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Simple Summary: Raman spectroscopy, a light scattering technique that provides the biochemical
fingerprint of a sample, was used on samples taken from patients with cancer and precancerous
lesions. This information was then used to build a classifier to identify cancer and the precancerous
phases. The ability to distinguish cancerous tissue from normal and precancerous tissue is diagnosti-
cally crucial as it can alter the patients’ prognosis and management. Moreover, as cellular changes
are often present at the tumour margin, the ability to distinguish these changes from cancer can help
in preserving more of the tissue and maintaining aesthetics and functionality for the patient.

Abstract: Early diagnosis, treatment and/or surveillance of oral premalignant lesions are important
in preventing progression to oral squamous cell carcinoma (OSCC). The current gold standard
is through histopathological diagnosis, which is limited by inter- and intra-observer errors and
sampling errors. The objective of this work was to use Raman spectroscopy to discriminate between
benign, mild, moderate and severe dysplasia and OSCC in formalin fixed paraffin preserved (FFPP)
tissues. The study included 72 different pathologies from which 17 were benign lesions, 20 mildly
dysplastic, 20 moderately dysplastic, 10 severely dysplastic and 5 invasive OSCC. The glass substrate
and paraffin wax background were digitally removed and PLSDA with LOPO cross-validation was
used to differentiate the pathologies. OSCC could be differentiated from the other pathologies with
an accuracy of 70%, while the accuracy of the classifier for benign, moderate and severe dysplasia was
~60%. The accuracy of the classifier was lowest for mild dysplasia (~46%). The main discriminating
features were increased nucleic acid contributions and decreased protein and lipid contributions
in the epithelium and decreased collagen contributions in the connective tissue. Smoking and
the presence of inflammation were found to significantly influence the Raman classification with
respective accuracies of 76% and 94%.

Keywords: oral cancer; oral pre-cancer; oral dysplasia; premalignant lesions; potentially malignant
lesions; Raman spectroscopy

1. Introduction

Oral cancer (OC) is the 16th most common cancer worldwide, 354,864 new cases and
177,384 deaths having been reported in 2018 [1]. Over 90% of oral cancers are squamous
cell carcinomas affecting the tongue, floor of the mouth, lips, gingivae, buccal mucosa
and palate. The major risk factors for developing oral cancer are smoking and alcohol
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consumption, which can work synergistically [2–4]. Premalignant lesions such as leuko-
plakia (white patch) and erythroplakia (red patch) carry an increased risk of malignant
transformation [5]. Different degrees of dysplasia can be found in the premalignant lesions
which are classified into hyperplasia, mild, moderate and severe dysplasia and carcinoma
in situ, depending on the degree of architectural disturbance and cytologic atypia [5].
Generally, 5–25% of oral leukoplakia are dysplastic, while almost all erythroplakia show
some degree of dysplasia [5]. Despite advances in therapeutic management, there has been
no significant improvement in the 5 year survival rate of OC, which remains at around
50% [6]. This, in part, is due to the fact that over 40% of patients present at an advanced
stage, at which nodal involvement and distant metastasis have occurred [7]. This highlights
the importance of early diagnosis. Currently the gold standard for diagnosing OC and
dysplasia is through a conventional clinical oral examination, followed by a biopsy of any
suspicious lesions and their histopathological examination [8]. The issue with this method
is that it is subjective and prone to inter- and intra- observer errors [9]. Additionally, a
biopsy may not be representative of the whole lesion, as studies looking at the histology of
tumours post operatively and comparing them to the preoperative biopsies have found that,
in a significant number of cases, a neoplasia or carcinoma in-situ was misdiagnosed [10].

Raman Spectroscopy is a technique that was developed based on the Raman effect.
When electro-magnetic (EM) radiation interacts with a sample, it may be absorbed, or scat-
tered. While most scattering is elastic, named Rayleigh scatter, the Raman effect describes
the inelastic scattering that occurs in a small number of photons (about 1 in a million),
which lose or gain energy by interaction with the material vibrations. The Raman scattered
light can be collected by a spectrometer and displayed as a Raman spectrum, in which the
peaks (bands) correspond to Raman frequency shifts (measured in wavenumbers cm−1)
caused by the characteristic vibrations in the molecules of a sample. There has been a lot
of interest in the use of Raman spectroscopy in medical diagnostics since its introduction
to the field almost 30 years ago [11]. Its advantages, such as minimal sample preparation,
speed, non-invasiveness, label free nature, and the fact that it gives both qualitative and
quantitative information on the molecular content of a sample make it particularly suited
to such applications. Over the past 20 years, there have been numerous studies in the area
of Raman spectroscopy for diagnosis of a wide range of cancers, including breast, lung,
prostate, cervical, oesophageal and colon (reviewed in [12–16].) These studies demonstrate
that Raman spectroscopy can be used to distinguish the different stages in the progression
of a cell from normal to cancerous. Monitoring cancer progression after the withdrawal
of carcinogens is another avenue that has been explored using Raman spectroscopy [17].
In addition, Raman spectroscopy has recently been shown to have potential for screen-
ing for metastases [18,19] and for companion diagnostics [20]. There have been several
studies on Raman spectroscopy for oral cancer, and the state of the art and challenges
have been recently reviewed [21]. Notably, however, there has been very little work on
oral dysplasia or oral pre-cancer. Using OSCC and dysplastic cell lines and comparing
them to normal cells, a study has found that Raman spectroscopy could discriminate
between malignant, dysplastic and normal cells in the fingerprint region based on varying
nucleic acid, protein and lipid profiles [22]. Similar results were obtained from the high
wavenumber region of the spectrum [23]. Studies on fresh and frozen tongue tissue sections
could classify OSCC from normal tissue using Raman spectroscopy with a high degree of
accuracy [24–27]. Analysis of the water content in the high wavenumber region of spectra
obtained in OSCC bone resection margins, classified OSCC from healthy tissue with 95%
accuracy [28]. Nevertheless, a study looking at surgical margins in sections of OSCC found
that the accuracy of the Raman classification for dysplastic tissue was only 48% [29].

In the present study, we aimed to assess whether Raman spectroscopy can discriminate
between benign lesions, different degrees of dysplasia and OSCC from the biopsied tissues
of a cohort of patients and to evaluate the influence of patient factors and clinical features
on the Raman spectra of the tissues.
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2. Results
2.1. Epithelial Tissue

Figure 1A shows the mean Raman spectra of epithelial tissue in each cohort. Table 1
lists the concurrent peak assignments [30].
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Figure 1. (A) Mean Raman spectra of benign, mild, moderate and severely dysplastic epithelial tissue.
The spectra have been offset for clarity and shading denotes standard deviation (B) A plot of the
PLSDA scores according to LV-1 (C) Mean and standard deviation of PLSDA scores of LV-1 (D) LV-1
of the PLSDA model for Epithelial tissue, including all the classes.

The results of the partial least squares discriminant analysis (PLSDA) classification
do not show a very good discrimination across the groups (Table 2). The estimated ROC
curves are based on predicted class for each spectrum. Sensitivity is calculated from the
fraction of in-class spectra while the specificity is calculated from the fraction of not-in-class
spectra for a given threshold. The cross validated ROC curves follow the same method,
except the class predicted when the spectra are left out during cross validation is used.
From the ROC curves (Figure S1), it appears that the classifier has the highest accuracy for
SCC (AUC = 0.71) and lowest for mildly dysplastic epithelium (AUC = 0.46).

To better elucidate the variability between the different classes, their scores on the
first latent variable (LV-1) were plotted. This shows a large intra-class spread, the great-
est spread being observed in the moderate group and the smallest in the SCC group
(Figure 1B). Plotting the means and standard deviations of the scores on LV-1 (Figure 1C)
does not show an obvious progression, but it can be assumed from their means that the
benign and mild are mostly negative for LV-1, while moderate, severe and SCC are mostly
positive. LV-1 (Figure 1D), which is reponsible for 26.23% of the variance, has positive
peaks at 783, 1371 and 1576 cm−1, which relate to nucleic acids (Table 1). Negative peaks
are observed at 934, and 1282 cm−1 (relating to protein/collagen) and the amide 1 band at
1650 cm−1.
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Table 1. Tentative peak assignments, adapted from Movasaghi et al. [30].

Wavenumber (cm−1) Assignment

484–490 Glycogen
599/600 Nucleotide conformation

666 G, T (ring breathing modes in DNA bases)
752 Symmetric breathing mode of tryptophan
782 DNA

811/812 RNA O-P-O stretch
814 C-C stretching (collagen assignment)
838 Deformative vibrations of amine groups

855 Ring breathing in tyrosine/C-C stretching in
proline

919 C-C stretch of Proline ring/glucose lactic acid
C-C, proline ring (collagen assignment)

934/935 Protein/C-C backbone (collagen assignment)

937/8 Proline, hydroxyproline (C-C) skeletal of
collagen backbone

1001/1002 Phenylalanine ring breathing
1030–34 Phenylalanine of collagen

1128/1129 Skeletal C-C stretch in lipids
1131 Fatty acid
1237 Amide III

1245–1248 Amide III of collagen
1265 Amide III
1278 Proteins including collagen I
1285 Differences in collagen

1315–1317 Guanine
1333 Guanine
1336 Polynucleotide chain (DNA purine bases)
1368 Guanine TRP protein, porphrin, lipids

1373 T, A, G (ring breathing modes of the
DNA/RNA bases)

1437 CH2 deformation (lipid)
1441 Wax

1449/1450 C-H vibration lipids
1460 CH2/CH3 deformation in Lipids
1554 Amide II

1572–1578 Guanine adenine
1650 Amide I

1652–1655 Lipid C=C (lipids)/Amide I
1666–1668 Protein/collagen

1674 C=C stretch in cholesterol
1700–1750 Amino acids aspartic and glutamic acid

Table 2. Sensitivity and specificity values obtained from PLSDA classification with LOPOCV *.

Pathology Epithelium Connective Tissue

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Benign 74 49 81 44
Mild 67 38 67 46

Moderate 39 86 42 61
Severe 69 57 59 67
SCC 65 76 88 72

LOPOCV * = Leave one patient out cross validation.
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2.2. Connective Tissue

From their mean spectra (Figure 2A), the most notable difference between benign,
mild, moderate, severe and SCC connective tissue appears to be in the regions 800–1000
cm−1 which correspond to different collagen assignments and 1200–1400 cm−1 which
correspond to vibrations in lipids, nucleic acid bases, and collagen (Table 1). The results of
the PLSDA classification (Table 2) show high sensitivities for benign and SCC compared to
the dysplasia classes. However, the specificity for benign was low, indicating a high false
positive rate. The classifier has the best accuracy among the classes for SCC according to
the ROC curve (Figure S2).

Figure 2. (A) Mean Raman spectra of benign, mild, moderate severely dysplastic and SCC connective
tissue. The spectra have been offset for clarity and shading denotes standard deviation (B) A plot of
the PLSDA scores of LV-1 (C) Mean and standard deviation of PLSDA scores of LV-1 (D) Loading of
LV-1 of the PLSDA model which included all the classes.

Plotting the scores of LV-1 shows the greatest intra-class spread in the mild group and
the smallest in the SCC group (Figure 2B). Plotting the means and standard deviations of
the scores of LV-1 (Figure 2C) shows a progression from benign to SCC on LV-1. The means
of the benign and mild are negative in LV-1 while those of moderate, severe and SCC are
positive.

Positive peaks of LV-1 can be observed at 1005, 1131, 1218, 1337, 1435 and 1581 cm−1

LV-1 (Figure 2D). The peaks at 1005 and 1581 cm−1 relate to phenylalanine, while those
at 1131, 1218 and 1435 cm−1 relate to lipids and that at 1337 cm−1 relates to nucleic acids.
On the other hand, negative peaks can be observed at 811, 855, 938, 1241, 1453 and 1672
cm−1. The peaks at 855, 938 and 1241 cm−1 relate to collagen while 1453 and 1672 cm−1

relate to lipid contributions.

2.3. Influence of Patient Factors and Clinical Features on Raman Classification

Other factors which could have an influence on the Raman classification were assessed.
Metadata was used to divide all the patients, regardless of histopathological diagnosis,
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into groups according to gender, smoking habits, alcohol consumption, site of lesion and
presence of inflammation. A total of two factors were found to influence the Raman
classification, namely smoking and the presence of inflammation.

2.3.1. Smoking

The patients were divided into three groups according to smoking status; non-smoker,
ex-smoker (previous smokers) and smoker (Table 3).

Table 3. Sensitivity and specificity values from PLSDA with LOPOCV for smoking status in epithe-
lium.

Statistic Non-Smoker
(n = 13)

Ex-Smoker
(n = 17)

Smoker
(n = 13)

Sensitivity (%) 83 81 52
Specificity (%) 46 38 88

The PLSDA results showed high classification sensitivity for non-smokers and ex-
smokers but lower specificities. On the other hand, the classification sensitivity was lower
for smokers but the specificity was higher (Table 3). The ROC curve (Figure S3) shows a
significant accuracy (AUC = 0.76) of the classifier for smokers.

To further understand the source of the variance, non-smokers and ex-smokers
were combined and the scores of LV-1 and LV-2 were plotted against those for smokers
(Figure 3A). While there is some overlap, smokers are mainly negative in LV-1, while
non-smoker/ex-smokers are mainly positive. According to LV-1, negative bands at 667,
784, 1372, and 1573 cm−1 suggest higher levels of nucleic acids in the epithelium of smokers.
Non-smoker/ex-smokers had a more prominent amide I band at 1651 cm−1 and protein
band at 934 cm−1 (Figure 3B).
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2.3.2. Presence of Inflammation

All the pathologies were evaluated for the presence of inflammation, indicated by the
presence of inflammatory infiltrate with chiefly lymphocytes and mast cells. The H & E
stained slides were evaluated under a bright-field microscope. Table 4 shows the number
of inflamed samples per class. PLSDA was used to classify inflamed vs. non-inflamed for
all the pathologies combined. The results show that inflamed tissue can be classified from
non-inflamed tissue with sensitivity and specificity values of 68% and 70%, respectively, in
epithelium and 77% and 86%, respectively, in connective tissue. The AUCs were significant,
0.72 for epithelium and 0.84 for connective tissue (Figure S4).
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Table 4. Number of inflamed samples per class.

Class Benign
(n = 17)

Mild
(n = 20)

Moderate
(n = 20)

Severe
(n = 10)

SCC
(n = 5)

Number
Inflamed 2 3 9 7 5

To ensure that the results obtained are due to the presence of inflammation rather than
the pathology (as most of the severe and SCC samples were inflamed, which could skew
the results), inflamed vs. non-inflamed was assessed in the moderate category. The results
show a very high accuracy in connective tissue (AUC = 0.94) and, to a lesser extent, in
epithelium (AUC = 0.69) (Figure S5). Plotting the scores of the latent variables shows a
good separation based on LV-1, the majority of inflamed spectra have negative scores while
the majority of non-inflamed spectra have positive scores on LV-1 (Figure 4A) The group
of non-inflamed spectra that are outside the 95% confidence interval are likely from one
patient who was misclassified due to increased variability from the rest of the non-inflamed
group. The loading of LV-1 (Figure 4B) shows positive peaks at 813, 855, 939, 1031, and
1245 cm−1 which relate to collagen (Table 1) while the negative peaks relate to nucleic acids
(1334, 1580 cm−1) and fatty acids (1132, 1438 cm−1).
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3. Discussion

Raman spectroscopy can uncover a wealth of biochemical information including the
lipid, protein and nucleic acid content of the tissue, which in turn can reflect the presence
and degree of tissue pathology.

The choice to study each part of the tissue (epithelium and connective tissue) indepen-
dently was made in order to better understand/identify the changes taking place in each.
While it was expected to find discrimination between severe, mild and moderate in the
epithelium, as the epithelial cells are undergoing morphological and biochemical changes,
significant differences in connective tissue between the pathologies were not expected.

Results from the PLSDA show increasing nucleic acid contributions and lower pro-
tein and lipid contributions as dysplasia progresses in the epithelium. According to the
ROC curves, the accuracy of the classifier was highest for the SCC class (AUC = 0.71),
intermediate (AUC~0.6) for the benign, moderate and severe classes, and lowest (AUC =
0.46) for the mild, resulting in misclassification with benign and moderate. The moderate
group had the lowest sensitivity in the PLSDA classification and the greatest spread in
LV-1, suggesting a higher variability in this group compared to the others. It is important to
note that these classifications are based on histological grading by one pathologist, whereas
Raman spectroscopy measures the biochemical composition of the sample. Hence incipient
biochemical changes before the onset of tissue morphological changes might be influencing
the classification.

In connective tissue, nucleic acid peaks were more prominent with progressive dys-
plasia and collagen peaks were less prominent. Connective tissue associated with SCC
could be classified from that associated with dysplasia and with benign lesions with a
high sensitivity and specificity. This is to be expected as, due to epithelial mesenchymal
transition [31]; the boundary between epithelium and connective tissue in SCC is often lost
as a result of islands of epithelium invading the connective tissue [32].

From the results, it is apparent that some factors other than the degree of dysplasia can
influence the Raman classification. While it has been reported that age related physiological
changes can be discriminated with Raman spectroscopy [33,34], most of the patients in
this cohort were between 50–60 years old, and hence there was not enough variation to
study age related factors. No discrimination based on gender was apparent; the female vs.
male sensitivity and specificity values in epithelium were 22% and 77%, respectively. In
connective tissue, the sensitivity was 62% and specificity was 44% (Figure S6). Other patient
factors and clinical features which have not been considered, due to lack of metadata, could
potentially have an influence on the Raman classification. These include HPV and candida
status of the patients, the size of the lesions, and the degree of differentiation in the SCC
lesions.

Smoking status was seen to impact on the classification of epithelial tissue (AUC =
0.76). This is consistent with previous work by Singh et al., who have shown that the
oral buccal mucosa of smokers is more likely to misclassify with that of premalignant
lesions than that of non-smokers [33,35]. This is likely due to the fact that smoking is an
aetiological factor in developing oral dysplasia, and hence biochemical changes occurring
in the mucosa of smokers are similar to those occurring in dysplastic lesions.

The presence of inflammation in connective tissue, however, was found to have a sig-
nificant influence on the Raman classification (AUC = 0.94). Reduced collagen features and
increased nucleic acid features in the Raman spectra of inflamed connective tissue were the
main findings and this has been previously shown for cervical tissue [36]. The nucleic acid
features may be due to increased cellularity caused by the inflammatory cells infiltrating
the tissue. The reduction of collagen features is likely due to the breakdown of collagen by
matrix metalloproteinases (especially MMP-8) which are upregulated in inflammation [37].
In this study, most of the severely dysplastic and SCC tissue was found to be inflamed,
which is consistent with a previous study that has shown increasing inflammatory cell
infiltration with increasing severity of oral dysplasia and SCC [38]. The presence of in-
flammation in the tumour microenvironment has been well documented and is due to
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multiple factors [39,40]. The environmental factors that prompt carcinogenesis, such as
alcohol and smoking, have been shown to trigger an inflammatory response [41]. Further-
more, the tumour cells release inflammatory mediators which generate an inflammatory
microenvironment that promotes cancer growth, invasion and metastasis [42]. A study
looking at OSCC surgical margins found that inflamed connective tissue was more likely
to misclassify with SCC than non-inflamed connective tissue [29].

4. Materials and Methods
4.1. Sample Preparation

Archival oral formalin fixed paraffin preserved (FFPP) tissues for each patient cohort
were obtained following ethical approval from St James’ Hospital Ethics Committee and
informed written consent from patients. The haematoxylin and eosin (H & E) stained
sections from the different pathologies were examined by a pathologist and the areas of
interest were annotated. In total, 57 patients were included, from which 72 pathologies
were identified, including 17 benign lesions, 20 mildly dysplastic, 20 moderately dysplastic,
10 severely dysplastic and 5 invasive SCC. The FFPP tissue blocks and corresponding
images were then taken to the laboratory, where 10 µm sections were cut from the FFPP
tissues and mounted on glass slides. One of the sections from each sample was dewaxed,
stained with H & E (Figure 5), and a parallel unstained section was used for Raman
spectroscopic measurement.
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Figure 5. Representative H & E images showing (A) the regions of dysplasia marked by the patholo-
gist. (B) A magnified region of moderate dysplasia (C) A magnified region of severe dysplasia. Scale
bar: 200 µm.

4.2. Instrumentation

A confocal, Horiba Jobin Yvon LabRam HR 800 Raman (upright) spectroscopic micro-
scope (Figure 6) was used to record the spectra of the FFPP oral tissue. The microscope
has an automated xyz stage and is coupled to a Peltier cooled CCD detector. A 50 mW
diode laser of 532 nm wavelength was used and the grating was set at 600 grooves/mm,
while the confocal hole was set at the recommended 100 µm. For mapping acquisition, the
regions to map were selected using a 100× objective (MPLAN N Olympus, Japan, NA =
0.9, spot size ~1 m), which also collected the backscattered light. The spectra were acquired
over two accumulations, totalling 20 s per spectrum. The step size was set at 10 µm and
the spectral range was 400–1800 cm−1. For every pathology section, 200 spectral points
were taken from epithelium and the same from connective tissue.
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Figure 6. A schematic of a Raman microspectrometer based on the Horiba Jobin Yvon LabRAM HR
800.

4.3. Data Analysis

All the data analysis was carried out using MATLAB (Mathworks, Natick, MA, US)
with the PLS-Toolbox (Eigenvector Research Inc., Manson, WA, USA) and in-house algo-
rithms. Two quality control steps were employed (Figure 7). In the first, before processing,
spectra with excess scatter/background were eliminated by setting a maximum inten-
sity. Subsequent processing involved smoothing with a Savitsky Golay filter (5th order,
13 points) then correcting the baseline with a rubberband function, and finally vector
normalisation. The second quality control step involved removing the spectra with excess
wax and low biological content. This was achieved using k-means clustering which is used
to partition data into groups such that variation is minimised within groups but maximised
between groups. It assigns data points to their closest centre points which are changed with
each iteration until optimal convergence is met. The next step was digitally subtracting the
wax and glass backgrounds; which was carried out using the non-negatively constrained
least squares fitting (NNLS) method. A PCA of the epithelium and connective tissue has
demonstrated that the primary (~60%) variance of spectra of both FFPP tissue types derives
from the contribution of the paraffin wax [43]. Therefore, for a detailed analysis of the more
subtle biochemical origins of potentially malignancy, the contributions of the paraffin to
the spectra were removed. A matrix of 300 wax and glass spectra were used as inputs for
the NNLS along with spectra of pure cell components such as DNA and RNA. Using a
matrix, instead of a mean spectrum, accounts for the inhomogeneity in the wax spectra
which is a result of the microcrystalline domains being randomly oriented with respect to
the laser source [43].
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Figure 7. Spectral processing steps (A) Raw spectra. (B) Spectra after first quality control step, smoothing, baseline correction
and normalization. (C) Spectra after k-means grouping; the spectra in red have high wax and low biological content while
those in blue have higher biological content and less wax. (D) Spectra after glass and wax subtraction.

Partial least squares discriminant analysis (PLSDA) was used to build the classifier.
It is a supervised form of multivariate analysis that works as a linear classifier that aims to
separate the data into groups using a hyperplane. It is a generalisation of multiple linear
regression (MLR), in which a set of dependent variables y is regressed against independent
predictor variables X. Similar to linear discriminate analysis (LDA), it aims to maximise the
variance between groups and minimise the variance within groups. It is based on partial
least Squares Regression (PLSR). Whereas, in classic PLSR, y is a matrix of continuous
variables, in PLSDA it is categorical and used to assign the observations into classes.
The data was divided into y classes from 1 to 5, corresponding to benign, mild, moderate
and severe dysplasia and SCC. Similar y class assignments were made according to gender,
smoking status etc. The loadings of the discriminate hyperplanes or latent variables (LV)s
were plotted to give more information on the source of the variance. While it is similar
to other statistical methods such as PCA, the PLSDA LVs are calculated to maximise the
covariance between the spectral variation and group/category so that the LVs explain the
diagnostically relevant variations rather than the most prominent variations in the spectral
dataset. Leave one patient out cross validation (LOPOCV) was used as a cross validation
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method to avoid overtraining the model. In LOPOCV, the spectra of all but one patient are
used as a training set and a prediction is made for the left out patient. This is repeated so
that the spectra of each patient are left out and predicted once.

Receiver operating characteristic (ROC) curves were plotted for each class. ROCs are a
plot of the true positive rate (sensitivity) against the false positive rate (1-specificity) over a
continuous range (from 0 to 1) of cut off points of a classifier. Each point on the ROC curve
represents a sensitivity/specificity pair corresponding to a particular decision threshold.
Accuracy is measured by the area under the ROC curve (AUC), so that, the closer the
curve tends to the left and top borders, the more accurate the classifier. Conversely, the
closer the curve is to the diagonal (baseline), the higher the misclassification rate and the
lower the accuracy. The baseline is at 0.5, while a perfect classifier would have an AUC
of 1. In general, an AUC of 0.5 is considered to have no discrimination, while 0.7 to 0.8
is considered acceptable, 0.8 to 0.9 is considered excellent, while over 0.9 is considered
outstanding [44]. Different approaches to estimate the ROC curve lead to different estimates
of the AUC. Both the estimated AUC (using the whole dataset) and cross validated AUC
(leaving one patient dataset out in each iteration) are shown.

5. Conclusions

The finding that Raman spectroscopy can differentiate between cancer and dysplasia
is very important, as the management and prognosis is different for both. Dysplasia is
a common finding in tumour borders and regenerative changes which mimic dysplasia
can often be found in the margins of resected tumours [45]. The balance between being
conservative and maintaining as much of the tissue as possible, which is important both
aesthetically and functionally, and removing enough of the tumour to prohibit recurrence
is a difficult one in oral cancer surgery. Hence the ability of Raman spectroscopy to
discriminate between cancerous and dysplastic and/or healthy tissue can be important
in striking that balance. The finding that smoking and the presence of inflammation have
a significant impact on the Raman classification highlights the importance of accounting
for these variables in any future studies to be able to develop more robust diagnostic
algorithms.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
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(E) SCC connective tisssues. Figure S3: ROC curves for (A) Non-smoker (B) Ex-smokers and (C)
Smokers epithelium. Figure S4: ROC curves for (A) Epithelium and (B) Connective tissue of Inflamed
vs. Non-inflamed in all classes. Figure S5: ROC curves for (A) epithelium and (B) connective tissue
of inflamed vs. non-inflamed in the moderately dysplastic lesions. Figure S6: ROC curves for (A)
Epithelium and (B) Connective tissue of Female vs. Male.
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