by

𝑝 (𝜀; 𝜎
2
) = (2𝜋𝜎

2
)

−𝑝/2

exp(−

1

2

𝜀

𝜀) . (31)

Since 𝜀 = 𝑥−Λ𝑓−𝜇, the conditional probability of 𝑥 given
𝑓, that is, 𝑝(𝑥 | 𝑓), can be obtained from 𝑝(𝜀). This is given
by

𝑝 (𝑥 | 𝑓; Λ, 𝜇, 𝜎
2
) = (2𝜋𝜎

2
)

−𝑝/2

exp (−

1

2





𝑥 − Λ𝑓 − 𝜇






2

) ,

(32)

where ‖ ⋅ ‖2 denotes the square of the matrix norm.
Under the Gaussian prior probability the distribution of

𝑓 is given by

𝑝 (𝑓) = (2𝜋)
−𝑚/2 exp(−

1

2

𝑓

𝑓) . (33)

Since𝑓 ∼ 𝑁(0, 𝐼
𝑚
), themarginal probability distribution,

𝑝(𝑥) is

𝑝 (𝑥) ≡ 𝑝 (𝑥; Λ, 𝜇, 𝜎
2
)

= ∫

𝑓

𝑝 (𝑥 | 𝑓) 𝑝 (𝑓) 𝑑𝑓

= (2𝜋)
−𝑝/2

|Σ|
−1/2 exp [−

1

2

(𝑥 − 𝜇)


Σ
−1

(𝑥 − 𝜇)]

= 𝑁(𝑥 | 𝜇, ΛΛ

+ 𝜎
2
𝐼
𝑝
) ,

(34)

which is again a Gaussian model with covariance matrix

Cov (𝑥) ≡ Σ = ΛΛ

+ 𝜎
2
𝐼
𝑝
. (35)

In addition, using the Bayes rule, we can also directly
obtain the posterior probability distribution of𝑓 given 𝑥; that
is, we can obtain 𝑝(𝑓 | 𝑥)Post such that

𝑝 (𝑓 | 𝑥)Post ∼ 𝑁
𝑚
(𝑀
−1
Λ

(𝑥 − 𝜇) , 𝜎

−2
𝑀) , (36)

where an (𝑚 ×𝑚)matrix𝑀 is given by𝑀 = ΛΛ

+ 𝜎
2
𝐼
𝑚
. We

note that the posterior mean of the latent variable 𝑓 depends
on the observation vector 𝑥, whereas the posterior covariance
matrix𝑀 is independent of 𝑥.

From the above setup, we observe that PPCA is a
constrained covariance model, since 𝑀 is (𝑚 × 𝑚) while Σ

is (𝑝 × 𝑝).

2.3.3. Maximum Likelihood Estimates of the Parameters. The
goal of PPCA is to estimate the unknown parametersΛ, 𝜇 and
the noise variance 𝜎2 from 𝑛 observations 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)

using themethod ofmaximum likelihood. To achieve this, we
need to produce the likelihood and log likelihood function of
the model.The likelihood function for a given 𝑛 observations
is given by

𝐿 (Λ, 𝜇, 𝜎
2
| 𝑥) =

𝑛

∏

𝑖=1

𝑝 (𝑥
𝑖
; Λ, 𝜇, 𝜎

2
) . (37)
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Thus,

𝐿 (Λ, 𝜇, 𝜎
2
| 𝑥)

= (2𝜋)
−𝑛𝑝/2

|Σ|
−𝑛/2 exp[−

1

2

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝜇)


Σ
−1

(𝑥
𝑖
− 𝜇)]

= (2𝜋)
−𝑛𝑝/2

|Σ|
−𝑛/2 exp [−

1

2

tr (Σ−1𝑆)] ,
(38)

where

𝑆 =

1

𝑛

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝜇) (𝑥

𝑖
− 𝜇)
 (39)

is the sample covariance matrix of the observed data and 𝜇

is the maximum likelihood estimate of the mean vector 𝜇,
which is given by

𝜇 =

1

𝑛

𝑛

∑

𝑖=1

𝑥
𝑖
= 𝑥 (40)

regardless of Λ and 𝜎
2.

The log likelihood function is, therefore, given by

log 𝐿 (Λ, 𝜇, 𝜎
2
| 𝑥) = −

𝑛𝑝

2

log (2𝜋) − 𝑛

2

log |Σ|

−

𝑛

2

tr [Σ−1𝑆] .
(41)

Maximization with respect to Λ and 𝜎
2 is more complex

but nevertheless has an exact closed form solution. As shown
in Tipping and Bishop [13, 14], without going into details,
explicit maximum likelihood estimates of Λ and 𝜎

2 are
obtained from (30) given by

Λ̂ML = 𝑈
𝑚
(𝐿
𝑚
− 𝜎
2
𝐼
𝑚
)

1/2

𝑅, (42)

�̂�
2

ML =

1

𝑝 − 𝑚

𝑝

∑

𝑗=𝑚+1

𝜆
𝑗
. (43)

In (42), 𝑈
𝑚
is a (𝑝 × 𝑚) matrix whose columns are given

by the leading eigenvectors (PCs) of the sample covariance
matrix 𝑆, the (𝑚×𝑚) diagonal matrix 𝐿

𝑚
has elements given

by the corresponding eigenvalues 𝜆
𝑗
, and 𝑅 is an arbitrary

orthogonal matrix. For convenience often 𝑅 is chosen to be
the identity matrix; that is, 𝑅 = 𝐼. When 𝑅 = 𝐼, we note that
the columns of Λ̂ are the PCs scaled by variance parameter
𝜆
𝑗
− 𝜎
2. The maximum likelihood estimator, �̂�2, of the noise

variance is nothing but the average of the left-out eigenvalues
of the sample covariance matrix 𝑆 given in (39).

Assuming that Λ̂ has 𝑚∗ ≤ 𝑚 nonzero eigenvalues (or
singular values) and substituting

Λ̂ = 𝑈
𝑚
∗ (𝐿
𝑚
∗ − 𝜎
2
𝐼
𝑚
∗)

1/2

𝑅 (44)

into the log likelihood function, we have

log 𝐿 (Λ̂, 𝜇, 𝜎
2
) = −

𝑛𝑝

2

log (2𝜋) − 𝑛

2

𝑚
∗

∑

𝑗=1

log (𝜆
𝑗
)

−

𝑛

2

[

[

1

𝜎
2

𝑝

∑

𝑗=𝑚
∗
+1

𝜆
𝑗
]

]

−

𝑛

2

(𝑝 − 𝑚
∗
) log (𝜎2)

−

𝑛

2

(𝑚
∗
) .

(45)

Maximizing (45) with respect to 𝜎
2 gives

�̂�
2
=

1

𝑝 − 𝑚
∗

𝑝

∑

𝑗=𝑚
∗
+1

𝜆
𝑗
. (46)

After some work and simplifications, the maximized log
likelihood function is given by

log 𝐿 (Λ̂, 𝜇, �̂�
2
) = −

𝑛𝑝

2

log (2𝜋) − 𝑛

2

𝑚
∗

∑

𝑗=1

log (𝜆
𝑗
)

−

𝑛 (𝑝 − 𝑚
∗
)

2

log (�̂�2) −
𝑛𝑝

2

,

(47)

where the second term is the sum of the log of the eigenvalues
corresponding to the included variables. At these parameter
values, the estimated covariance is ̂Cov(𝑥) = 𝑈

𝑝
�̂�𝑈


𝑝
, where

𝑈
𝑝
contains all the eigenvalues of Σ̂. �̂� is almost a (𝑝 × 𝑝)

matrix with eigenvalues of Σ̂ on the diagonals given by

�̂� =

[

[

[

[

[

[

𝜆
∗

1
0

𝜆
∗

1

d

0 𝜆
∗

𝑝

]

]

]

]

]

]

, for 𝜆
∗

𝑗
=

{

{

{

𝜆
∗

𝑗
if 𝐼 (𝑗) = 1

�̂�
2 otherwise,

(48)

where 𝐼(𝑗) is an indicator function [40].
Minus twice the maximized log likelihood is

−2 log 𝐿 (Λ̂, 𝜇, �̂�
2
) = 𝑛𝑝 log (2𝜋) + 𝑛

𝑚
∗

∑

𝑗=1

log (𝜆
𝑗
)

+ 𝑛 (𝑝 − 𝑚
∗
) log (�̂�2) + 𝑛𝑝.

(49)

This gives us the lack-of-fit component in the information
criteria, which we need in deriving them. In (49), the first
term and the last term do not involve 𝑚

∗, the number of
nonzero eigenvalues (or singular values), so they will not
affect the comparison of the models and can be dropped.
Hence, approximate maximized log likelihood becomes

−2 log 𝐿∗ (Λ̂, 𝜇, �̂�
2
) = 𝑛

𝑚
∗

∑

𝑗=1

log (𝜆
𝑗
) + 𝑛 (𝑝 − 𝑚

∗
) log (�̂�2) .

(50)
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In addition to the maximum likelihood estimation, there
is also the Expectation and Maximization (EM) algorithm
of Dempster and Laird [41] to obtain the MLEs of the
parameters of the PPCA model. However, our experience is
that EM algorithm is too slow to converge in small sample
and high dimensional data sets without the use of some
smoothing methods.

2.3.4. Choosing the Number of PPCs: Derived Forms of the
Information Criteria. Howmany eigenvalues or eigenvectors
are needed in the probabilistic PCA (PPCA) model? To
answer this question, we now show the derived forms of
several information based model selection criteria to choose
number of eigenvalues needed in the PPCA model. These
criteria are computed using the hybridized smoothed covari-
ance matrix of the original data as we discussed above.
Smoothed eigenvalues and eigenvectors are sorted and 𝑘max =

min(𝑝 − 1, 𝑛 − 2) heuristics is used to extract the maximum
number of PPCs. The approximate computational derived
forms of the information criteria are given as follows.

First, we give Akaike’s information criterion (AIC):

AIC (𝑘) = −2 log 𝐿∗ (Λ̂, 𝜇, �̂�
2
) + 2𝑘

= 𝑛

𝑚
∗

∑

𝑗=1

log (𝜆
𝑗
) + 𝑛 (𝑝 − 𝑚

∗
) log (�̂�2)

+ 2𝑘,

(51)

where 𝑘 = 𝑚
∗
𝑝 + 1 − 𝑚

∗
(𝑚
∗
− 1)/2 is the number of free

parameters estimated in the model.
Next we give the approximate computational forms of

Bozdogan’s [16, 31] consistent AIC (CAIC) and consistent
ICOMP (CICOMP) criteria. Consider

CAIC (𝑘) = −2 log 𝐿∗ (Λ̂, 𝜇, �̂�
2
) + 𝑘 [log (𝑛) + 1]

= 𝑛

𝑚
∗

∑

𝑗=1

log (𝜆
𝑗
) + 𝑛 (𝑝 − 𝑚

∗
) log (�̂�2)

+ 𝑘 [log (𝑛) + 1] ,

CICOMP = 𝑛

𝑚
∗

∑

𝑗=1

log (𝜆
𝑗
) + 𝑛 (𝑝 − 𝑚

∗
) log (�̂�2)

+ 𝑘 [log (𝑛) + 1] + 2𝐶
1𝐹

(Σ̂HCE)

= CAIC (𝑘) + 2𝐶
1𝐹

(Σ̂HCE) ,

(52)

where 𝐶
1𝐹
(⋅) is the Frobenius norm characterization of the

entropic complexity measure of Σ̂HYB, which is given by

𝐶
1𝐹

(Σ̂HCE) =

1

𝑠

tr (Σ̂HCEΣ̂HCE) − [

tr (Σ̂HCE)

𝑠

]

2

=

1

4𝜆

2

𝑠

∑

𝑗=1

(𝜆
𝑗
− 𝜆)

2

,

(53)

where 𝑠 = rank(Σ̂HCE) and 𝜆
𝑗
is 𝑗th eigenvalue of Σ̂HCE, the

hybridized smoothed covariance matrix, and 𝜆 is the average
of the eigenvalues.

We use these criteria to choose the number of PPCs in
the data to reduce the dimension. As noted the manifestation
of the singular covariance matrices has been resolved by
using the new hybridized smoothed (or robust) estimators
of the covariance matrix when the sample size for the gene
expression data is much smaller than the number of dimen-
sions. The minimum of the criteria is chosen to be the best
approximating dimension.

3. Numerical Examples Based on
Benchmark Gene Expression Data Sets

To study the effectiveness, versatility, and the utility of our
proposed method, in this section we report the results
of our analysis on six publicly available benchmark gene
expression data sets. Although these benchmark data sets
are relatively old microarray gene expression data sets, our
methodology is useful for the analysis of high quality of
genomic data obtained from next generation sequencing
(NGS) technologies as well.

We compare our results with the currently available
findings on the same data sets using other high dimensional
classification techniques. The list of the benchmark data sets
we considered is represented in Table 1.

We note that all these six data sets are extremely under-
sized with high dimensions with two (cancerous tumor and
normal groups), three (subtypes of lymphoma), four (with
different tumor types), and five groups (with different tumor
types). Further, group sample sizes are also extremely under-
sized leading to the manifestation of singular covariance
matrices.

3.1. Supervised Classification Using LDA and QDA: A Moti-
vational Example. In order to motivate the difficulty of the
supervised classification of these benchmark data sets, we use
first 5, 10, and 15 genes to carry out the LDA, QDA to classify
the observations. Table 2 summarizes the results obtained
from both LDA and QDA.

Looking at Table 2, we see high percentage of misclas-
sification rates across different benchmark data sets. In the
analysis, we cannot go beyond 15 original genes to analyze
these data sets since the estimated class covariance matrices
become notoriously singular and any further results obtained
from these classification procedures become not reliable and
potentially misleading. What this means is that we cannot
capture the variability, the structure, and the full information
in these data sets. This is crucial in treatment and prognosis
of classification of cancerous tumors in the early face of
discovery.Therefore, a word of caution is that one should not
haphazardly utilize these supervised classification procedures
automatically when we have undersized sample with high
dimensions to carry out the usual discriminant analysis
between groups of samples.
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Table 1: Benchmark gene expression data sets.

Data set Reference 𝑛 𝑝 Number of groups Definition of groups
Leukemia Golub et al. [43] 72 3571 2 Subtypes of leukemia
Colon Alon et al. [44] 62 2000 2 Tumor/normal tissue
Prostate Singh et al. [45] 102 6033 2 Tumor/normal tissue
Lymphoma Alizadeh et al. [46] 62 4026 3 Subtypes of lymphoma
SRBCT Khan et al. [47] 63 2308 4 Different tumor types
Brain Pomeroy et al. [48] 42 5597 5 Different tumor types

Table 2: Classification results of benchmark gene expression data sets using the 5, 10, and 15 original genes.

Data sets Original number of dimensions LDA misclassification error rates QDA misclassification error rates
5 genes 10 genes 15 genes 5 genes 10 genes 15 genes

Leukemia 3571 43.1% 33.3% 20.1% 31.9% 22.2% 6.9%
Colon 2000 35.4% 32.2% 25.8% 32.2% 16.1% 16.1%
Prostate 6033 34.3% 36.27% 18.6% 30.4% 25.5% 18.6%
Lymphoma 4026 30.6% 29.0% 16.1% 19.4% 1.61%∗ 3.22%∗

SRBCT 2308 31.8% 12.7% 17.5% 15.9% 3.18%∗ 0.0%∗

Brain 5597 45.2% 30.9% 14.2% 42.8%∗ 9.5%∗ 16.6%∗
∗There are singularities in the covariance matrices.

3.2. Dimension Reduction and Supervised Classification Using
PPCA and Information Criteria. Next, we carried out PPCA
using AIC, CAIC, and consistent ICOMP (CICOMP) crite-
rion using the hybridized smoothed (or robust) covariance
estimator. We used several combinations of hybridization.
Contrary to the claimed results, just using the smoothed
covariance estimators alone in undersized samples, it is not
fully guaranteed to get all positive eigenvalues to make the
estimated covariance matrix become positive definite and
well-conditioned. It is because of this that we considered
all the combinations of the hybridized covariance matrices
and chose those hybrid smoothed covariance estimators to
reduce the dimension of the PPCA model. We interpret
PPCA results as density estimation that operates exclusively
on the eigenvalues of the hybridized smoothed covariance
matrix.

After the dimension reduction using PPCA, the final
stage of our analysis consists of classification using the newly
transformed PPCA data.

As an illustration, Figure 2 shows the plots of the min-
imum values of three information criteria in choosing the
number of best PPCs for the colon data set.

After reducing the dimension of all the benchmark gene
expression data sets, the results from PPCA dimension
reduction and classification using newly transformed PPCA
data for AIC, CAIC, and ICOMP solutions are summarized
in Tables 3 and 4.

Looking at Tables 3 and 4, we see the remarkable perfor-
mance of the LDA and QDA classifiers with our approach
using PPCA in terms of the misclassification error rates after
the dimension reduction. Although the performances vary
across different data sets, which is expected, our results are
encouraging since the PPCs as latent variables are the linear
combinations of all the original genes, and we can use these
transformed data as our new data in our subsequent analysis

without losingmuch information in the original data sets.The
other important point to mention here is that we have not
altered or perturbed the original data with our approach.

Based on these results, we observe that, using the com-
bination of PPCA and the usual classification methods with
the proposed new approach, we do not overfit the model as
the case is for many supervised learning methods in gene
expression data analysis.

For example, if we compare our results on the same
six benchmark data sets with that of the classification
results obtained by Dettling [42] using seven classification
techniques, Bagboost, Boosting, Random Forest, SVM, PAM,
DLDA, and kNN classifiers, our percent misclassification
error rates are much better across the six data sets using the
LDA and QDA classifier. For example, for Leukemia data set
Dettling’s best result with SVM gives 1.83% misclassification
error rate, with our approach PPCA + LDA giving 1.38% and
PPCA + QDA giving 0.0% misclassification error rate. For
colon data, PPCA +QDA gives 14.52%misclassification error
rate as compared to Random Forestmethod, which is 14.86%.
For prostate data set, with PPCA + QDA, we obtain 7.84%
misclassification error rate as compared to the best result
with Bagboost, which is 7.53%, and with SVM 7.88%. For
lymphoma data set, with PPCA + QDA we get 0.0% mis-
classification error rate, andDettling gets 1.62%with Random
Forest 1.24% and with Bagboost 1.62% misclassification error
rates. For the SRBCT data set the best result is with Bagboost
1.24% as opposed to our result with PPCA + LDA and QDA;
it is 0.0%. Finally for the brain data none of the seven
classification techniques used by Dettling gives good error
rates. These error rates are all above 20% which is quite high.
With our approach, our results with PPCA + LDA give 9.52%
and with PPCA + QDA give 4.76% misclassification error
rates. Further, we do not need to use the usual PCA on
the estimated covariance matrix of the pooled samples and
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Figure 2: The plots of the minimum values of three information criteria in choosing the number of best PPCs for colon data set.

Table 3: Results from the dimension reduction with PPCA + classification of benchmark data sets using AIC.

Data sets Original number of
dimensions Hybrid smoothed Covs Dimension reduction

LDA
misclassification error

rates

QDA
misclassification error

rates
Leukemia 3571 ME/STA/BCSE 6 15.28% 26.3%
Colon 2000 ME/STA/CSE 14 19.35% 12.9%
Prostate 6033 ME/STA/BCSE 6 36.27% 34.31%
Lymphoma 4026 ME/STA/BCSE 15 4.83% 1.61%
SRBCT 2308 ME/STA/BCSE 15 9.52% 0.0%
Brain 5597 ME/STA/CSE 14 2.38% 4.76%

rotate the data and then carry out existing high dimensional
classifiers.

4. Conclusions, Discussion, and Future Work

In this paper we introduced a general novel and new
method to resolve the inherent problems in undersized gene

expression data via the hybridized smoothed covariance
estimators to guarantee positive definiteness of the estimated
covariance matrix via hybridization with smoothed covari-
ance estimators in undersized samples with high dimensions.
We showed on six benchmark data sets how to reduce the
dimension using three information theoretic model selection
criteria to drive and study the cancer tumor classification
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Table 4: Results from the dimension reduction with PPCA + classification of benchmark data sets using CAIC and CICOMP.

Data sets Original number of
dimensions Hybrid smoothed Covs Dimension reduction

LDA
misclassification error

rates

QDA
misclassification error

rates
Leukemia 3571 ME/STA/CSE 8 1.38% 0.0%
Colon 2000 ME/STA/CSE 10 22.58% 14.52%
Prostate 6033 ME/STA/CSE 12 3.92% 7.84%
Lymphoma 4026 ME/STA/CSE 8 0.0% 0.0%
SRBCT 2308 ME/STA/CSE 8 0.0% 0.0%
Brain 5597 ME/STA/CSE 4 9.52% 4.76%

problem using the hybridized covariance estimators. Our
results are unique in the sense that if we use the original
data sets using the usual covariance estimator, there are
singularities in the class covariance matrices according to
QDA results. What this means is that the conventional
multivariate techniques such as classical PCA to reduce the
dimensionality in gene expression data sets do not work
and they degenerate since the covariance matrices become
singular. This point has been overlooked in the statistical
literature. To our best knowledge, there does not exist a new
and novel method to make the estimated covariance matrix
become positive definite that can be inverted for the original
data and guarantee always-positive eigenvalues.

Although we analyzed and demonstrated our results on
several publicly available benchmark relatively old microar-
ray gene expression data sets, our novelmethodology is useful
for the analysis of high quality of genomic data obtained
from next generation sequencing (NGS) technologies. As is
well known, NGS technologies opened the floodgates for
quality new genomic data. NGS instruments, the so-called
second-generation sequencers, generate large volumes of data
compared with conventional Sanger sequencers. There is a
pressing need for new and novel methods such as the ones
presented in this paper to analyze and interpret genomic data
better with undersized samples and high dimensions. For
example, the identification of new disease genes may provide
new therapeutic targets and improve the predictive abilities of
genetic testing. This will help clinical sequencing of patients
suffering from disease and may eventually guide diagnosis
and treatment decisions in personalized medicine.

Our proposedmethod can be used to solve new problems
and challenges present in the analysis of NGS data in
bioinformatics and other biomedical applications.

The use and introduction of the information criteria may
be new for dimension reduction in PPCA model, but our
approach is confined to dimension reduction. It has many
other applications in predictive computational modeling of
physical and biological diverse materials also using machine-
learning methods in choosing the optimal kernel function
among competing alternative kernels. For more on applica-
tions of these, see, for example, Liu and Bozdogan [8] and
Liberati et al. [9].

In the literature, often support vector type kernelization is
used, but SVM is not free from ill conditioning. In the SVM
framework, reduced-rank approximations have been used

to carry out the analysis in the reproducing kernel Hilbert
feature space (RKHS). With our approach, it is now possible
to handle singular ill-posed problems in the analysis of gene
expression and NGS data.

In our future study, we will extend the results of this
work to cover non-Gaussian PPCA, kernel density PPCA,
probabilistic independent component analysis (PICA), and
unsupervisedmixture model cluster analysis problems as well
as choosing the best subset of the genes using the genetic algo-
rithm (GA) with ICOMP as the fitness function and compare
their performances with other strategies. Our results will be
published and reported separately.

Availability of Supporting Data. The publicly data sets
are available at http://www.biomedcentral.com/1471-2105/7/
228#B9.
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