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Abstract

Characterizing genetic structure across a species’ range is relevant for management and

conservation as it can be used to define population boundaries and quantify connectivity.

Wide-ranging species residing in continuously distributed habitat pose substantial chal-

lenges for the characterization of genetic structure as many analytical methods used are

less effective when isolation by distance is an underlying biological pattern. Here, we illus-

trate strategies for overcoming these challenges using a species of significant conservation

concern, the Greater Sage-grouse (Centrocercus urophasianus), providing a new method

to identify centers of genetic differentiation and combining multiple methods to help inform

management and conservation strategies for this and other such species. Our objectives

were to (1) describe large-scale patterns of population genetic structure and gene flow and

(2) to characterize genetic subpopulation centers across the range of Greater Sage-grouse.

Samples from 2,134 individuals were genotyped at 15 microsatellite loci. Using standard

STRUCTURE and spatial principal components analyses, we found evidence for four or six

areas of large-scale genetic differentiation and, following our novel method, 12 subpopula-

tion centers of differentiation. Gene flow was greater, and differentiation reduced in areas of

contiguous habitat (eastern Montana, most of Wyoming, much of Oregon, Nevada, and

parts of Idaho). As expected, areas of fragmented habitat such as in Utah (with 6 subpopula-

tion centers) exhibited the greatest genetic differentiation and lowest effective migration.

The subpopulation centers defined here could be monitored to maintain genetic diversity

and connectivity with other subpopulation centers. Many areas outside subpopulation cen-

ters are contact zones where different genetic groups converge and could be priorities for

maintaining overall connectivity. Our novel method and process of leveraging multiple differ-

ent analyses to find common genetic patterns provides a path forward to characterizing

genetic structure in wide-ranging, continuously distributed species.
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Introduction

Many wildlife species are comprised of multiple spatially disjunct subgroups and the amount

and juxtaposition of this genetic structure across the landscape is shaped by a species’ social

behavior, their ability to disperse, and the spatial heterogeneity of the landscape [1, 2]. Move-

ment and connectivity among genetic groups is important for population demography and

persistence as well as the maintenance of genetic diversity [3–8]. With increasing fragmenta-

tion in landscapes due to human activity, populations can become more differentiated and iso-

lated, and those that are small can ultimately lose genetic diversity due to genetic drift and may

face problems with inbreeding. Characterizing genetic structure within a species is highly rele-

vant for management and conservation as it can be used to define population boundaries and

management units as well as assess connectivity, all of which can help prioritize where and

how to invest scarce resources for conservation [9, 10].

Improvements in molecular technology and laboratory methods over the last decade have

facilitated the collection and analysis of large-scale genetic data sets [9, 11–13] enabling compre-

hensive research efforts for wide-ranging species. An array of analytical tools exists to examine

population genetic structure in wild populations including both population and individual-

based methods [14] as well as those that include spatial information and those that do not [15].

Such methods are useful for delineating genetic groups yet may be less useful for identifying

areas that are central to maintaining genetic variation and connectivity across large landscapes

[16]. In addition, many of these methods are less effective when used in situations where habitat

is continuous and isolation by distance (IBD) is an underlying biological function [17–20].

Wide-ranging species residing in continuously distributed habitat pose substantial chal-

lenges for the characterization of genetic structure. Comprehensive sampling coverage for

such a species requires a large number of individuals to be genotyped and the analysis of the

genetic data to discern population structure is likely to be complicated by IBD. Here, we illus-

trate both the challenges inherent in and strategies for characterizing genetic structure in a

wide-ranging species of significant conservation concern, the Greater Sage-grouse (Centrocer-
cus urophasianus; sage-grouse hereafter). Although sage-grouse occupy sagebrush habitat cov-

ering much of western North America, their range has been reduced by 56% since pre-

European settlement (Fig 1) leaving some populations small and isolated [21]. Sage-grouse

management is moving towards a more coordinated approach that encompasses the entire

species’ range [22–24] and could benefit from additional information on gene flow and popu-

lation structure on similar scales. To overcome the difficulties of assessing sage-grouse genetic

structure over such a large scale, we developed a novel method to identify centers of genetic

differentiation and combine multiple methods identifying common genetic patterns that can

be used to inform management and conservation strategies for this and other wide-ranging

species. Using these approaches, we aimed to (1) describe large-scale patterns of population

genetic structure and gene flow and (2) to characterize genetic subpopulation centers across

the range of sage-grouse.

Methods

Genetic sampling

We collected 16,420 genetic samples across the range of sage-grouse in western North America

spanning 11 U.S. states and two Canadian provinces. Feathers that had been dropped by sage-

grouse during breeding activity were collected from 2005 to 2015. In addition, a small number

of blood samples collected by other researchers as part of separate radio telemetry and GPS

tracking field research were made available to us for use in this study. The spatial distribution
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of our sampling was optimized as described in Hanks et al. [25]. Briefly, following a pilot sam-

ple, we used a latent spatial model to identify spatial trends in genetic variation. We then iden-

tified geographic areas exhibiting the greatest transition in allele frequencies but where we

lacked samples and increased our sample resolution in these areas in subsequent years.

Fig 1. Current (dark green) and pre-settlement (tan) distribution of Greater Sage-grouse (Centrocercus urophasianus) in the western part of North

America. (distribution layers available at https://www.sciencebase.gov/catalog/item/52e17ac3e4b0d0c3df9a3968 and https://www.sciencebase.gov/catalog/

item/543d9947e4b0fd76af69cc74). The dotted red line represents the Continental Divide. Dotted black lines represent the seven sage-grouse management

zones (MZ). State names are represented by the following abbreviations California (CA), Colorado (CO), Idaho (ID), Montana (MT), Nevada (NV), North

Dakota (ND), Oregon (OR), South Dakota (SD), Utah (UT), Washington (WA), and Wyoming (WY).

https://doi.org/10.1371/journal.pone.0274189.g001
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Microsatellite genotyping

The laboratory methods used to generate the genetic data for this study have been described

previously [26, 27] and detailed methods are in S1 Appendix. Briefly, DNA was extracted and

used in the amplification of 15 microsatellite loci, 12 of which were developed for sage-grouse

[28–30]. We conducted extensive quality control to ensure the reliability of all genotypes and

identified and removed multiple recaptures of the same individual. The data used in this study

are available as a USGS data release [31].

Sample optimization

We sampled some regions of the range with greater intensity than others. As heterogeneity in

sampling intensity has been shown to affect the analysis of spatial genetic structure [18, 32,

33], we thinned the full dataset to achieve a more homogenous spatial representation. To thin

the dataset, we followed the approach of Row et al. [27]. We used a hierarchical clustering

approach to first define clusters, by grouping spatially proximate sampling locations using a

hierarchical clustering analysis (hclust function with complete method) in R [34]. Each loca-

tion was assigned to its own cluster, with the algorithm combining the two most proximal clus-

ters iteratively until a single cluster remained. Distances between clusters were recomputed

after each join by the Lance-Williams dissimilarity formula [35]. Finally, we used the cutree
function in R to define clusters separated by a threshold distance of>50 km, representing two

times the maximum average summer to winter movement distance for any population in

Wyoming [36]. Once clusters were defined, we randomly chose ten individuals per cluster for

those clusters that had>10 individuals.

We conducted a group-based principal component analysis (PCA) by computing the mean

component scores for all individuals located within each state/province/regional group using

the R packages stats and gstudio [37] and plotted the results using ggplot2 [38]. Previous

genetic and genomic research has shown that sage-grouse from the Bi-State region (along the

border between California and Nevada in the southern part of the range in both states, Fig 1)

and from Washington are substantially differentiated from other parts of the sage-grouse

range and were likely isolated for long periods of time [39–42]. Therefore, we grouped all indi-

viduals from the Bi-State region together to separate them from other individuals from Nevada

and California. Our group-based PCA revealed (see Results) that, as has been found in previ-

ous analyses, the Bi-State and the Washington sage-grouse, are significantly differentiated

from all other sage-grouse (S1 Fig). Since we were interested in large-scale patterns of popula-

tion structure and gene flow across the core of the range (i.e., not influenced by isolated

peripheral populations that are known to be genetically distinct), we removed the Washington

and Bi-State populations from subsequent analyses with one exception—the analysis of esti-

mated effective migration rates (i.e., gene flow) across the entire range of sage-grouse.

Examining population genetic structure

To investigate large-scale trends in genetic structure, we conducted an individual-based spatial

principal component analysis (sPCA) calculated in the R package adegenet [43]. Additionally,

we used the Bayesian clustering program STRUCTURE v2.3.4 [44] using the admixture

model, correlated allele frequencies, and allele frequency distribution parameter (λ) set to 1.

Analyses were run with non-informative priors and burn-in of 1,000,000 iterations followed

by 1,000,000 Markov Chain Monte-Carlo (MCMC) iterations. For initial analysis, we com-

pleted ten replicates for each value of K from 1–30. The best-supported value of K was deter-

mined using two methods as implemented in STRUCTURE HARVESTER [45]. First, we

plotted the mean and standard deviation of ln Pr(X|K) at each value of K and evaluated the
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point at which those values plateau. Second, we calculated and plotted ΔK following Evanno

et al. [46]. Finally, we used CLUMPP v 1.1.2 [47] to average posterior probabilities of individ-

ual assignment to each of the K clusters across all ten STRUCTURE replicates. In CLUMPP we

used 10,000 repeats of the greedy method with greedy option two and the pairwise matrix sim-

ilarity statistic, G.

We examined spatial autocorrelation in our samples using the mantel.correlog function in

the vegan package [48] inputting AMOVA genetic distance calculated using the genetic_dis-
tance function in R package gstudio [37]. We computed a multivariate Mantel correlogram

(as described in [35]) with 80 distance classes, limiting the correlogram to the distance clas-

ses that included all points. A Pearson correlation was used in calculation of the Mantel sta-

tistic, with 999 permutations to test for significance, and a Bonferroni correction of P-values

for multiple testing including progressive correction of multiple-testing (as described in

[35]; briefly, the test for the first distance class: no correction, the test for the second distance

class: correct for 2 simultaneous tests, the test for the k-th distance class: correct for k simul-

taneous tests).

Identification of subpopulation centers

Sage-grouse are continually distributed over large portions of their range and the genetic struc-

ture of the species follows a pattern of IBD [49] across continuous habitats [42]. Consequently,

in many parts of the range, discrete genetic boundaries likely do not exist and defining hard

boundaries for genetic populations is problematic [18]. Therefore, our objective was to identify

genetic subpopulation centers, which would theoretically represent the core of each distinct

genetic group. To do this, we used two independent methods. Our first approach involved

assigning individuals to a genetic group based on their maximum posterior probability score

from the standard STRUCTURE analysis above, then using adehabitatHR functions kernelUD
and getverticeshr in R to calculate the 25%, 50%, and 75% kernel density estimate (KDE) of

these genetic groups based on the maximum population assignment. Our second approach

used a spatial iterative bifurcation process (SIBP) composed of three steps for each iteration:

(1) division of the individuals into two clusters, (2) spatial interpolation of individual posterior

probabilities of membership for each of the two clusters, and (3) selection of individuals con-

stituting the ’subpopulation center’ for each of the two clusters. In step one, we analyzed the

entire sample at K = 2 using STRUCTURE and CLUMPP with all parameter settings as

described above. In step two, we spatially interpolated the individual posterior probabilities

(where values range from 0–1, and total 1) of individual subpopulation membership to each of

the K = 2 clusters using the default settings of the krig function in the fields package [50] in R,

following Fedy et al. [6]. The result of the fitted model is an interpolative surface derived from

irregularly spaced data. From the kriged posterior probabilities of cluster membership we gen-

erated spatial isoclines of probability of membership to each of two subpopulations based on

the spatial arrangement of samples and their respective strength of membership. In step three,

we divided individuals into two groups based on the kriged isoclines such that all individuals

within each of the two� 0.70 isoclines were subset into their respective groups and retained.

Samples located within the< 0.70 isoclines for either of the two clusters (i.e., not members of

the two subpopulations or groups) were dropped from further iterations. We repeated this

process of analysis, krig, subset for retained groups until no individuals remained within

the� 0.70 isoclines. In naming subpopulation centers, we switched between the binary

nomenclature of 1|2 and a|b to indicate each subpopulation center’s lineage. For example, the

primary subdivision of all samples was 1 and 2. The secondary subdivision was 1a|1b, and 2a|

2b. We also assigned names to subpopulation centers based on geographic regions.
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Quantification of genetic diversity and divergence

We used gstudio [37] in R to characterize genetic diversity within each subpopulation center

using the following metrics: observed (Ho) and expected (He) heterozygosity, average number

of alleles (A), effective number of alleles (Ae), number of alleles with at least 5% frequency

(A95), and the inbreeding statistic FIS. In GENEPOP v4.5.1 [51], we tested for deviations from

Hardy-Weinberg proportions (HWP) and for gametic disequilibrium among loci correcting

for multiple tests for significance using Bonferroni corrected P-values. We used GENODIVE

[52] to quantify divergence among subpopulation centers using both θST [53] and Jost’s D
[54].

Estimated effective migration surfaces

We used the Estimating Effective Migration Surfaces program (EEMS; [55]) to quantify

genetic differentiation resulting from differences in effective migration. To do this, we used

EEMS to model rates of migration among demes using a stepping-stone approach [56]. The

program overlays the sample range with a tight systematic grid and approximates the expected

genetic differentiation among individuals under an IBD model. Then, comparing actual

genetic differentiation among individuals to the IBD model, the program algorithms identify

areas of divergence between actual and modeled differentiation. Those areas where actual dif-

ferentiation is greater than predicted by the IBD model are areas of lower effective migration,

whereas areas where actual differentiation is less than predicted by the IBD model are areas of

greater effective migration. Using EEMS, we identified geographic areas across the species’

range with lower effective migration than expected under IBD (resistance to gene flow), with

approximately equivalent effective migration (neutral effect on gene flow), or with greater

effective migration (facilitation of gene flow). We plotted the EEMS-output spatial data layer

using the rEEMSplots package [55] and the ggplot2 package [38] in R. In EEMS, we fit models

to, and averaged the results for, deme counts of 500 and 1,000, repeating this process three

times at each deme count to ensure model convergence across random starting points. We

used 1,000,000 MCMC iterations burn-in, 2,000,000 subsequent iterations, and thinned by

9,999 iterations. We repeated this analysis for the thinned dataset including Washington and

the Bi-State populations.

Results

Microsatellite genotyping and sample thinning

Genotyping and quality control yielded 6,725 individuals from 1,364 breeding areas or leks

(median = 3, IQR = 4, range = 1–62 individuals per lek) collected across the entire range from

2005 to 2015. The sample genotypes we used were the same as those refined for use in Cross

et al. [26] and Row et al. [27], now including samples from Washington. After thinning of the

data to avoid heterogeneous sample distribution, the number of individuals was reduced to

2,134 from 927 leks (median = 2, IQR = 2, range = 1–13 individuals per lek). Further removal

of the individuals from the Bi-State population and Washington state resulted in 2,091 individ-

uals from 915 leks (median = 2, IQR = 2, range = 1–13 individuals per lek).

Determination of population genetic structure

Our PCA grouped by state/province/region (S1 Fig) showed the populations in Washington

and in the Bi-State were more divergent than average from other groups. Therefore, we with-

held these individuals from all other analyses (except the second analysis of effective migra-

tion). In the sPCA, we retained eigenvalues 1–3, as they were the most divergent from the
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other axes and characterized the global trends in variance and spatial autocorrelation. The first

eigenvalue split the northeast (Montana, North and South Dakota and northeastern Wyo-

ming) and the remainder of the range (S2A Fig). The second eigenvalue highlighted a differ-

ence between southwestern Wyoming, Colorado, and Utah and the rest of the range (S2B Fig).

The third eigenvalue separated Utah from much of the rest of the range, yet also showed

regional differentiation in the Dakotas and southeastern Montana and the westernmost por-

tion of the range (S2C Fig). When combined, these first three eigenvalues (Fig 2) did not reveal

distinct population boundaries, but rather a pattern of population cores and transition zones

between those cores. However, at least four groups are apparent: one group included most of

Montana, North Dakota, South Dakota, and northeastern Wyoming (Fig 2; pink), which tran-

sitions to a differentiated group including southwestern Wyoming, northeastern Utah, and

Colorado (Fig 2; purple). Further south, a shorter transition to the green and brown in central

and southern Utah was detected (Fig 2). The remainder of the range—the greater Great Basin

into Idaho and southwestern Montana—grouped together (Fig 2; turquoise).

In our standard STRUCTURE analysis, the most likely value of K given our data was equiv-

ocal. The several common approaches to selecting the most appropriate K each supported a

different value. The point at which the mean ln Pr(X|K) began to plateau was approximately at

K = 6 (S3A and S3C Fig). This was also the point at which the rate of change in ln Pr(X|K)

began to diminish, and so it was the value of K for which we observed the second greatest ΔK
statistic value (S3B Fig). However, it could also be argued that the values of ln Pr(X|K) pla-

teaued at K = 12, and the maximum value occurred at K = 21 (S3A and S3D Fig). The ΔK indi-

cated K = 2 had the greatest support as the uppermost hierarchical level of structure (S3B Fig).

At K = 6, individuals were divided into groups that were mostly contiguous, such that most

geographically proximal individuals were assigned to the same genetic cluster (S4A Fig), with

the six groups representing (1) the greater Great Basin (Oregon, California, Nevada), (2) Idaho

and southwestern Montana, (3) central and southern Utah, (4) southwestern/central Wyo-

ming, Colorado, and northeastern Utah (5) northeastern Wyoming with the Dakotas and

southeastern Montana, and (6) central/northern Montana. As in the sPCA, contact zones

between groups showed increased admixture within individuals compared to those closer to

group centroids. Individual assignment was particularly ambiguous for individuals throughout

much of Nevada and the Great Basin. At K = 12, geographic discreteness was reduced with

multiple groups co-occurring (S4B Fig).

We observed statistically significant positive autocorrelation among pairs of sage-grouse

samples separated by< 50 km. Some, but not all, distance classes above 450 km showed signif-

icant negative autocorrelation. Pairwise samples between 50 and 450 km were not significantly

autocorrelated.

Identification of subpopulation centers

We identified 25%, 50%, and 75% KDE for individuals assigned to each of the K = 6 genetic

clusters (Fig 3). The KDE revealed non-overlapping but non-contiguous (25% KDE) or largely

non-overlapping and contiguous (50% KDE) areas that included one group in northeastern

Montana (dark blue; Fig 3), a second including southeastern Montana, northeastern Wyo-

ming, North and South Dakota (light blue; Fig 3), a third including southwestern Wyoming,

Colorado, and a small portion of Utah (orange; Fig 3), a fourth including most of Utah and a

sliver of southwestern Wyoming (yellow; Fig 3), a fifth covering much of Nevada, Oregon,

southwestern Idaho, and extreme northeastern California (salmon; Fig 3), and a sixth that

included central Idaho and southwestern Montana, dipping slightly into northeastern Nevada

and northwestern Utah (brown; Fig 3). The 75% KDE revealed contact zones between groups.
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Fig 2. Spatial principal components analysis color plot of the first three eigenvectors for 15-locus microsatellite data from Greater Sage-grouse samples

collected across the species’ range. The colors summarize the first three components by translating each score into a channel of color (red, green, and blue).

The dotted red line represents the Continental Divide. Tan polygons represent Priority Areas for Conservation and dotted black lines represent the seven sage-

grouse Management Zones (MZ). State names are represented by the following abbreviations California (CA), Colorado (CO), Idaho (ID), Montana (MT),

Nevada (NV), North Dakota (ND), Oregon (OR), South Dakota (SD), Utah (UT), Washington (WA), and Wyoming (WY).

https://doi.org/10.1371/journal.pone.0274189.g002
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Three groups converged in southwestern Wyoming along the border where Wyoming, Utah

and Idaho converge, (brown, orange, yellow) and south-central Idaho (salmon, brown, and

yellow).

We discovered twelve nested subpopulation centers across the species’ contiguous range

after six successive rounds of analysis (Fig 4) using our SIBP method. The primary division in

genetic structure loosely aligned near the Continental Divide (S5A and S6A Figs) bifurcating

the range into eastern and western groups (Pop 1 and Pop 2, Fig 4A). Secondary subdivisions

Fig 3. Boundaries of Greater Sage-grouse subpopulation centers at K = 6 from a STRUCTURE analysis using a 25% (darkest polygon), 50% (medium

polygon), and 75% (lightest polygon) kernel density estimate to determine genetically distinct groups. The six different colors represent the six clusters

identified in the STRUCTURE analysis. The dotted red line represents the Continental Divide. Tan polygons represent Priority Areas for Conservation and

dotted black lines represent the seven sage-grouse management zones (MZ). State names are represented by the following abbreviations California (CA),

Colorado (CO), Idaho (ID), Montana (MT), Nevada (NV), North Dakota (ND), Oregon (OR), South Dakota (SD), Utah (UT), Washington (WA), and

Wyoming (WY).

https://doi.org/10.1371/journal.pone.0274189.g003
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(S5B and S6B Figs) divided the western group (Pop1, Fig 4A) into a Great Basin group (Great

Basin Pop1a, Fig 4A), and a group east of the Great Basin (Pop 1b, Fig 4A), and separated the

eastern group (Pop 2, Fig 4A) into a north central Montana group (Great Plains Pop 2b, Fig

4A) and a group covering the Dakotas, southeastern Montana, and eastern Wyoming (Powder

River Pop 2a, Fig 4A). Tertiary subdivision (S5C and S6C Figs) bifurcated a group in Oregon

(Central OR Pop1a2, Fig 4A) from the rest of western Great Basin (from which no kriged pos-

terior probabilities were�0.70) and divided the group east of the Great Basin into two groups

(Pop 1b1 and Pop 1b2, Fig 4A). Quaternary subdivision (S5D and S6D Figs) separated a group

in southwestern Montana, eastern Idaho, western Wyoming, northern Utah (Central Rockies

Pop1b1a, Fig 4A), from one in northwestern Colorado and southern Wyoming (Wyoming

Basin Pop1b1b, Fig 4A) as well as two groups in central Utah (Pop 1b2a and 1b2b, Fig 4A).

Quintenary (S5E and S6E Figs) and senary (S5F and S6F Figs) subdivisions further bifurcated

the central Utah group into six subpopulation centers (Fig 4A). Each successive round of sub-

structure analysis resulted in a cut of 3–52% of the total starting samples with a mean cut of

19% (those individuals not within the�0.70 isocline S1 Table). After seven rounds of analysis

(the senary round), no individuals remained within the 0.70 isocline (S1 Table).

Quantification of genetic diversity

Among all samples, there was an average of 16.53 alleles per locus ranging from eight at TUT3

to 33 at MSP11, with an expected heterozygosity of 0.845, and an FIS of 0.075 (Table 1). After

Fig 4. (A) Diagram showing how Greater Sage-grouse subpopulation centers were identified using 6 rounds of spatial iterative bifurcation process (for detailed

interpolated maps and a summary of individuals included in each bifurcation, see S5 and S6 Figs) and (B) the distribution of individuals in each subpopulation

center with color and symbol representing the 12 subpopulation centers. Open grey symbols represent individuals that occur outside of the subpopulation

centers. The dotted red line represents the Continental Divide. Tan polygons represent Priority Areas for Conservation and dotted black lines represent the

seven sage-grouse management zones (MZ). State names are represented by the following abbreviations California (CA), Colorado (CO), Idaho (ID), Montana

(MT), Nevada (NV), North Dakota (ND), Oregon (OR), South Dakota (SD), Utah (UT), Washington (WA), and Wyoming (WY).

https://doi.org/10.1371/journal.pone.0274189.g004

PLOS ONE Characterizing genetic structure in Greater Sage-grouse

PLOS ONE | https://doi.org/10.1371/journal.pone.0274189 September 13, 2022 10 / 22

https://doi.org/10.1371/journal.pone.0274189.g004
https://doi.org/10.1371/journal.pone.0274189


grouping samples by SIBP, no single locus was out of HWP in more than one subpopulation

center; however, there were four loci in the Great Basin group, one in the Central Rockies

group, two in the Powder River group, and one in the Great Plains group that were out of

HWP. No locus pairs were in significant gametic disequilibrium in more than one subpopula-

tion center. Within subpopulation centers the average number of alleles per locus ranged from

4.87 in Wildcat-Horn to 13.60 in the Great Basin subpopulation center (mean = 8.77 ± 3.44

[SD]). Across all subpopulation centers, He averaged 0.747 ± 0.16 [SD] (Table 1).

Divergence among the 12 subpopulation centers ranged widely (θST: 0.021–0.156, Jost’s D:

0.084–0.444; S2 Table). Divergence (S2 Table) measured using θST was greatest among sub-

population centers in Utah (Uintah, Wildcat-Horn, Sheeprock-Tintic, and Southwest Desert).

Yet when using Jost’s D, divergence was greatest between the Great Plains subpopulation cen-

ter and centers in Utah (Sheeprock-Tintic, Uintah, Wildcat-Horn), between the Central Rock-

ies and Wildcat-Horn and between centers in Utah (Sheeprock-Tintic and Uintah).

Divergence was least when measured using θST between the subpopulation centers in Oregon

(Central OR and Great Basin) and when measured using Jost’s D between the centers in Mon-

tana (Great Plains and Powder River).

Estimated effective migration surfaces

We estimated effective migration rates for the entire range of sage-grouse including Washing-

ton and the Bi-State, and then separately excluding samples from those two areas. As expected,

analysis of the entire range revealed areas of constrained migration between Washington and

the rest of the range and to a lesser extent between the Bi-State population and the rest of the

range (S7 Fig). When excluding Washington and the Bi-State, effective migration was greatest

within the Powder River (southeastern Montana and the Dakotas), diminishing slightly mov-

ing northward into the Great Plains (Fig 5, positive log migration, orange). Other areas of

greater migration include within the northern part of the Wyoming Basin subpopulation

Table 1. Measures of genetic diversity across 15 microsatellite loci within each of the spatial iterative bifurcation process (SIBP) subpopulation centers detected for

Greater sage-grouse.

Subpopulation center name (number) n A Ae A95 Ho He FIS

All Samples 2091 16.53 7.40 6.60 0.782 0.845 0.075

Great Basin (1a) 458 13.60 7.32 6.80 0.802 0.843 0.049

Central OR (1a2) 39 8.53 5.24 5.80 0.787 0.790 0.001

Central Rockies (1b1a) 70 11.47 6.59 6.93 0.805 0.832 0.030

Wyoming Basin (1b1b) 125 11.80 6.16 5.87 0.787 0.818 0.038

Sheeprock-Tintic (1b2a1) 18 5.80 3.54 4.67 0.731 0.689 -0.067

Southwest Desert (1b2a2) 25 6.47 3.70 4.47 0.657 0.712 0.077

Uintah (1b2b1a) 10 5.00 3.43 5.00 0.720 0.668 -0.077

Wildcat-Horn (1b2b1b) 10 4.87 3.38 4.87 0.724 0.669 -0.083

Strawberry-Anthro (1b2b2a) 15 6.40 4.06 4.80 0.733 0.721 -0.016

Carbon-Tavaputs (1b2b2b) 15 5.80 3.71 4.47 0.705 0.703 0.005

Powder River (2a) 220 12.67 5.59 5.80 0.766 0.793 0.033

Great Plains (2b) 248 12.87 5.57 5.47 0.778 0.801 0.029

Within the table, n = sample size, A = average number of alleles across 15 loci, Ae = effective number of alleles (the # of equally frequent alleles required to achieve the

same He), A95 = number of alleles with at least 5% frequency, Ho = observed heterozygosity, He = expected heterozygosity, FIS = 1-(Ho/He)–a measure of departure from

Hardy-Weinberg proportions (HWP) within groups/subpopulations (positive values indicate a deficit of heterozygotes, negative values indicate an excess of

heterozygotes).

https://doi.org/10.1371/journal.pone.0274189.t001
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Fig 5. The 12 Greater Sage-grouse subpopulation centers identified using the spatial iterative bifurcation process overlaid on the effective migration

surface. The color and symbol represent each of the 12 subpopulation centers. Open grey symbols represent individuals outside of subpopulation centers.

Effective migration rates are shown on a log scale where the zero value (white) indicates the mean effective migration rate, positive values (orange) indicate

greater than average effective migration and negative values (blue) indicate those less than average. The dotted red line represents the Continental Divide. Tan

polygons represent Priority Areas for Conservation and dotted black lines represent the seven sage-grouse management zones (MZ). State names are

represented by the following abbreviations California (CA), Colorado (CO), Idaho (ID), Montana (MT), Nevada (NV), North Dakota (ND), Oregon (OR),

South Dakota (SD), Utah (UT), Washington (WA), and Wyoming (WY).

https://doi.org/10.1371/journal.pone.0274189.g005
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center, the Central OR subpopulation center, and stretching across the Great Basin connecting

the Great Basin subpopulation center to the Central Rockies subpopulation center. Low migra-

tion rates (Fig 5, negative log migration, shaded blue) were found in northern Idaho, between

eastern Montana (Great Plains and Powder River subpopulation centers) and southwestern

Montana (Central Rockies subpopulation center), through western Wyoming, extending

south through far eastern Idaho, into all but the northwesternmost corner of Utah, and all of

Colorado. Additional areas of low migration included central Wyoming between the northern

part of the Powder River subpopulation center and the southern portion of the Wyoming

Basin center stretching south into Colorado.

Discussion

Wildlife management and conservation strategies benefit from an understanding of genetic

structure and connectivity among populations. Many species of conservation concern have

small ranges occurring in discrete patches of habitat that can be described genetically through

relatively straightforward analyses. However, the genetic structure of wide-ranging species

(whether of conservation concern or of management interest) is more difficult to assess due to

analytical difficulties both from the sheer quantity of data and the underlying issue of IBD. To

overcome these challenges, we developed a novel method (SIBP) designed specifically for con-

tinuously distributed species. We illustrate its utility by identifying centers of genetic variation

and comparing multiple additional analytical methods to reveal common patterns of genetic

structure and connectivity in sage-grouse. Further, we show how the information gleaned

from these analyses can be used to guide management and conservation actions.

Comparing patterns among analyses

Sage-grouse habitat is contiguous in some areas of the range and fragmented and isolated in

others (Fig 1) and the extent to which IBD might impact our analysis was unknown, although

a previous genetic study suggested that IBD is a prominent pattern across the range [42].

Although we used STRUCTURE and sPCA to define major patterns of genetic difference and

to identify centers of genetic differentiation through SIBP (all of which are influenced by IBD),

we also used EEMS that was designed specifically for instances in which broad-scale IBD exists

and compared all results.

All analyses supported differentiation and low effective migration between an east and west

group that split loosely along the Continental Divide (Figs 2 and 5), except where the topo-

graphical abruptness of the Divide is less severe (e.g., between southwestern Montana and east-

ern Idaho, and within WY). Divisions below the initial east/west split varied by analysis with

sPCA resolving the fewest groups followed by STRUCTURE and SIBP. Within the eastern

group, northern Montana (Great Plains) and southeastern Montana/Dakotas/northeastern

Wyoming (Powder River) were further separated by STRUCTURE (Fig 3, S4A Fig) and the

SIBP (Fig 4), yet only minimally with sPCA (shown as differentiated with the 3rd eigenvector).

Our EEMS analysis indicated slightly elevated effective migration between these two groups

(Fig 5), which is consistent with the spatially predicted connectivity in that area described in

Row et al. [27]. Within the western group, three or four additional groups were defined using

sPCA and STRUCTURE with additional divisions detected using SIBP. Idaho and a Nevada/

Oregon group comprise two (STRUCTURE) or three genetic (SIBP) groups (Figs 3 and 4), yet

sPCA revealed only subtle differentiation and EEMS showed elevated effective migration

among these groups (Figs 2 and 5). The Wyoming Basin group (southwestern Wyoming and

Colorado) was consistently recognized as one group throughout all analyses. Effective migra-

tion within this group varied substantially, however, with high migration in southwestern
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Wyoming and lower migration in Colorado (Fig 5). In contrast, there was no consistency in

the classification of samples in Jackson Hole, Wyoming (isolated population in the northwest-

ern part of the state). This group clusters with samples from Idaho and Montana (Central

Rockies subpopulation center) in the SIBP (Fig 4), it aligns with southwestern Wyoming in the

sPCA (Fig 2), and it lies outside all polygons in the KDE (Fig 3). This population occurs in an

area of local low effective migration in the EEMS analysis (Fig 5) and has been found to be iso-

lated previously [57] yet not as genetically distinct as Washington or the Bi-State [39]. The

degree of differentiation and isolation in central and southern Utah was also unclear but was

nested in classification (i.e., the group was either considered one large group or six small

groups within it) unlike Jackson Hole (which was assigned to completely different groups

depending on the analysis). The SIBP analysis (Figs 4 and 5) revealed 6 subpopulation centers

in Utah with increased differentiation (S2 Table), whereas the standard STRUCTURE analysis

(Fig 3, S4A Fig) and to a lesser extent spatial PCA (Fig 2) showed one group differentiated

from the rest of the range. Sage-grouse in central and southern Utah occur in small, isolated

patches of sagebrush likely highly affected by genetic drift which has led to increased differenti-

ation. Translocations from multiple areas in Utah (including the northeast and northwest)

into central Utah (specifically into Strawberry-Anthro) complicate the interpretation of the

structure found here [58–60] and may explain why the differentiation in the Strawberry-

Anthro subpopulation center was reduced and its genetic diversity greater than others in that

area.

Improving resolution and extent

Our analysis provides a comprehensive view of population genetic structure and gene flow

across the entire range of sage-grouse. Past evaluations of connectivity for sage-grouse have

examined population structure and gene flow both range-wide [42] and at smaller scales [5, 6,

40, 57, 61–64]. The only other range-wide assessment of population structure included over

1,000 samples largely from hunter-harvested birds, yet the spatial resolution was limited as

samples were consolidated by hunt unit or county [42]. We found general agreement with that

study yet found greater differentiation in central Utah (6 subpopulation centers here vs. 3 clus-

ters prior), and greater connectivity in Colorado (1 subpopulation center here vs. 2 clusters

prior). These differences are most likely due to increased resolution and spatial continuity of

sampling in this study but could be due to shifts in genetic structure over time, as ~20 years

(6–10 generations) have passed since the original study.

While our results are similar to those of others conducted at the state level or larger scales,

there are subtle differences which are likely due to differing study extents. This study incorpo-

rated the genotypes used in Fedy et al. [6] who examined population structure in Wyoming

and Cross et al. [63] who did similar research in Montana and the Dakotas. In most of our

analyses we documented two or three groups as opposed to the four found previously in Wyo-

ming [6]. Importantly, this study documents a prominent division between northeastern and

southwestern Wyoming representing a previously unrecognized east-west split separating all

sage-grouse into two main groups (Fig 5, S2A, S4A and S7 Figs). This division was largely

along the boundary between management zone (MZ)1 and MZ2 (Figs 1 and 3). In Montana

and the Dakotas, we found the same three groups as Cross et al. [63], yet they found additional

substructure in their hierarchical analysis some of which can be discerned in our STRUC-

TURE analysis at K = 12 (S4B Fig). This analysis of sage-grouse genetic variation range-wide,

at high resolution, and with sampling homogeneity removes artifacts that may be introduced

by irregular sampling or truncation of sampling extent at state and provincial boundaries

rather than biological boundaries such as a species’ distribution.
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Incorporation with other range-wide connectivity products

This research builds upon two recent studies that used the same data set to examine different

aspects of connectivity. The first developed a genetic network for sage-grouse, characterized

the network connectivity structure, and identified nodes serving as hubs of genetic connectiv-

ity such that these nodes could be prioritized based on their importance for maintaining net-

work structure and connectivity [26]. The second evaluated functional connectivity by

determining the specific factors driving genetic divergence within sage-grouse MZs, determin-

ing the landscape and habitat features that most impact gene flow within individual zones [27].

When individual resistance models were stitched together across MZs, a wide-ranging func-

tional connectivity surface was produced [27]. This study takes the next step in evaluating con-

nectivity by describing and quantifying large-scale patterns of population genetic structure

and gene flow.

In the network study Cross et al. [26] found that breeding areas in the C. J. Strike Reservoir

Watershed in southwestern Idaho, and in the Bighorn Lake and Upper Green-Slate watersheds

in southwestern and north central Wyoming respectively, were important for maintaining

genetic connectivity range-wide. These regions exhibited elevated effective migration rates

(Fig 5), yet only one (C. J. Strike Reservoir) was within a center of subpopulation differentia-

tion, indicating that areas outside of subpopulation centers are likely important for maintain-

ing overall connectivity, while the subpopulation centers serve as generators of and reservoirs

for genetic variation. Our map of effective migration was in general agreement with the func-

tional connectivity map from Row et al. [27], yet the spatial patterns inferable from our map

are much coarser as our effective migration map is based solely on effective migration rates

(the pattern) and not based on the landscape variables (the process) driving that pattern.

Nonetheless, our areas of greatest effective migration concur with those of greatest functional

connectivity described in Row et al. [27]. This is of particular note in central Wyoming east of

the Continental Divide where we found lower than expected migration rates and Row et al.

[27] found constrained functional connectivity between MZs 1 and 2 that defined the east-

west division of sage-grouse. In this same region, Cross et al. [26] also identified lek clusters

essential to maintaining range-wide connectivity (hubs of connectivity identified in the top 1%

of betweenness centrality). Our findings of lowered effective migration in Utah and Colorado

also mirrored the work of Row et al. [27] who detected diminished functional connectivity as

evidenced by fewer and/or more diffuse modeled gene flow.

Relating genetic structure to current management boundaries

The distribution and connectivity of sage-grouse have been subdivided previously based on

biologically relevant criteria. For example, floristic zones were used to define the seven MZs

[65] and the populations and subpopulations delineated by Connelly et al. [66] used a combi-

nation of habitat, lek locations, and the degree of presumed fragmentation. More recent work

has defined hierarchical clusters based on seasonal habitat and sage-grouse movements [22–

24]. While our genetic groups are consistent with some of these boundaries (e.g., MZ1 and

MZ2) our findings suggest less population subdivision than suggested by the boundaries for

MZs 3, 4, or 5 (our Great Basin genetic subpopulation center [Fig 5] spans all three of these

MZs). Differences between the subdivisions described here and in other efforts may lie in the

fact that genetic data measures functional movement: dispersal followed by reproduction,

rather than structural connectivity based on habitat distribution and Euclidean distance. Sev-

eral studies have examined whether sage-grouse males or females disperse farther with con-

flicting results, possibly due to study extent and the number of individuals marked [62, 67–69].

If males disperse farther than females and fail to reproduce, their movements are irrelevant to
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gene flow. As such, our connectivity assessment and characterization of subpopulation centers

may differ from those based purely on habitat characteristics and movement data yet are

important for management. As genetic variation and connectivity are vital for the ability to

cope with current and future environmental stochasticity and anthropogenic alterations,

understanding how genes flow across the landscape is a vital component of sage-grouse

conservation.

Implications for sage-grouse management

Previous studies have highlighted the genetic distinctiveness in the Bi-State and the Washing-

ton populations suggesting that these groups may warrant being managed separately [39, 42],

and we reaffirmed that here. We identified more subtle subdivision across the rest of the range

of sage-grouse that was formerly unknown including a distinct east-west split generally along

the Continental Divide. To a large extent most of our analyses recognized two groups in the

east (Powder River and Great Plains) and at least four in the west (Wyoming Basin, greater

Great Basin, Central Rockies, and Utah), which could be used to help define large scale man-

agement units. The 6 higher-order subpopulation centers of differentiation that resulted from

the first three rounds of SIBP are core areas of differentiation that may be important to protect

to maintain maximum genetic diversity across the range. The 6 finest scale subpopulation cen-

ters, occurring in the fragmented habitat in Utah, are areas with smaller numbers of isolated

sage-grouse that could be monitored to ensure that genetic diversity in those areas is main-

tained or increased and to ensure that connectivity with other subpopulation centers is not

lost. Additionally, the areas outside of subpopulation centers where different genetic groups

converge (e.g., south-central Idaho and southwestern Wyoming) could be priorities for main-

taining overall connectivity, especially where they overlap areas previously identified as impor-

tant to sage-grouse connectivity [26, 27]. The data and analyses presented provide a baseline

for monitoring future changes in sage-grouse connectivity and genetic diversity resulting from

landscape changes.

Conclusion

Increased anthropogenic disturbance and changing climates threaten to further fragment the

habitat of wide-ranging, continuously distributed species. Understanding genetic connectivity

and taking management action to minimize or mitigate those threats to it is essential for the

persistence of such species. In concert, our novel SIBP approach and the process of leveraging

multiple different analyses to find common genetic patterns can provide the comprehensive,

large scale genetic information needed to make effective management decisions.

Supporting information

S1 Appendix.

(DOCX)

S1 Fig. Group-based principal components analysis of Greater Sage-grouse samples from

across the species’ range genotyped at 15 microsatellite loci. Mean principal component

scores were calculated by state/province of origin with the Bi-State (samples along the border

between California (CA) and Nevada (NV)) considered as a separate group from the rest of

the samples collected in CA and NV, and separate from those collected in Canada (CAN_-

SASK), Oregon (OR), Utah (UT), Idaho (ID), Washington (WA), Colorado (CO), Wyoming

(WY), Montana (MT), North Dakota (ND), South Dakota (SD).

(TIF)
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S2 Fig. First (A), second (B), and third (C) principal components (eigenvalues) of the spatial

principal components analysis of Greater sage-grouse across their range derived from analysis

of 15 microsatellite loci. White squares represent negative spatial principal component values,

and black squares represent positive spatial principal component values. Square size represents

the absolute magnitude of the value. The dotted red line represents the Continental Divide.

State names are represented by the following abbreviations California (CA), Colorado (CO),

Idaho (ID), Montana (MT), Nevada (NV), North Dakota (ND), Oregon (OR), South Dakota

(SD), Utah (UT), Washington (WA), and Wyoming (WY).

(TIF)

S3 Fig. Mean and standard deviation of ln Pr(X|K) at each value of K (A) ΔK values for each

successive increase in K (B) STRUCTURE plots at K = 6 (C) and K = 12 (D) for the standard

STRUCTURE analysis of Greater Sage-grouse genotyped across their range using 15 microsat-

ellites. We used the admixture model, correlated allele frequencies, and set the allele frequency

distribution parameter to 1 with a burnin and number of Markov Chain Monte Carlo repeti-

tioins set to 1,000,000. Ten replicates were run for each value of K from 1–30.

(TIF)

S4 Fig. The predominant genetic assignment for each individual Greater Sage-grouse from

STRUCTURE analysis at A) K = 6 and 12) K = 12 based on the maximum posterior proba-

bility. The dotted red line represents the Continental Divide. State names are represented by

the following abbreviations California (CA), Colorado (CO), Idaho (ID), Montana (MT),

Nevada (NV), North Dakota (ND), Oregon (OR), South Dakota (SD), Utah (UT), Washington

(WA), and Wyoming (WY).

(TIF)

S5 Fig. Interpolated maps generated from the spatial iterative bifurcation process (SIBP)

for Greater Sage-grouse. The SIBP involved kriging the posterior probability of population

membership to each of K = 2 clusters following CLUMPP to average across multiple indepen-

dent STRUCTURE runs. Open circles show individuals within the 70% isocline for population

membership to one of the two populations. Figures depict populations: 1 and 2 (A); 1a, 1b, 2a,

2b (B), 1a1, 1a2, 1b1, 1b2 (C), 1b1a, 1b1b, 1b2a, 1b2b (D), 1b2a1, 1b2a2, 1b2b1, 1b2b2 (E),

1b2b1a, 1b2b1b, 1b2b2a, 1b2b2b (F). In naming subpopulations, we switched between the

binary nomenclature of 1|2 and a|b to trace each subpopulation’s origin. For example, the pri-

mary subdivision of all sample was subpopulation 1 and 2. The secondary subdivision was 1a,

1b, 2a, and 2b.

(TIF)

S6 Fig. Summary of the individual Greater Sage-grouse remaining within the 70% isocline

after each successive round of the spatial iterative bifurcation process. After the first round,

two population centers remained ([A] upper left defined by population 1 and 2). After the sec-

ond round, each population was divided into another two subpopulations ([B] top right

defined by pop1a, pop1b, pop2a, and pop2b). Four more rounds of analysis are represented in

order by the [C-F].

(JPG)

S7 Fig. Effective migration rate estimated the entire Greater sage-grouse data set including

Washington and the Bi-state (samples collected along the border between California and

Nevada). Effective migration rates are shown on a log scale where the zero value indicates the

mean effective migration rate, positive values indicate greater than average effective migration

(orange) and negative values indicate those less than average (blue). These maps represent the
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average of models run with a deme count of 500 and 1,000. State names are represented by the

following abbreviations California (CA), Colorado (CO), Idaho (ID), Montana (MT), Nevada

(NV), North Dakota (ND), Oregon (OR), South Dakota (SD), Utah (UT), Washington (WA),

and Wyoming (WY).

(TIF)

S1 Table. Number of Greater Sage-grouse individuals retained from each round of the spa-

tial iterative bifurcation process (SIBP) analysis following STRUCTURE and CLUMPP

analysis for K = 2, kriging, and retaining of those samples contained within the� 0.70 sub-

population cluster membership isoclines (i.e., subpopulation centers). The primary round

of analysis included 2,091 individuals. Subpopulation center nomenclature is shown across the

top row of the table and the round of SIBP analysis is in the first column. After seven rounds

of analysis, no samples remained within� 0.70 population cluster membership kriged iso-

clines.

(XLSX)

S2 Table. θST values (above the diagonal) and Jost’s D values (below the diagonal) among

all pairs of Greater Sage-grouse subpopulation centers as defined by the hierarchical

Bayesian clustering and kriging analysis. The centers are represented by both a number and

a subpopulation center name as defined in Fig 4.

(XLSX)
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