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ABSTRACT

Objective. This study aims to identify effective gene networks and biomarkers to
predict response and prognosis for HER2-negative breast cancer patients who received
sequential taxane-anthracycline neoadjuvant chemotherapy.

Materials and Methods. Transcriptome data of training dataset including 310 HER2-
negative breast cancer who received taxane-anthracycline treatment and an indepen-
dent validation set with 198 samples were analyzed by weighted gene co-expression
network analysis (WGCNA) approach in R language. Gene ontology (GO) terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were performed
for the selected genes. Module-clinical trait relationships were analyzed to explore the
genes and pathways that associated with clinicopathological parameters. Log-rank tests
and COX regression were used to identify the prognosis-related genes.

Results. We found a significant correlation of an expression module with distant
relapse—free survival (HR = 0.213, 95% CI [0.131-0.347], P = 4.80E—9). This blue
module contained genes enriched in biological process of hormone levels regulation,
Corresponding author reproductive system, response to estradiol, cell growth and mammary gland develop-
Tao Sun, ment as well as pathways including estrogen, apelin, cAMP, the PPAR signaling pathway
suntao@cancerhosp-In-cmu.com and fatty acid metabolism. From this module, we further screened and validated six hub
genes (CA12, FOXA1, MLPH, XBP1, GATA3 and MAGED?2), the expression of which
were significantly associated with both better chemotherapeutic response and favorable
survival for BC patients.

Conclusion. We used WGCNA approach to reveal a gene network that regulate HER2-
negative breast cancer treatment with taxane-anthracycline neoadjuvant chemotherapy,
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which enriched in pathways of estrogen signaling, apelin signaling, cAMP signaling, the
PPAR signaling pathway and fatty acid metabolism. In addition, genes of CA12, FOXA1,
MLPH, XBP1, GATA3 and MAGED2 might serve as novel biomarkers predicting
chemotherapeutic response and prognosis for HER2-negative breast cancer.
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INTRODUCTION

Breast cancer (BC) remains the second most frequently occurred cancer worldwide as well
as the most common cancer in women (Siegel, Miller ¢ Jemal, 2017). At present, breast
cancer is the primary cause of death in women all over the world and becomes one of the
most expensive tumors to treat (Harbeck & Gnant, 2017). Until now, three key protein
biomarkers have shown great help in guiding prognosis and therapy for BC, including
progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor
(EGF) receptor 2 (HER2) (De la Mare et al., 2014). Breast cancers with no expression

of these three markers are generally classified as triple negative breast cancers (TNBCs)
(Abramson et al., 2015).

In recent years, neoadjuvant chemotherapy has emerged as an increasingly critical
approach in the systemic treatment of women with breast cancer (Rapoport et al., 2014).
Systemic neoadjuvant chemotherapy is widely utilized along with surgery and radiotherapy
for the management of patients with locally advanced BC (Read et al., 2015; Teshome
& Hunt, 20145 Untch et al., 2014). The HER (human epidermal growth factor receptor)
family represents a series of structurally associated receptor tyrosine kinases controlling the
growth and development of multiple organs including the breast (Nuciforo et al., 2015).
HER2 has been reported to cause aggressive behaviors of cancer cells including rapid
growth and frequent metastasis (Wieduwilt ¢ Moasser, 2008). Targeting HER2 in BC has
shown effectiveness in clinical trial, which offers a reliable treatment option (Duffy et al.,
2015; Krishnamurti & Silverman, 2014; Moasser ¢ Krop, 2015).

Currently, chemotherapy is commonly adopted in HER2-negative breast cancer
management, of which taxane-anthracycline combination regimens have been regarded as
typical neoadjuvant chemotherapeutic strategies (Hanusch et al., 2015). Taxanes represent
a series of drugs used in the treatment of cancer including paclitaxel and docetaxel,
which affect microtubules structures of cancer cells to block their division (Ghersi et al.,
2015; Murray et al., 2012). Anthracyclines such as doxorubicin and epirubicin induce
DNA intercalation and lead to apoptosis of breast cancer cells (Greene ¢~ Hennessy, 2015;
Turner, Biganzoli & Di Leo, 2015). At present, no clinically useful prognostic or predictive
examination for patients with HER2 breast cancer have been established.

Although recent improvements of the chemotherapy, hormone therapy, radiotherapy
and immune therapy have greatly benefit the prognosis for BC patients, obvious
individual differences are observed in the outcomes of BC treatments on account of
heterogeneity. As a result, novel and robust biomarkers are urgently required to predict
the chemotherapy sensitivity and survival for HER2-negative BC patients. In this study, by
means of weighted gene co-expression network analysis (WGCNA) (Langfelder ¢» Horvath,
2008), we systematically analysed microarray-based gene expression profiling data of 310
HER2-negative BC cases treated with taxane-anthracycline neoadjuvant chemotherapy. In
addition, another independent validation set with 198 BC samples were also analysed in
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order to identify new biomarker to predict response and prognosis for HER2-negative BC
patients who received sequential taxane-anthracycline neoadjuvant chemotherapy.

MATERIALS AND METHODS

Analyzed datasets

The training dataset adopted for network analysis contained 310 HER2-negative breast
cancer samples, all of which had conducted taxane-anthracycline treatment. All the data
were obtained at GEO database with accession number of GSE25055. Altogether 198
samples was independently analyzed to validate the relation of gene modules/hub genes
with survival of HER2-negative BC patients treated with taxane-anthracycline. Before data
analysis, batch effect was removed using the removeBatchEffect function in limma package
(Ritchie et al., 2015). The Data Normalization was performed by the RMA function in
limma function. These samples were downloaded from GEO with the accession numbers
GSE25065. Chemoresistance included extensive residual cancer burden (RCB) or early
relapse, while chemo-sensitivity represented pathologic complete response (pCR) or
minimal RCB. As we focused on HER2-negative BC, we removed the HER2-positive
patients. All the samples were hybridized using Affymetrix Human Genome U133A Array
according to standard Affymetrix protocols. Original gene expression counts were analyzed
through robust multiarray average algorithms. Because genes with limited variation in
expression often mean noise, we only selected relatively variant genes for construction of
network. The variabilities of genes were assessed by median absolute deviation (MAD)
(Chen et al., 2018).

Construction of gene co-expression network

We then constructed the gene co-expression network using the WGCNA package by R
(Langfelder & Horvath, 2008). Power values were filtered out through means of WGCNA
in constructing the co-expression modules. Scale independence and average connectivity
assessment of modules holding diverse power value were conducted via gradient analysis.
Proper power value was selected when the scale independence value comes to 0.9. WGCNA
method was then adopted to construct the co-expression network and obtain the gene
information in the most relevant module. We performed Heatmap by R language to
illustrate the strength of the association between different modules. As a representative of
the gene expression profiles of a module, module eigengene (ME) was used to evaluate the
relationship between module and distant relapse—free survival (DRFS).

Identification clinical traits-related modules

After we built the gene expression related module, the module—trait relationship (MTR)
analysis was used to analyze the relation between the module and clinical traits (Langfelder
¢ Horvath, 2008). Pearson’s correlation test was used to explore the association of MEs
with clinical traits such as sensitivity, stage, pam50 and grade. We also calculated module
preservation via modulePreservation function in order to assess if the module is stable and
repeatable through datasets. Zsummary of preservation statistics represent the stability
of certain statistical analysis. Zsummary value over 10 strongly indicated preserved and
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robust module (Langfelder et al., 2011). Negative correlation between Preservation statistics
medianRank with module preservation were observed. The protein—protein interaction
network of module genes was performed by STRING (https://string-db.org).

Survival analysis

We used the ‘survival’ package in R to fulfill the survival analysis. The Hazard Ratio as
well as 95% CI were calculated by Cox regression model. We generated the curve for
survival through Kaplan—Meier method. Individual ME was classified as higher and lower
expression by median value to perform multigene associations.

Gene ontology and pathway Enrichment analysis

In order to explore the possible biological functions and pathways enriched by genes within
the module, the clusterprofiler package of R was adopted to demonstrate gene ontology
items (Ashburner et al., 2000) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (Kanehisa et al., 2004).

Identification of hub genes

We then selected the top 10 genes in the DRFS-associated module as the candidate hub
DRFS-associated genes by the p value of their prognosis analysis. Then we verified the
genes in the validation set. We then analyzed the association between hub genes and
taxane-anthracycline response.

RESULTS

Classification of breast cancer subtypes

As was shown in Table 1, the training dataset contained 310 samples while the validating
dataset included 198 samples. Sensitive numbers of taxane-anthracycline treatment in
training and validating sets accounted for 36.5% and 28.3%, respectively. Samples were
included within subtypes according to classification based on the above classifiers for the
following analyses.

Gene co-expression network of breast cancer

Altogether 5,571 most variant genes were selected according to MAD in order to perform
additional analysis. The connectivity among genes was a scale-free network distribution if
the value of soft thresholding power 3 equals to 5 (Fig. S1). Altogether 10 modules were
filtered via hierarchical clustering as well as Dynamic branch Cutting. The module was
given an individual color as identifiers. Interaction relationship analysis of co-expression
genes was shown in Fig. 1. Gene numbers within modules ranged from 35 to 724. If the
gene set belong to no module, this was the grey module. Threshold selection of WGCNA
analysis was shown in Fig. S1.

Module—clinical trait correlations and preservation

Identification of clinical trait related genes is of great interest to elucidate the underlying
mechanisms behind the clinical trait. In our study, the clinical parameters of breast cancer
patients, including sensitivity, grade, stage and pam50 classifiers were involved in MTR
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Table 1 Basic characteristics of the datasets.

Category Training dataset Validating dataset
N 310 198
Age (mean (sd)) 50.17 (10.39) 49.24 (10.57)
Event = 1 (%) 66 (21.3) 45 (22.7)
Time_years (mean (sd)) 2.82 (1.69) 3.22 (1.50)
Type (%)
Basal 122 (39.4) 67 (33.8)
Her2 20 (6.5) 17 (8.6)
LumA 99 (31.9) 61 (30.8)
LumB 44 (14.2) 34 (17.2)
Normal 25(8.1) 19 (9.6)
Sensitive (%) 113 (36.5) 56 (28.3)
Stage (%)
I 24 (7.7) 27 (13.6)
i 165 (53.2) 63 (31.8)
111 121 (39.0) 108 (54.5)
Grade (%)
I 27 (8.7) 11 (5.6)
i 117 (37.7) 107 (54.0)
11 151 (48.7) 80 (40.4)
v 15 (4.8) 0(0)

analysis. As was suggested in Fig. 2, sensitivity, grade and pam50 were associated with
blue module (r =0.27, P =2e—; r = —0.49, P = 6E — 20; and r = —0.76, P = 1E-59).
Stage was associated with red module (r = —0.15, P =0.008). Then we performed module
preservation analysis in validating set. As was shown in Fig. 3, all of the modules’ zsummery
statistics were greater than 10. Finally, significant relation of module blue MEs (HR = 0.213,
95% CI = 0.131-0.347, P = 4.80E—09) (Table 2 and Fig. 4A) with DREFS was identified. As
the module blue was also associated with sensitivity, grade, stage and pam50, we selected
module blue as the hub module.

Enrichment analysis of the blue module

GO and KEGG enrichment analysis were conducted on the genes in blue module. Altogether
163 terms showed differences in GO enrichment (Table 3). As was illustrated in Fig. 5, this
module was related with regulation of hormone levels, reproductive system development,
response to estradiol, cell growth and mammary gland development according to GO
analysis. As for KEGG analysis, 51 pathways were associated with blue module including
Estrogen signaling pathway, Apelin signaling pathway, cAMP signaling pathway, PPAR
signaling pathway and fatty acid metabolism. The protein—protein interaction network of
genes in blue module was shown in Fig. S2.
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Figure 1 Network heatmap plot representing the interaction relationship analysis of co-expression
genes for HER2-negative breast cancer patients.
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Identification of hub genes associated with survival

Hub genes tend to exert core functions in a closely related network. Of the 532 genes within
blue module, we selected the ten most relevant genes as the candidate hub genes (TBC1D9
(r =0.902), CA12 (r = 0.899), ESR1 (r = 0.884), FOXAI (r = 0.875), MLPH (r = 0.873),
XBP1 (r =0.867), AGR2 (r =0.865), GATA3 (r =0.860), SLC39A6 (r = 0.846), and
MAGED?2 (r =0.813)). As was shown in Figs. 4B—4E and Table 4, all of the ten genes were
significantly associated with DRFS. The prognosis results of these ten genes adjusted for
stage and grade also indicated significance, which were listed in Table S1.

Identification of hub genes involved in taxane-anthracycline
resistance

According to our findings, we suggested that increased expression of hub genes were
associated with prolonged survival in HER2-negative BC patients treated with taxane-
anthracycline, thus the identified hub genes may participate in taxane-anthracycline
resistance. To validate this hypothesis, we analyse the relationship between hub gene
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Figure 2 The module—clinical trait relationships of genes involved in clinicopathological parameters
(sensitivity, grade, stage and pam50) of HER2-negative breast cancer patients.

Full-size tal DOI: 10.7717/peer;j.7515/fig-2

expression and taxane-anthracycline sensitivity. In the training set, all the hub genes

demonstrated significant difference between insensitive and sensitive group (Fig. 6).
Moreover, in the validating dataset, six of ten genes (CA12, FOXA1, MLPH, XBP1, GATA3
and MAGED?2) showed significant difference between two groups (Table 5).

DISCUSSION

The understanding of breast cancer and its strategies for therapy has remarkably improved

because of the development of molecular biology in recent years (Redden ¢ Fuhrman,

2013). At present, however, chemo-resistance still poses a major obstacle to satisfactory

treatment for breast cancer individuals, with a number of individuals suffering from
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Table 2 Prognosis analysis of WGCNA module.

Module Gene count HR 95% CI p-value
Black 152 1.778 1.096-2.884 0.02
Blue 532 0.213 0.131-0.347 <0.001
Brown 393 1.231 0.760-1.994 0.399
Green 177 1.2 0.740-1.944 0.459
Magenta 128 1.897 1.171-3.075 0.011
Pink 138 1.779 1.098-2.884 0.021
Purple 35 1.041 0.642-1.686 0.871
Red 161 0.705 0.434-1.144 0.153
Urquoise 724 0.621 0.381-1.011 0.048
Yellow 365 0.871 0.538-1.411 0.575

recurrence and metastasis (Greville et al., 2016; Loibl, Denkert ¢~ Von Minckwitz, 2015).
In the present study, we conducted WGCNA approach to screen a series of promising

indicators for clinical response and survival of HER2-negative BC patients receiving

taxane-anthracycline neoadjuvant chemotherapy. Moreover, significantly altered genes

and pathways contributing to HER2-negative breast cancer chemo-resistance were also

identified.

Compared with previous studies, this is the first network-analyzed WGCNA approach
with full thought of high-throughput data including the training dataset of 310 HER2-
negative breast cancer samples received taxane-anthracycline treatment and an independent

validation set with 198 samples to confirm the relations of the gene modules or hub genes.
For module detection of the 5,571 most variant genes, altogether ten modules were
identified with a unique color each as an identifier. Module preservation analysis in
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Figure 4 Association of blue module and top hub genes with survival for HER2-negative breast cancer

patients. A, blue module; B, TBC1D9 gene; C, CA12 gene; D, ESR1 gene; E, FOXA1 gene.
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Table 3 Enrichment analysis of blue module.

Ontology ID Description Gene ratio adjusted P Count
BP GO0:0010817 Regulation of hormone levels 27/389 0.002395409 27
BP GO:0061458 Reproductive system development 28/389 0.000408073 28
BP GO:0032355 Response to estradiol 12/389 0.004058761 12
BP GO:0016049 Cell growth 26/389 0.004761362 26
BP GO:0030879 Mammary gland development 11/389 0.013827815 11
CcC GO:0043025 Neuronal cell body 30/401 1.00209E-05 30
CC GO:0044297 Cell body 30/401 9.79994E-05 30
CcC GO:0031252 Cell leading edge 20/401 0.020992643 20
CC GO0:0030315 T-tubule 6/401 0.027790409 6
CcC GO:0045177 Apical part of cell 19/401 0.027790409 19
MF GO:0015267 Channel activity 25/387 0.01758155 25
MF GO:0022803 Passive transmembrane transporter activity 25/387 0.01758155 25
MF GO:0005216 Ion channel activity 22/387 0.042958334 22
MF GO0:0005261 Cation channel activity 18/387 0.042958334 18
MF GO:0022838 Substrate-specific channel activity 22/387 0.043597986 22
KEGG hsa04915 Estrogen signaling pathway 14/197 1.35763E-05 14
KEGG hsa04371 Apelin signaling pathway 11/197 0.000946647 11
KEGG hsa04024 cAMP signaling pathway 13/197 0.002153221 13
KEGG hsa03320 PPAR signaling pathway. 71197 0.003222631 7
KEGG hsa01212 Fatty acid metabolism 5/197 0.008276217
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Table 4 Association relationship between hub genes with survival.

Training dataset Validating dataset
Gene HR 95% CI p HR 95% CI p
TBC1D9 0.258 0.159-0.420 3.38E—07 0.238 0.132-0.427 1.26E—05
CA12 0.272 0.167-0.442 6.32E—07 0.271 0.151-0.488 5.26E—05
ESR1 0.343 0.211-0.557 2.56E—05 0.405 0.225-0.727 0.003657406
FOXA1 0.381 0.235-0.619 0.000139831 0.356 0.198-0.64 0.001033344
MLPH 0.343 0.211-0.558 2.62E—05 0.404 0.225-0.725 0.003540279
XBP1 0.250 0.154-0.407 1.63E—07 0.367 0.205-0.659 0.001487792
AGR2 0.381 0.234-0.618 0.000138311 0.452 0.252-0.812 0.009983604
GATA3 0.295 0.181-0.48 2.39E-06 0.203 0.113-0.366 2.02E—06
SLC39A6 0.297 0.183-0.482 2.68E—06 0.272 0.151-0.49 5.65E—05
MAGED?2 0.302 0.186—0.492 2.68E—06 0.352 0.196-0.632 0.000874498

validating set indicated that the identified modules were reliable as all of the modules’
zsummery statistics were more than 10. Module—clinical trait relationships analysis
suggested significant relation of blue module with sensitivity, grade and pam50 while
the stage was associated with red module. As module blue also demonstrated significant
correlation with DRES, we selected module blue as the hub module.

Identifying genes related with possible clinical trait is of great interest to elucidate
the biological relevant molecular mechanisms. In this study, GO and KEGG enrichment
analysis were conducted concerning the genes in hub blue module. Genes in blue module
was related with regulation of hormone levels, reproductive system development, response
to estradiol, cell growth and mammary gland development according to GO analysis. As for
KEGG analysis, genes of blue module demonstrated enrichment in pathways of estrogen
signaling, apelin signaling, cCAMP signaling, the PPAR signaling pathway and fatty acid
metabolism. The identified items of hormone levels, reproductive system development,
response to estradiol, estrogen signaling confirmed the indispensable role of hormone
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Figure 6 The differential expression of potential hub genes in the sensitive and insensitive group of
HER2-negative breast cancer patients who received taxane-anthracycline neoadjuvant chemotherapy.
(A) Top five hub genes involved in taxane-anthracycline resistance. (B) Top 6—10 hub genes involved in
taxane-anthracycline resistance. The fold change (FC) of differential expression of potential hub genes
were shown.
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Table 5 Association relationship between hub genes with taxane-anthracycline resistance.

Training set Validing set
Gene Full name Location OR (95% CI) P OR (95% CI) 4
TBC1D9 TBC1 domain family member 9 4q31.21 1.272(1.122-1.448) 0.0003663 1.113(0.957-1.31) 0.1635
CA12 Carbonic anhydrase 12 15q22.2 1.232(1.123-1.357) 2.40E-05 1.14(1.011-1.294) 0.02608
ESR1 Estrogen receptor 1 6q25.1-q25.2 1.17(1.055-1.302) 0.007904 1.163(0.999-1.361) 0.08573
FOXA1 Forkhead box Al 14q21.1 1.259(1.094-1.461) 0.0002293 1.3(1.053-1.641) 0.01121
MLPH Melanophilin 2q37.3 1.321(1.145-1.535) 0.0001142 1.261(1.027-1.568) 0.01997
XBP1 X-box binding protein 1 22ql2.1 1.501(1.256-1.809) 2.87E-06 1.253(1.001-1.599) 0.04864
AGR2 Anterior gradient 2, protein disul- 7p21.12 1.157(1.081-1.243) 1.20E-05 1.083(0.994-1.188) 0.08473
phide isomerase family member

GATA3 GATA binding protein 3 10p14 1.26(1.119-1.427) 0.0001042 1.137(1.002-1.334) 0.03515
SLC39A6 Solute carrier family 39 member 6 18q12.2 1.399(1.216-1.617) 2.46E-06 1.167(0.976-1.4) 0.06789
MAGED2 MAGE family member D2 Xpll1.21 1.527(1.257-1.869) 3.29E-06 1.413(1.089-1.85) 0.00584

regulation in the development as well as the chemotherapeutic response of breast cancer
(Folkerd & Dowsett, 2013). Previously, Chen et al., (2012) suggested that PPAR signaling

pathway may be a key predictor of breast cancer response to neoadjuvant chemotherapy
by results from the microarray data as well as qRT-PCR validation. The role of fatty acid
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metabolism pathway in HER2-negative breast cancer response with taxane-anthracycline
neoadjuvant chemotherapy required further investigations to elucidate.

Traditional clinicopathological and molecular prognostic factors of TNM stage,
histological classification, oestrogen and progesterone receptors status failed to effectively
assess the benefits of chemotherapy in HER2-negative breast cancer (Prat et al., 2015).
Based on high-throughput genomic data, we identified a number of genes which could
probably predict response and prognosis for HER2-negative BC patients who received
taxane-anthracycline chemotherapy. Ten most relevant genes in blue module (TBC1D9,
CA12, ESR1, FOXA1, MLPH, XBP1, AGR2, GATA3, SLC39A6, and MAGED2) were all
significantly associated with better DRFS when overexpressed. After further analyzing the
relationship between these hub genes and taxane-anthracycline sensitivity, we suggested
that all the hub genes significantly associated with neoadjuvant chemotherapy response in
the training set, while six genes (CA12, FOXA1, MLPH, XBP1, GATA3 and MAGED?2) still
accurately predict response in the validating dataset. The expression of carbonic anhydrase
XII (CA12) gene which encodes a zinc metalloenzyme participating in acidification of tumor
microenvironment, demonstrates correlation with estrogen receptor alpha in human BC.
CA12 has previously been reported to be frequently modulated by estrogen through ER
alpha in BC cells, which contains a distal estrogen-responsive enhancer region (Barnett
et al., 2008). Expression of FOXALI after neoadjuvant chemotherapy, a forkhead family
transcription factor, has been found to be significantly related with distant disease-free
survival of stage II or III ER+ HER2- BC patients treated with anthracycline/taxane
neoadjuvant chemotherapy (Kawase et al., 2015). XBP1 motivates triple-negative breast
cancer via affecting the HIF1 o pathway (Chen et al., 2014) and promotes snail expression to
induce epithelial-to-mesenchymal transition as well as invasion of breast cancer cells (Li ef
al., 2015). GATA3 belongs to the GATA family of transcription factors. Aberrant alternation
of the reciprocal feedback loop of GATA3- and ZEB2-nucleated repression programs has
been found to result in BC metastasis (57 et al., 2015). MAGED2 participates in cell cycle
regulation and participates in the process of methionine deprivation which leads to a
targetable vulnerability in triple-negative breast cancer cells by promoting Trail receptor-2
expression (Strekalova et al., 2015). The above-mentioned studies indicated that these hub
genes might exert specific functions in determining response and prognosis for HER2-
negative breast cancer treatment with taxane-anthracycline neoadjuvant chemotherapy and
serve as promising biomarkers with potential clinical application in the future, although
currently the mechanisms were unclear. The significance and mechanism of the network
and core genes in sensitive and prognostic prediction of HER2-negative BC treatment
needs further confirmation by large prospective individual cohorts in different ethnicities.
Restricted by the unavailability of samples for western blot, it is currently hard for us to
detect the protein level of each identified gene, which is a potential limitation of this study.
One potential limitation is that the correlation between blue module and sensitivity as
well as the red module and the stage were not relatively large, the result of which should
therefore be confirmed by future study on the same concern.

In summary, we used WGCNA to suggest a gene network that regulate HER2-negative
breast cancer treatment with taxane-anthracycline neoadjuvant chemotherapy, which
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enriched in pathways of estrogen signaling, apelin signaling, cAMP signaling, the PPAR
signaling pathway and fatty acid metabolism. In addition, genes of CA12, FOXA1, MLPH,
XBP1, GATA3 and MAGED?2 might serve as novel biomarkers predicting chemotherapeutic
response and prognosis for HER2-negative breast cancer.
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