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Background: Osteoarthritis (OA) is a common age-related joint disease characterized by joint destruction and impaired quality of 
life. Angiogenesis plays a vital role in OA progression. This study aimed to identify key angiogenesis-related genes (ARGs) in OA 
using transcriptomic and machine learning methods.
Methods: The GSE55235 dataset (10 OA and 10 healthy synovial tissue samples) was analyzed for differentially expressed genes 
(DEGs), integrated with weighted gene co-expression network analysis (WGCNA), and ARGs to identify differentially expressed 
ARGs (DE-ARGs). Candidate genes were identified through three machine learning algorithms and evaluated using ROC curve 
analysis. Gene set enrichment analysis (GSEA), immune cell infiltration analysis, and therapeutic agent prediction were performed. 
Synovial samples from 5 OA patients and 5 matched controls were collected for RT-qPCR validation of biomarkers.
Results: From 1552 DEGs, 11 DE-ARGs were identified, and six candidate genes were selected using machine learning. Four genes 
—COL3A1, OLR1, STC1, and KCNJ8—showed AUC >0.8 in both GSE55235 and GSE1919, indicating strong diagnostic value. 
GSEA linked biomarkers to the “lysosome” pathway, and eosinophils and Th2 cells were significantly associated with biomarkers. 
Potential therapeutic agents included bisphenol A, tetrachlorodibenzo-p-dioxin, and valproic acid. Clinical validation confirmed that 
COL3A1, OLR1, and STC1 expression levels were consistent with database findings.
Conclusion: The study identified COL3A1, OLR1, STC1, and KCNJ8 as key angiogenesis-related biomarkers in osteoarthritis, which 
could serve as potential diagnostic tools and therapeutic targets. The research underscores the importance of angiogenesis in 
osteoarthritis progression and suggests that targeting angiogenesis-related pathways may offer new treatment strategies.
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Introduction
Osteoarthritis (OA) (ICD-10: M19) is a common degenerative joint disease marked by the progressive breakdown of 
joint cartilage, osteophyte formation, subchondral bone sclerosis, and synovial inflammation.1 It results from 
a combination of mechanical stress, inflammation, and biochemical factors, causing pain, stiffness, and reduced joint 
mobility. In individuals aged 40 to 60, the prevalence of OA is approximately 10–17% and around 50%, respectively. 
Among those aged 75 and older, the prevalence rises significantly to about 80%.2 Factors like gender, geography, and 
physical labor intensity influence its prevalence. In China, women are 1–2 times more susceptible than men, and colder, 
humid regions and occupations involving heavy labor or prolonged standing show higher OA rates.3,4 Current OA 
management focuses on symptom relief through nonsteroidal anti-inflammatory drugs (NSAIDs), intra-articular hya-
luronic acid injections, and physical therapy to reduce pain and improve function.2–4 However, these treatments cannot 
stop disease progression or repair damaged cartilage. Recent research seeks new biomarkers and therapeutic targets to 
better understand OA’s underlying mechanisms, aiming to develop more effective interventions that delay or prevent 
joint degeneration.3–5
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Emerging research identifies angiogenesis as a critical pathological mechanism in OA progression. Unlike healthy 
avascular cartilage, OA cartilage experiences abnormal vascularization driven by increased osteoclast activity, which 
creates channels between subchondral bone and cartilage.5 This process facilitates the influx of sensory nerves, 
exacerbating joint pain and accelerating cartilage degradation. Targeting angiogenesis could offer a promising therapeutic 
strategy for OA. However, significant gaps persist in identifying angiogenesis-related biomarkers to improve diagnosis 
and treatment. While prior studies have emphasized symptom management and structural changes, the molecular 
mechanisms underlying vascularization remain underexplored.4,5

This study aims to bridge existing gaps by identifying angiogenesis-related biomarkers in OA through transcriptomic 
analysis. Utilizing machine learning and immune cell profiling, it seeks to pinpoint biomarkers and therapeutic targets for 
early diagnosis and innovative treatments to slow OA progression. By targeting these biomarkers, the study aspires to 
move beyond symptom-based therapies, improve patient outcomes, and support personalized medicine. Clinically, these 
findings hold potential to mitigate OA’s impact, enhance patient quality of life, and reduce the healthcare burden 
associated with advanced disease stages.

Materials and Methods
Data Source
The OA (ICD-10: M19) datasets GSE55235 and GSE1919 were obtained from the Gene Expression Ontology (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). The GSE55235 dataset, used as the training set, includes high-throughput 
sequencing data of synovial tissue from 30 samples on the GPL96 platform. After removing 10 samples of rheumatoid 
arthritis, the sequencing data of synovial tissue from 10 OA patients and 10 control groups were analyzed.6 The 
GSE1919 dataset (GPL91) was used as a validation set, with 5 rheumatoid arthritis samples removed, and contained 
five OA patients and five controls synovial tissue samples (Supplementary Table 1).7 All 36 angiogenesis related genes 
(ARGs) were retrieved from the Molecular Signatures database (MSigDB).8

Selection of Differentially Expressed ARGs (DE-ARGs)
Differentially expressed genes (DEGs) between OA and control samples in the GSE55235 dataset were identified using 
the “limma” package (v3.56.2),9 with selection criteria of |log2 fold change (FC)| > 0.5 and p-value < 0.05. Volcano and 
heatmaps were generated using the “ggplot2” (v3.4.2)10 and “circlize” (v0.4.15)11 packages, respectively. Weighted gene 
co-expression network analysis (WGCNA) was then applied to identify modules most strongly associated with OA.12 

The process involved removing outlier samples via clustering analysis and determining the soft threshold (β) by 
achieving a scale-free R² of ~0.9 with mean connectivity near zero. Genes with similar expression patterns were grouped 
into modules using the dynamic tree-cutting method (minModuleSize = 200). Pearson’s correlation analysis was used to 
identify the key modules most correlated with OA, and their genes were designated as key module genes. Finally, DE- 
ARGs were identified by intersecting DEGs, key module genes, and ARGs using the “ggvenn” package (v0.1.9).

Explored the Biological Functions of DE-ARGs and Their Interactions at the Protein 
Level
To explore the biological functions and signaling pathways of DE-ARGs, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway annotations were performed using the “clusterProfiler” (version 4.8.2) (p < 0.05).13,14 

In addition, a protein-protein interaction (PPI) network of DE-ARGs was constructed in the search tool for recurring instances 
of neighbouring genes (STRING) (interaction score greater than 0.4), which was designed to observe whether there is an 
interaction relationship between DE-ARGs at the protein level.15,16

Recognition and Confirmation of Biomarkers
To identify characteristic genes of OA, DE-ARGs were analyzed using the least absolute shrinkage and selection operator 
(LASSO) method with the “glmnet” package (v4.1–6), performing 3-fold cross-validation with a regularization para-
meter of 4e-04 to determine optimal coefficients and lambda values.17,18 The “e1071” package (v1.7–12)19 was used to 
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apply the support vector machine recursive feature elimination (SVM-RFE) algorithm with a linear kernel function 
(kernel = “linear”) and a cost parameter of 10. The most relevant features were selected by eliminating less important 
feature vectors.20 Additionally, the Boruta algorithm was employed to calculate the features of DE-ARGs. The exp1 
dataset was used with group.v as the dependent variable, setting the tracking level (doTrace = 2) and sorting features to 
filter the most significant ones. The candidate genes were derived by intersecting results from these three machine 
learning algorithms. Receiver operating characteristic (ROC) curves were constructed using the “pROC” package 
(v1.18.4) based on the GSE55235 and GSE1919 datasets to assess the diagnostic performance of the candidate 
genes.21 Genes with an area under the curve (AUC) greater than 0.8 were considered to have good diagnostic efficacy 
for OA and were designated as biomarkers. Additionally, the expression profiles of these biomarkers in OA and control 
samples were validated in the GSE55235 and GSE1919 datasets.

Construction of a Neural Network Model for Biomarkers
To further assess the ability of biomarkers to differentiate between OA and control samples, a back-propagation neural 
network (BPNN) model was constructed based on the GSE55235 dataset using “neuralnet” (version 0.0.2).22 After that, 
the discriminative effect of the model was verified with the help of ROC curves.

Biomarker Correlation Analysis and Subcellular Localisation Analysis
Spearman correlation analysis between biomarkers was performed using the “psych” package (version 2.3.12).23 To 
further observe the subcellular localisation of the biomarkers, the proteins of the biomarkers were subcellularly localised 
using the Hum-mPLoc 3.0.24

Biological Pathways Involved in Biomarkers and the Construction of Gene Interaction 
Networks
Based on the GSE55235 dataset, Spearman correlation analysis of the relationships between biomarkers and other genes were 
performed separately using the “psych”.25 Then, gene set enrichment analysis (GSEA) was conducted for individual 
biomarkers using the “clusterProfiler” package (|NES| > 1, p.adjust < 0.05).26 The background gene set “c2.cp.kegg. 
v2023.1.Hs.symbols” was downloaded from the GSEA website.27 To further explore the interactions between biomarkers 
and other genes with similar gene functions, it was necessary to have explored them in GeneMANIA (http://genemania.org/) 
and constructed co-expression networks between them.28

Analysis of the N6-Methyladenosine (m6A) Binding Site Prediction
To explore whether m6A affected the translational stability of biomarkers, it was necessary to predict the 
biomarker m6A binding sites. First, the genome sequence for the biomarkers were retrieved from the National Center 
for Biotechnology Information (NCBI).29 Then the m6A binding sites of the biomarkers were predicted from the 
sequence-based RNA adenosine methylation site predictor database (SRAMP).30

Immune Infiltration Analysis
In terms of immune infiltration, each sample in the GSE55235 dataset was analysed separately for immune cell infiltration by 
the ssGSEA algorithm of the “GSVA” (version 1.44.5), and scores for 28 immune cells in the samples were calculated.31 

Then, the distribution of immune cells between OA and controls was demonstrated using the “pheatmap” (version 1.0.12).32 

Next, immune cells that were significantly different between OA and controls were compared using the Wilcoxon’s test. 
Additionally, Spearman correlation analysis was used to evaluate the correlation between 28 immune cells. Using the same 
approach, correlations between biomarkers and differential immune cells were explored.

Construction of Molecular Regulatory Networks and Prediction of Potential Drugs
The miRNAs of the biomarkers were predicted in the miRNA target gene prediction database (miRTarBase) and starBase 
database, respectively, and the intersection of the expected findings in the two databases was used to identify the miRNAs 
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that corresponded to the biomarkers.33,34 Meanwhile, the ChIP-X Enrichment Analysis 3 (ChEA3) was used to predict 
the transcription factors (TFs) corresponding to the biomarkers, and TFs supported by the ENCODE database in ChIP- 
seq were selected.35 Also, the comparative toxicogenomics database (CTD) was used to predict biomarker target drugs, 
which were screened based on the expression of the biomarker in OA (drugs with reversible effects on biomarker 
expression) and the amount of data on drug therapy (Reference Count ≥ 2).36

Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
To further confirm the expression levels of biomarkers between the OA group and the control group, this study recruited 
5 knee OA patients and 5 healthy controls matched by age, gender, and body mass index from August 1, 2023, to 
March 31, 2024 (Supplementary Table 2), and collected their synovial samples for RT-qPCR to evaluate the expression 
of biomarkers. Eligible patients were aged 50 years or older, had experienced knee pain on most days in the past month, 
had an average knee pain score of 4 or higher on the visual analogue scale in the past week, and had moderate 
radiographic tibiofemoral OA (Kellgren and Lawrence grade 3 or 4). Exclusion criteria included systemic or inflamma-
tory diseases; use of anti-inflammatory drugs or corticosteroids in the past 3 months; hyaluronic acid injections in the 
past 6 months; prior treatment with autologous blood products or stem cell preparations; bleeding disorders or current 
anticoagulant therapy. All participants were followed up, and no one dropped out. Total RNA of 10 samples was 
separated by the TRIzol (Ambion, Austin, USA) based on the manufacturer’s guidance. The inverse transcription of total 
RNA into cDNA was conducted using the SureScript-First-strand-cDNA-synthesis-kit (Servicebio, Wuhan, China) based 
on the producer’s indication. Then, qPCR was carried out utilizing the 2xUniversal Blue SYBR Green qPCR Master Mix 
(Servicebio, Wuhan, China) under the direction of the manual. The primer sequences for PCR were tabulated in 
(Supplementary Table 3). The expression was uniformized to the internal reference GAPDH and computed employing 
the 2−ΔΔCt method.37

Statistical Analysis
This study was conducted using the R programming language (version 4.3.1), and Wilcoxon’s test was employed to 
evaluate the data from various groups. A p-value of less than 0.05 was statistically significant, unless otherwise stated.

Results
Gene Screening of Data Set
A total of 1552 DEGs between OA and controls were identified in the GSE55235 dataset, of which a total of 954 genes 
were up-regulated, and 598 genes were down-regulated (Figure 1A). Expression levels of DEGs between different 
subgroups were confirmed (Figure 1B). Also, the samples in the GSE55235 dataset were clustered well enough to be 
used in subsequent analyses (Figure 1C). Immediately thereafter, β was 9 for a vertical coordinate R2 close to 0.9, and the 
mean connectivity of the network converges to 0 (Figure 1D). Afterwards, the 13 co-expressed gene modules of different 
colours were obtained (Figure 1E). Subsequently, the MEturquoise (|cor| = 0.97, p < 0.001) had the highest correlation 
with OA, and as such, and it was recorded as a key module for OA and contained 3014 key module genes (Figure 1F).

Identification of DE-ARGs and Its Functional Annotation
The 11 DE-ARGs were obtained at the intersection of 1552 DEGs, 3014 key module genes, and 36 ARGs (Figure 2A). 
The Gene Ontology (GO) analysis of DE-ARG showed that 380 significant entries were obtained in biological processes, 
15 significant entries were enriched in cellular components, and 33 significant entries were obtained in molecular 
functions. The most important of these were “cartilage development”, “connective tissue development”, “bone morpho-
genesis” and so on (p < 0.05) (Figure 2B). DE-ARGs were significantly enriched for “protein digestion and absorption” 
and “human T-cell leukemia virus 1 infection” (Figure 2C). Meanwhile, the PPI network consisted of 11 DE-ARGs and 9 
edges, among which the strongest interaction at the protein level was between COL5A2 and COL3A1 (Figure 2D).
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Figure 1 Identification and analysis of DEGs. (A) Volcano plot of DEGs. The red dots represented up - regulated differentially expressed genes, the blue dots represented 
down - regulated differentially expressed genes, and the grey ones were genes without significant statistical significance. Each dot represented a gene. (B) Heatmap of DEGs. 
The abscissa of the circle represented the samples. Above it, green represented the Control samples and Orange represented the OA samples. The ordinate represented 
the genes. In the figure, red represented highly - expressed genes and blue represented low - expressed genes. (C) Sample clustering diagram. The branches represented the 
samples, the ordinate represented the height of hierarchical clustering, and in the lower part of the figure, red represented OA samples and white represented Control 
samples. (D) Soft threshold screening. (E) Module dynamic cutting tree. (F) Heatmap of module-disease correlation. Red represented positive correlation, blue represented 
negative correlation, and the stronger the correlation was, the darker the color was.
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Identified as Biomarkers of OA: COL3A1, OLR1, STC1, and KCNJ8
There were COL3A1, OLR1, STC1, NRP1, KCNJ8, and CXCL6 with special significance for OA that were screened by LASSO 
regression analysis (Figure 3A and B). The SVM-RFE algorithm identified STC1, COL3A1, OLR1, KCNJ8, COL5A2, CXCL6, 
MSX1, TIMP1, VCAN, and NRP1 as important characteristic genes of OA (Figure 3C). The Boruta algorithm obtained 
COL3A1, OLR1, COL5A2, TIMP1, STC1, VCAN, NRP1, MSX1, KCNJ8, and CXCL6 as characteristic genes of OA 
(Figure 3D). The intersection of results from LASSO, SVM-RFE, and Boruta algorithms yielded COL3A1, OLR1, STC1, 
NRP1, KCNJ8, and CXCL6 as candidate OA biomarkers (Figure 3E). Among them, the AUC values of COL3A1, OLR1, STC1, 
and KCNJ8 were all greater than 0.8 in both the GSE55235 and GSE1919 datasets, indicating that these genes had good diagnostic 
significance. Accordingly, they were recorded as biomarkers of OA (Figure 3F and G). Additionally, the expressions of COL3A1 
and OLR1 were significantly upregulated in OA, whereas the expressions of STC1 and KCNJ8 were significantly downregulated 
in OA on the GSE55235 dataset. And their expression trends were consistent with the GSE1919 dataset (Figure 3H and I).

The BPNN Model Confirmed That the Biomarkers Were Effective in Distinguishing 
OA from Controls
The BPNN model as shown in the figure, includes input, hidden and output layers. The input layers compromised COL3A1, 
OLR1, STC1, and KCNJ8, and the output layers were OA and controls (Figure 4A). Subsequently, in the GSE55235 dataset, the 
AUC was 1, indicating that the biomarkers were able to effectively predict OA and controls (Figure 4B).

Figure 2 Identification of DE-ARGs and its functional annotation. (A) Venn diagram of DE-ARGs. (B) GO enrichment analysis of DE-ARGs. The vertical axis, labeled 
“Count”, represented the number of genes associated with each GO term, while the horizontal axis showed the name of each GO term. (C) KEGG enrichment analysis of 
DE-ARGs. The outer circle was the names of genes and pathways, and the size of the dots represented the number of genes on the pathways. (D) PPI network.
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Figure 3 Selection and validation of key genes using machine learning. (A and B) Lasso regression analysis. In the left figure: the abscissa was log(Lambda), and the ordinate represented 
the cross - validation error; in the right figure: the abscissa “deviance” represented the proportion of residuals explained by the model, and the ordinate was the coefficient of the gene. 
(C) SVM-RFE selection of candidate genes. The abscissa represented the number of genes, and the ordinate represented the error rate. (D) Boruta selection of candidate genes. Green 
represented important features, yellow represented features with unclear importance, and the blue box showed the minimum, average and maximum Z - values of the shaded attribute. 
(E) Venn diagram of three machine learning algorithms. (F) ROC curve of key genes in training set GSE55235. (G) ROC curve of key genes in validation set GSE1919. (H) The 
expression levels of key genes in training set GSE55235. (I) The expression levels of key genes in validation set GSE1919. *P<0.05. **P<0.01. ***P<0.001. ****P<0.0001.
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Biomarker Correlation and Subcellular Localization Results
The correlations between the biomarkers showed significantly positive correlations between COL3A1 and OLR1 (cor = 
0.72, p < 0.001). In contrast, there was a significant negative correlation between COL3A1 and STC1 (cor = −0.66, p < 
0.01). Similarly, OLR1 was significantly negatively correlated with both KCNJ8 and STC1, with correlation coefficients 
of −0.45 and −0.66, respectively (p < 0.05). And the relationship between STC1 and KCNJ8 was a significant positive 
correlation (cor = 0.62, p < 0.05) (Figure 5A). Meanwhile, the subcellular locations of the biomarkers showed that OLR1 
was predominantly in the Golgi apparatus, KCNJ8 was predominantly in the plasma membrane, whereas COL3A1 and 
STC1 were located predominantly extracellularly (Figure 5B–E).

Figure 4 Construction and performance of BP neural network model. (A) BP neural network model diagram. (B) BP neural network ROC curve.

Figure 5 Correlation and subcellular localization of key genes. (A) Scatter plot of key gene correlation. The darker the color was, the higher the correlation was. (B) 
Subcellular localization of COL3A1 gene. (C) Subcellular localization of OLR1 gene. (D) Subcellular localization of STC1 gene. (E) Subcellular localization of KCNJ8 gene. * 
represented P<0.05, ** represented P<0.01, *** represented P<0.001.
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Functional Correlation and Annotation of Biomarkers
GSEA results showed that COL3A1, OLR1, STC1, and KCNJ8 were enriched in 32, 21, 29, and 31 biological pathways, 
respectively. Among these, the “lysosome” was the co-enrichment pathway of these biomarkers (Figure 6A–D). Next, in the 
GeneMANIA results, only COL3A1 was closely linked to other functionally similar genes (Figure 6E). They were mainly 
involved in biological functions such as “fibrillar collagen trimer” and “extracellular matrix structural constituent”.

Location of Bases at Which m6A Methylation of Biomarkers Occurs
The predicted locations of biomarkers susceptible to m6A methylation showed that COL3A1 was more susceptible 
to m6A methylation at positions 2196 and 484 of the base positions (Figure 7A). OLR1 was prone to m6A methylation at 
approximately 107, 148, and 172 base positions (Figure 7B). STC1 was found to be susceptible to m6A methylation at 
around 769, 1805, 2340, 2702, 3015, and 3047 base positions (Figure 7C). KCNJ8 was susceptible to m6A methylation at 
around 1570 and 2166 base positions (Figure 7D).

Figure 6 GSEA enrichment analysis and GeneMANIA network of key genes. (A) GSEA enrichment analysis of COL3A1 gene. (B) GSEA enrichment analysis of OLR1 gene. 
(C) GSEA enrichment analysis of STC1 gene. (D) GSEA enrichment analysis of KCNJ8 gene. (E) GeneMANIA network diagram of key genes.
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Figure 7 m6A binding site analysis of key genes. (A) m6A binding sites of COL3A1 gene. (B) m6A binding sites of OLR1 gene. (C) m6A binding sites of STC1 gene. (D) 
m6A binding sites of KCNJ8 gene.
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Infiltration of Immune Cells in OA
In the GSE55235 dataset, these 28 immune cells were distributed differently (Figure 8A). Among them, the infiltration of 
eosinophils and type 2 T helper cells (Th2) were significantly reduced in OA. In contrast, 15 types of immune cells, 
including activated B cells, memory B cells and regulatory T cells, were significantly more infiltrated in OA (Figure 8B). 
The results of immune cell correlations revealed that immature dendritic cells and muscle-derived stem cells (MDSC) 
had the strongest positive correlation, with a correlation coefficient of 0.86 (p < 0.001). And the highest negative 
correlation was found between Th2 and immature B cells (cor = −0.79, p < 0.001) (Figure 8C). Furthermore, the results 
of the correlation between the biomarkers and immune cells showed that STC1 and COL3A1 were significantly 
positively correlated with eosinophils and Th2, respectively, while they were significantly negatively correlated with 
the other 13 immune cells. In contrast, OLR1 and KCNJ8 were significantly positively correlated with eosinophils and 
Th2, respectively, and significantly negatively correlated with the other immune cells (Figure 8D).

Construction of TF-miRNA-mRNA Regulatory Network and Drug-mRNA Network
A total of 40 miRNAs were obtained by intersecting the 128 miRNAs predicted in the miRTarBase database with the 300 
miRNAs predicted in the starBase database. The ChEA3 database predicted 28 TFs corresponding to the biomarkers, 
with CBX2 and GATA3 jointly involved in regulating biomarker expression. Based on this, the TF-miRNA-mRNA 
molecular regulatory network of OA was constructed (Figure 9A). A total of 30 potential drugs for the treatment of OA 
were identified based on the screening criteria, and a drug-mRNA network was constructed based on these results 
(Figure 9B).

Figure 8 Analysis of immune cell infiltration and correlation with key genes. (A) Heatmap of immune cell infiltration. (B) Boxplot of 28 types of immune cell infiltration in 
Control group and OA group. “ns” represented no significantly. (C) Heatmap of immune cell correlation. Orange - red indicated positive correlation, and blue indicated 
negative correlation. The darker the color was, the higher the correlation was. (D) Heatmap of key gene and immune cell correlation. The abscissa represented immune 
cells, and the ordinate represented key genes. In the figure, the upward - pointing five - pointed star indicated positive correlation, and the downward - pointing one 
indicated negative correlation. The darker the color was, the higher the correlation was, * represented P<0.05, ** represented P<0.01, *** represented P<0.001.
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Expression Evaluation of Biomarkers
The expression of biomarkers between OA and control was assessed by RT-qPCR. The results showed that the 
expressions of COL3A1, OLR1, and STC1 were consistent with the public database. The expression levels of 
COL3A1 and OLR1 were significantly up-regulated in the OA group, while STC1 was significantly down-regulated 
compared to the control group. However, no statistically significant difference was observed in KCNJ8 expression 
between the OA and control groups (Figure 10).

Discussion
In recent years, OA treatment has shifted from symptom management to early prevention, aiming to halt disease 
progression and prevent irreversible joint damage. Targeted gene therapy has emerged as a promising approach, high-
lighting the need to identify biomarkers and therapeutic targets to understand the underlying mechanisms of OA.38,39

In this study, bioinformatics analyses were used to identify angiogenesis-related biomarkers in OA, specifically 
examining four key genes: COL3A1, OLR1, STC1, and KCNJ8. These genes and their associated biological pathways, 
immune microenvironment characteristics, regulatory mechanisms, and links to related diseases and potential drugs were 
explored to provide insights into OA diagnosis and treatment. COL3A1 encodes type III collagen, a structural protein 
essential for tissues like ligaments, blood vessels, and cartilage.40 OLR1’s role in inflammatory pathways implicates it in 
promoting immune cell activation, likely increasing tissue inflammation.41 STC1 encodes stanniocalcin-1, a protein 
involved in cell proliferation, apoptosis, and oxidative stress, with roles in inflammatory conditions.41 KCNJ8 is involved 
in ion channel regulation, influencing cellular responses to mechanical stress and pain perception.42 These genes likely 
impact OA by modulating key processes such as angiogenesis, inflammation, and cartilage structure maintenance, which 
collectively alter disease severity and progression.

Machine learning algorithms are increasingly applied in bioinformatics and genomics, particularly for identifying 
disease-related feature genes. By analyzing large biological datasets, these methods can uncover key biomarkers, predict 
disease progression, and assess patient responses. LASSO regression, with its sparsity-promoting penalty, is effective for 
feature selection and variable reduction, performing well even with small sample sizes.43 It has been used to construct 
diagnostic models for osteoarthritis and metabolic syndrome.44 SVM-RFE, leveraging support vector machines, handles 
non-linear relationships and considers gene interactions, making it ideal for high-dimensional gene expression data and 
effective in various disease gene screening.45 Boruta, a random forest-based algorithm, iteratively determines feature 
importance, minimizing overfitting and false positives.46 Combining LASSO, SVM-RFE, and Boruta enhances feature 
selection accuracy and model generalization, aiding in understanding disease mechanisms and identifying biomarkers.47 

Figure 9 Regulatory networks involving key genes. (A) TF-miRNA-mRNA network. Orange triangles represented mRNA, green circles represented miRNA, and blue 
rectangles represented TF. (B) Therapeutic drug network diagram corresponding to key genes. Orange triangles were key genes, blue hexagons were therapeutic drugs, and 
purple hexagons were drugs that had interactions with two or more genes.
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This combined approach has been applied across various diseases, including glioblastoma, Alzheimer’s disease, diabetic 
foot ulcers, and acute ischemic stroke, demonstrating its broad utility and offering valuable insights for future 
research.48,49

GO analysis revealed that DE-ARGs are significantly enriched in “cartilage development”, “connective tissue 
development”, and “bone morphogenesis”. GSEA results identified “lysosomes” as a common pathway for the four 
biomarkers, primarily involved in cellular autophagy, chondrocyte apoptosis, and matrix degradation. Srinivas observed 
autophagic features in OA chondrocytes, suggesting that changes in autophagic activity may relate to cartilage 
degeneration.50 Caramés found that as cartilage degeneration progresses, autophagic activity decreases, while apoptotic 
gene expression increases.51 GeneMANIA analysis highlighted that COL3A1 shares biological functions with other 
collagen genes, reinforcing its significant role in OA development. Han et al identified hub genes, including COL6A3, 
COL1A2, COL1A1, and COL3A1, that are involved in immune responses, apoptosis, inflammation, and bone 
development.52 COL3A1 has been linked to inflammation signaling pathways such as PI3K/AKT, NF-κB, and IL-17, 
as well as ECM-receptor interactions, contributing to OA inflammation.53,54 GSEA analysis also suggests that OLR1 is 
closely related to inflammation and vascular abnormalities in OA. Research confirms that IL-1β-producing synovial cells 
in OA are primarily inflammatory macrophages and dendritic cells expressing OLR1.55 STC1 is implicated in neovas-
cularization in the OA synovium, and KCNJ8, involved in potassium ion regulation, may relate to neuronal excitability 

Figure 10 The figure of RT-qPCR verification of key genes. “ns” represented no significantly, * represented P<0.05.
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and pain in OA.56 Compared to studies by Han et al and Chou et al, our approach integrates machine learning to refine 
gene selection, increasing diagnostic precision and uncovering novel associations such as the lysosomal pathway in OA 
chondrocyte regulation, a finding not previously highlighted in OA-related angiogenesis studies.52–54

TFs and miRNAs play critical roles in regulating biomarkers and pathways linked to OA. This study identified 
GATA3 (GATA Binding Protein 3) and CBX2 (Chromobox 2) as key regulators of biomarker expression. GATA3, 
a transcription factor, influences genes involved in chondrocyte function and bone metabolism. Its reduced expression in 
OA cartilage suggests a protective role against cartilage degeneration, likely through regulation of COL3A1 expression, 
though the precise mechanisms require further investigation.57 Additionally, miRNAs such as miR-29, miR-513a, and 
miR-155 were found to regulate COL3A1 and OLR1, impacting collagen synthesis and inflammatory signaling, thereby 
contributing to OA progression.34

This study revealed significant differences in immune cell infiltrates between OA and control groups, involving 17 
types of immune cells. Eosinophil and Th2 cell infiltration were significantly reduced in OA, while infiltration of immune 
cells like activated B cells, memory B cells, regulatory T cells, CD56 bright NK cells, natural killer cells, neutrophils, and 
plasma-like dendritic cells increased, possibly associated with OA progression. Neutrophil infiltration is strongly 
associated with knee joint damage in OA.58 Additionally, their interaction with NK cells through CXCL10/CXCR3 
further promotes the progression of OA.59 Plasma-like dendritic cells, crucial in immune responses, secrete high levels of 
inflammatory cytokines in OA, potentially contributing to its pathogenesis.58,59 Correlation analysis showed that STC1 
and COL3A1 were positively correlated with eosinophils and Th2 cells, while negatively correlated with 13 other 
immune cell types. In contrast, OLR1 and KCNJ8 showed the opposite pattern, indicating that these biomarkers play 
a role in regulating immune activity in OA.

The study also identified potential drugs targeting COL3A1, OLR1, STC1, and KCNJ8 based on their expression in 
OA. Bisphenol A (BPA), an endocrine disruptor, regulates COL3A1, OLR1, and KCNJ8 but may worsen OA by 
promoting cartilage destruction and inflammation.60,61 Trichostatin A (TSA), an HDAC inhibitor, regulates STC1 and 
KCNJ8, showing potential to protect cartilage by reducing inflammation and promoting chondrocyte proliferation. 
Tetrachlorodibenzo-p-dioxin (TCDD) and valproic acid (VPA) regulate KCNJ8, COL3A1, and STC1; however, TCDD 
can impair joint health, while VPA, primarily used for neurological conditions, may influence bone cell proliferation and 
inflammation.62,63 Further research is needed to validate the safety and efficacy of these drugs in OA treatment.

In conclusion, this study identified COL3A1, OLR1, STC1, and KCNJ8 as key angiogenesis-related biomarkers in 
OA, offering potential as diagnostic tools and therapeutic targets. Targeting these biomarkers could transform OA 
management by addressing its underlying mechanisms, enabling more effective treatments, improving patient quality 
of life, and reducing the healthcare burden associated with advanced OA. The findings emphasize the critical role of 
angiogenesis in OA progression and suggest novel pathways for therapeutic intervention.

This study has several limitations. The small sample size and the incomplete consideration of individual factors 
associated with OA progression may introduce bias. While gene expression analysis showed no batch effects, subtle 
biases cannot be entirely excluded. Additionally, the absence of experimental validation in animal or cellular models 
limits translational potential. Future research will address these issues by expanding the sample size, performing 
subgroup analyses to examine demographic and clinical variations, and prioritizing in vivo and in vitro validation to 
improve reliability and support the development of targeted OA therapies.
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