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Activating transcription factor 2 (ATF2) is amember of the leucine zipper family of DNA-binding proteins and is widely distributed
in tissues including the liver, lung, spleen, and kidney. Like c-Jun and c-Fos, ATF2 responds to stress-related stimuli andmay thereby
influence cell proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and skeletal remodeling.
Recent studies clarify the regulatory role of ATF2 in inflammation and describe potential inhibitors of this protein. In this paper,
we summarize the properties and functions of ATF2 and explore potential applications of ATF2 inhibitors as tools for research and
for the development of immunosuppressive and anti-inflammatory drugs.

1. Introduction

Inflammation functions as a subcomponent of the immune
response, which is a system of cells and tissues that evolved to
maintain the boundaries between specialized cell populations
and tissues ofmulticellular organisms. Immunity and inflam-
mation block invasion bymicrobial pathogens and contribute
to an organism’s response to stress. Pathological effects may
result from a prolonged or abnormal inflammatory response,
as in asthma and autoimmunity [1, 2]. Locally, inflammation
evokes redness, swelling, heat, and pain, as sensitized cells
attack the foreign cells with soluble mediators (cytokines)
and/or engulf the stress-inducing agent. Systemic signs of
inflammation include fever and increasing numbers of bone
marrow- and thymus-derived white blood cells, such as
macrophages and lymphocytes [3, 4]. The local vascular
component of inflammation forms a critical link with the
systemic immune defense or stress response. In the process of
inflammation,molecularmediatorsmay directly and/or indi-
rectly injure normal cells and tissues [5, 6]. Although tissue

congestion and exudates may dilute and degrade cytotoxic
factors, the underlying stromal cells gradually regenerate to
repair and heal damaged tissues. The inflammatory response
may therefore be described as a dynamic process of demoli-
tion and repair.

Inflammation is categorized into acute and chronic inf-
lammation based on duration. Acute inflammation, with
redness, swelling, and pain, is a short-term process that
reflects the vascular component. In chronic inflammation,
such as autoimmune disease and tuberculosis, soluble medi-
ators persist at lower levels than in acute inflammation but
for longer periods; cells chiefly involved include lymphocytes,
plasma cells, and macrophages. The macrophages are differ-
entiated frommononuclear precursors through the influence
of specific factors, such as granulocyte-macrophage colony-
stimulating factor (GM-CSF), and nonspecific agents, such as
phorbol-12-myristate-13-acetate (PMA). Macrophages par-
ticipate in both innate and adaptive immune processes.
Phenotypically, macrophages and monocytes are phagocytic
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white blood cells [7], which are able to recognize, engulf,
and digest cellular debris and pathogens [8]. Macrophages
interact with the environment through a diverse array of
receptors expressed at the plasma membrane [9–11]. When
macrophages bind to and recognize a microorganism, abnor-
mal cell, or immunogenic chemical, they undergo a complex
phenotypic transformation that leads to recruitment and
activation of other cell types involved in innate or acquired
immunity [12]. Depending on the stimulus and the cells
recruited, different compartments of the immune systemmay
be drawn into the defense [13].

Activating transcription factor 2 (ATF2) is a transcription
factor of the leucine zipper family of DNA-binding proteins,
discovered in 1991 by Ozawa et al. [46] and located on
human chromosome 2q32. The ATF2 protein consists of 505
amino acids, with phosphorylation sites near the C-terminus
at serine residues 472 and 480 in the mouse protein and
serines 490 and 498 in the human protein. In response
to double-stranded DNA breaks, the ataxia telangiectasia-
mutant (ATM) protein kinase activates ATF2 [47]. The ATF
family of proteins includes six subtypes based on sequence
similarity [48]. ATF proteins play critical roles in cell prolif-
eration, apoptosis, inflammation, and cancer.

In this study, we describe the general properties of
ATF2, with particular emphasis on its role in inflammation.
In addition, we review recently identified ATF2 inhibitors,
including naturally occurring compounds, plant extracts, and
gene expression inhibitors, which have potential applications
in the treatment of inflammatory diseases.

2. General Features of ATF Family Proteins

2.1. ATF Family Proteins. The ATF/CREB family consists of
six subtypes based on sequence similarity, including CREB,
CRE-BP1 (ATF2), ATF3, ATF4, ATF6, and B-ATF [49].
These all share the common bZIP element, through which
they dimerize and bind to the palindromic cAMP response
element (CRE) octanucleotide TGACGTCA in DNA [49].
The N-terminal domains of ATF proteins show divergence,
but the C-terminal leucine zipper for dimerization and DNA
binding is well conserved. The ATF2 group, which was
originally designated CRE-BP1, contains ATF2, CRE-BP𝛼,
and ATF7 (also known as ATF𝛼) (Figure 1). Close sequence
similarity sets these proteins apart as a subgroup, which is
distinguished by the metal finger structure and the leucine
zipper structure in the NH

2
- and COOH-terminal regions;

these motifs are essential for transactivation [34, 50–52].
However, despite strong sequence similarity, the ATF2 pro-
teins differ in function, phosphorylation sites, and expression
patterns [50]. CRE-BP1 is detected in most cells and tissues
but is especially abundant in brain and regenerating liver
[50, 53]. CRE-BP𝛼 is detected in a limited number of cell
lines and tissues, including HeLa cells and the placenta [50].
ATF𝛼 is ubiquitously expressed in fetal and adult mice,
with high expression in squamous epithelia and brain tissue
[54]. The ATF2 protein resides as a homodimer in the
cytoplasm but is retained as a heterodimer with Jun in the
nucleus [55]. Normally, ATF2 localizes in the cytoplasm at

the mitochondrial outer membrane [56]. The characteristics
of ATF family proteins are summarized in Table 1.

2.2. ATF2 Activation Signaling Pathways. Hormones are
essential for the maintenance of regenerative tissues. They
include the endocrine hormones, which circulate system-
ically, and a diverse population of growth factors, which
are locally active proteins produced by specific cell types.
The growth factor proteins may be further characterized as
paracrine factors, which act between cells, and autocrine
factors, which act within the cells that produce them. The
endocrine hormones include both proteins and steroids,
which are distinguished by the mode of signal transduction
engaged. Steroid hormones such as estrogen pass through the
cell membrane, bind to specific cytoplasmic receptors, and
travel to the nucleus to interact directly with target genes.
Protein hormones such as insulin and epidermal growth
factor (EGF) bind to extracellular membrane receptors,
triggering an intracellular cascade of enzymatic signaling
reactions leading to changes in nuclear gene expression.
Proinflammatory signaling may be activated specifically by
hormonal and cellular mechanisms. Nonspecific substances
such as allergens, antigens, and irritating substances can also
activate proinflammatory signaling. After such stimulation,
ATF2 may be activated by two alternative Ras-coupled path-
ways [57]. Through the Raf-MEK-ERK pathway, threonine
71 of ATF2 is phosphorylated. Through the Ral-RalGDS-
Src-p38 pathway, Thr69 is phosphorylated (Figure 2). In
growth factor-activated cells, p38 and JNK mediation of
phosphorylation atThr71 orThr69+71 cannot account for the
level of ATF2 activation observed, nor can ERK-mediated
phosphorylation of Thr69+71 alone activate ATF2 efficiently
[57].

Many environmental stressors, including ultraviolet light,
heat shock, osmotic stress, and oxidative stress, may activate
ATF2, usually through stress sensors linked to downstream
target proteins in the Rac/cdc42 pathway. Through this
pathway, the MEKKs/MLKs-SEK/MKKs-JNK/p38 pathway
may be activated, leading to ATF2 phosphorylation at Thr69
and Thr71 sites without involvement of ERK [49, 58–64]
(Figure 2).

3. Functional Involvement of
ATF2 in Inflammation

ATF proteins are widely investigated as procarcinogenic
factors in tumors of the prostate, breast, liver, and lung, as
well as in leukemia [49]. Specific roles for these proteins in
inflammatory diseases are also emerging. For example, ATF1
is involved in wound healing and gingival inflammation [65].
ATF3 attenuates transcription of the proinflammatory gene
MCP-1 in renal ischemia-reperfusion injury [14] and may
significantly influence inflammatory processes in the central
nervous system (CNS) that are related to the frequency
of epileptic seizures [66]. Recent evidence suggests a role
for ATF2 in inflammation. Reports have demonstrated that
ATF2 is highly expressed in infiltrating macrophages and
may suppress ATF3 transcription in M1 macrophages of
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Figure 1: Characteristics of ATF proteins. ATF: activating transcription factor; LZ: leucine zipper; NBD: nucleotide-binding domain.

Table 1: ATF family members and their functions in immune responses.

Molecule Distribution (tissue/cell) Functions Reference

ATF1 (i) Ubiquitous, high in thyroid
(ii) Nucleus Regulation of malignant melanoma [14]

ATF2 (i) Ubiquitous
(ii) Nucleus and cytoplasm See Sections 2, 3, and 4

ATF3
(i) Ubiquitous (i) Inhibition of MCP-1, HMGB1, and CCL4 [14, 15]

(ii) High in placenta, pancreas, and lung (ii) Regulation of cerebral ischemia, glial
inflammation, kidney, and lung injury [16–21]

(iii) Nucleus (iii) Pancreatic 𝛽-cells signaling, SFA/TLR4 signaling [22, 23]

ATF4 (i) Ubiquitous
(ii) Nucleus

Regulation of retinal inflammation and cytokine
production in diabetes; involvement of complex
formation to PKA promoter; regulation of IL-8
expression; involvement in Nrf2-ARE signaling

[24–27]

ATF5

(i) Ubiquitous
(ii) High in liver, lung, adipose tissue,
heart, and skeletal muscle
(iii) Nucleus and cytoplasm

(i) Regulation of GR signaling pathway
(ii) Involvement in various cancers

[28]
[29]

ATF6
(i) Liver, serum, plasma, platelets, and
cancer cells (i) Involvement in AKT-NF-𝜅B activation signaling [30]

(ii) Nucleus (ii) Induction of UPR in CF [31]

ATF7
(i) Liver, plasma, platelets, and cancer
tissues

(i) Involvement in vitamin D response in Paget’s
disease [32]

(ii) Nucleus and cytoplasm (ii) Repressor of E-selectin/NF-ELAM1/delta-A
promoter [33]

CRE-BP𝛼
(CREB5)

(i) Liver, plasma, and platelet
(ii) HEK293 Involvement in adipocyte differentiation [34]

MCP-1: monocyte chemotactic protein-1, HMGB1: high mobility group box-1 protein, CCL4: macrophage inflammatory protein-1 beta, SFA: saturated fact
acid, TLR4: toll-like receptor 4, CF: Cystic fibrosis, UPR: unfolded protein response, GR: glucocorticoid receptor.

white adipose tissues in obesity [67]. ATF3 may be a nuclear
mediator of inflammatory pain that is induced through
the p38-mitogen-activated protein kinase (MAPK) signaling
pathway [68]. ATF2 is observed as a serological marker for
inflammation and lung involvement in systemic sclerosis

(SSc) [69]. In LPS-induced hepatitis and HCl/EtOH-induced
gastritis, we recently observed significant activation of ATF2
(unpublished data), suggesting that ATF2 participates in
these inflammatory processes [35]. Furthermore, the death
rate of ATF2-mutant mice was much higher than that of
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Figure 2: ATF-2-regulated signaling pathways in inflammatory response.

the control group when treated with LPS and D-gala-
ctosamine, implying thatATF2may play a critical role in LPS-
induced toxicity [70].

3.1. ATF2-Activated Proinflammatory Genes. Activated ATF2
complexes stimulate the transcription of various genes
implicated in inflammation such as cell adhesion molecules
(CAMs), proinflammatory cytokines, and chemokines.
CAMs expressed on cell surfaces engage in binding with
other cells or with the extracellular matrix (ECM). CAM
proteins include the integrins, cadherins, and selectins
(E-selectin, P-selectin, and L-selectin). Selectins participate
in the initial recruitment of leukocytes to the site of
injury during inflammation. VCAM-1 may influence the
development of atherosclerosis and rheumatoid arthritis.
In ATF2-deficient mice, the induction of E-selectin,
P-selectin, and VCAM-1 in lung and kidney following
lipopolysaccharide injection was significantly reduced when
compared to control mice; in addition, responses to pro-
inflammatory and infectious challenges were delayed or
suppressed [70].

Cells that orchestrate an immune response produce an
array of soluble protein factors, or cytokines, to immobilize,
kill, sequester, or eliminate invasive cells and microorgan-
isms. Systemic effects of this response include fever, tissue

destruction, septic shock, and death [71]. The proinflam-
matory cytokine TNF-𝛼, produced mainly by macrophages,
lymphoid cells, mast cells, and adipose tissue, causes a variety
of clinical inflammatory disorders such as rheumatoid arthri-
tis, psoriasis, refractory asthma, and inflammatory bowel
disease. In ATF2 knockout mice, TNF-𝛼 expression was
significantly inhibited. In addition, interleukin- (IL-) 1𝛽 and
IL-6 were also dramatically suppressed in ATF2-deficient
mice [70].

The soluble factor keratinocyte chemoattractants are
the most highly inducible chemokines produced by IL-1
and TNF-𝛼. They are involved in chemotaxis, cell-mediated
activation of neutrophils, and the neutrophil inflammatory
responses. Interestingly, in ATF2-deficient mice, the expres-
sion of keratinocyte chemoattractants was clearly suppressed
[70]. Furthermore, a regulatory role for ATF2 in rennin
expression has been also reported [72].

3.2. Signaling Pathways for ATF2 Activation in Inflamma-
tion. Pattern recognition receptor proteins (PRRs) enable
mammalian cells and organisms to recognize invading
microorganisms and abnormal or injured cells. The toll-like
receptors (TLRs) play an especially important role in the
innate immune response by recognizing surface patterns on
microbial invaders [73]. Eleven TLR-family proteins have
been identified to date [4]. Activation of TLR signaling
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may be initiated at intracytoplasmic TIR domains, which
are conserved among all TLRs. TIR domain-containing
adaptor proteins include MyD88, TIRAP, and TRIF. The
induction of inflammatory cytokines requires MyD88. In
response to specific ligands, MyD88 recruits IL-1 receptor-
associated kinase-4 (IRAK4) to the TLRs by interacting with
the death domains of both molecules. IRAK-1 is activated
by phosphorylation and associates with TRAF6, activating
the IKK complex and MAP kinases (JNK, p38, and ERK)
[74–77]. ATF2 is maintained in a transcriptionally inactive
form through intramolecular interactions between its own
activation domain and its bZIP domain [49, 78]. In response
to activated upstream signaling factors p38 and JNK, ATF2
is phosphorylated at amino acidsThr69 andThr71. Phospho-
rylated ATF2 may then form homodimers or heterodimers
with othermembers of theATF/CREB family and the Fos/Jun
family [49, 79] (Figure 2).

3.3. The Role of ATF2 in Inflammation-Derived Disease. In
vitro studies in human and mouse cell lines as well as
knockout mice reveal the activation of ATF2 in several
inflammatory diseases including obesity, hepatitis, inflamma-
tory pain, and allergic asthma [80, 81].

3.3.1. Obesity. The white adipose tissue (WAT) that accumu-
lates in obesity displays multiple markers of inflammation,
with progressive infiltration by macrophages and generation
of reactive oxygen species (ROS). Some evidence links these
markers to insulin resistance and adipokine dysregulation
[67]. In genetically obese (ob/ob) mice, both total and
phosphorylated ATF2 are highly expressed in macrophages
infiltrating the WAT. In RAW264.7 macrophages, ATF2
activation may be induced by treatment with either H

2
O
2

or LPS [67]. In ATF2-mutant mice, WAT is significantly
less abundant than in the wild-type mouse [34]. Treatment
of mice with inhibitors of p38-ATF2 signaling suppresses
adipocyte differentiation and WAT accumulation. In addi-
tion, it may counteract high-fat diet (HFD) induced obesity,
insulin resistance, macrophage infiltration into WAT, and
the associated increase in TNF-𝛼 expression [34]. Evidence
for p38-linked ATF2 signaling as a regulatory component
in obesity-related inflammation may lend insight into the
pathological effects of overnutrition.

3.3.2. Hepatitis. The most common etiology of liver inflam-
mation in industrialized countries is infection with type A,
B, or C viral hepatitis. Globally, about 250 million people are
estimated to be infectedwith hepatitis C, and 300millionmay
be infected with hepatitis B [82]. Overdose of alcohol and
certain drugs may cause hepatitis and intensify the effects of
viral infection on liver function.There are conflicting findings
on the involvement of ATF2 in hepatic inflammation. On
the one hand, ATF2 is reported to suppress activity at the
hepatitis B virus X promoter through competition for the
activating protein 1 binding site and through formation of
a ATF2-Jun heterodimer [83]. However, signaling through
the PKA-CREB/ATF2 pathway is reported to activate and

maintain transcriptional activity at the hepatitis B virus pre-
S2/S promoter [24]. We found that, in mice with hepatitis
induced by treatment for 7 days with D-gal/LPS, levels
of activated ATF2 were significantly higher than in the
control group [35]. During treatment with ATF2 inhibitors,
symptoms of hepatitis in the mice regressed in parallel with
a decline in activated ATF2 [35]. In addition, knockdown
of both ATF2 and ATF7 induces severe abnormalities in
the developing liver and heart, resulting in embryonic death
in mice [84]. These findings strongly suggest the clues to
potential roles of ATF2 in liver inflammation.

3.3.3. Inflammatory Pain. In rats injected with complete
Freund’s adjuvant (CFA) to induce chronic inflammatory
pain, we observed cells expressing phospho-ATF2-IR accu-
mulating in the spinal dorsal horn. The level of p-ATF2
protein was shown to increase during the 14-day period after
injection [68]. Following treatment with electroacupuncture
(EA), a Chinese medical therapy for treating inflammatory
pain, the ankle swelling observed in the CFA rats declined,
in parallel with a decline in p-ATF2-IR-expressing cells and
protein levels. These observations suggest an active role for
ATF2 in regulating inflammatory pain.

3.3.4. Allergic Asthma. Inflammation in allergen-induced
asthma is mediated in part by release of eicosanoids [85],
bioactive lipids with both anti- and proinflammatory actions
in pulmonary tissues. In a mouse model of allergic asthma,
Aspergillus fumigatus induces cPLA2𝛾 (IVC PLA2 (phos-
pholipase A2)) secretion in eosinophils and TNF-𝛼 expres-
sion in lung epithelial cells through macrophage activation.
Underlying these effects is the recruitment of the ATF2/JUN,
RELA/RELA (p65/p65), and USF1/USF2 complexes to the
PLA2G4C enhancer in lung epithelial cells in response to
TNF stimulation [85]. In addition, ATF2 may be an active
component in autoimmune disease, vascular homeostasis,
and angiogenesis [86, 87]. In Alzheimer’s, Parkinson’s, and
Huntington’s diseases, ATF2 is downregulated in the hip-
pocampus and caudate nucleus [88], implying that ATF2may
be essential for neuronal viability and normal neurological
function.

4. Inhibition of ATF2 and Its Applications

ATF2’s role in the regulation of inflammatory mediators and
diseases makes it an attractive drug target. To target the ATF2
protein in the development of new anti-inflammatory thera-
pies requires ATF2 inhibitors of high potency and specificity.
Candidate compounds applied thus far have failed tests for
safety, effectiveness, and other essential characteristics.

4.1. Natural Compounds. Selected compounds that sup-
press ATF2 activity are presented in Table 2. Bichanin-A,
an isoflavone, shows anti-inflammatory and antiprolifer-
ative potential through inhibition of ATF2 phosphoryla-
tion [37]. Pimaric acid from Aralia cordata downregulates
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Table 2: Natural products which inhibit ATF-2 signaling pathway.

Compound Action target on ATF-2 Reference

Andrographolide
Suppressed NO and PGE2 production and
ameliorated the symptoms of LPS-induced
hepatitis and EtOH/HCl-induced gastritis in mice

[35]

SB203580 Inhibition of the inflammatory cytokines IL-1𝛽
and TNF-𝛼 [36]

JIP-1 Enhances phagocytic activity, downregulation of
TNF-𝛼, IL-1𝛽, IL-6, IFN-𝛾, IL-12, and IL-18 [36]

LY294002 Inhibition of proinflammatory cytokines NO and
TNF-𝛼 [36]

Biochanin-A Inhibition of IL-6, IL-1𝛽, and TNF-𝛼 production
in RAW264.7 cells [37]

Pimaric acid Suppression of MMP-9 induction and migration
of human aortic smooth muscle cells [38]

Nomilin Inhibition of proinflammatory cytokine
production [39]

Berberine Attenuation of COX-2 overexpression during
acute endotoxemia [40]

Genistein Inhibition of infection of cells with the New
World arenavirus Pichindé (PICV) [41]

Piperine Reduction of proinflammatory cytokines: IL-1𝛽,
IL-6, TNF-𝛼, GM-CSF, and MMPs [42]

Table 3: Traditional herbs which inhibit the ATF-2 signaling pathway.

Plant Action target on ATF-2 Reference

Schizonepeta tenuifolia Reduction of LPS-induced serum levels of TNF-𝛼
after oral injection of mice [43]

HangAmDan-B
Suppresses the production of PGE2 and NO in
macrophages and ameliorates HCl/EtOH-induced
gastritis

[44]

Jianpi Jiedu Recipe Inhibition of COX-2 expression in Helicobacter
pylori infected gastric cancer cells [45]

NF-𝜅B and AP-1, leading to inhibition of ATF2 phos-
phorylation. This inhibits TNF-𝛼-induced MMP-9 expres-
sion and the migration of human aortic smooth mus-
cle cells (HASMCs) [38]. Nomilin, a triterpenoid present
in citrus fruits, inhibits proinflammatory cytokine expres-
sion and gene expression by inhibiting ATF2 activity [39].
Piperine significantly inhibits expression of the proinflam-
matory mediators IL-1𝛽, IL-6, TNF-𝛼, GM-CSF, and IL-
12P40 and also suppresses matrix metalloproteinase produc-
tion [42]. The p38 kinase-specific inhibitor SB203580, the
phosphatidylinositol-3-kinase-specific inhibitor LY294002,
and the SAPK/JNK inhibitor JNK-interacting protein-1 (JIP-
1) all inhibit ATF2 phosphorylation mediated by hepatocyte
growth factor/scatter factor (HGF/SF) [36].

4.2. Traditional Herbs. Several traditional herbs may exert
anti-inflammatory activities through inhibition of ATF2.
Schizonepeta tenuifolia significantly suppresses LPS-induced
serum levels of TNF-alpha in mice after oral adminis-
tration, which is consistent with findings in vitro [43].

HangAmDan-B (HAD-B), a powderedmixture characterized
as a folk medicine, suppresses prostaglandin E

2
(PGE
2
)

and NO production in LPS-activated macrophages. It also
attenuates HCl/EtOH-induced gastritis symptoms through
inhibition of JNK-ATF2 signaling [44]. Some formulations
of HangAmDan-B have been applied in clinical trials. Jianpi
Jiedu Recipe consists of a mixture of herbs, including
Codonopsis pilosula,Poria cocos, Radices paeoniae alba, Radix
bupleuri, and four others. Jianpi Jiedu Recipe is reported to
reduce cyclooxygenase (COX-2) expression in a Helicobacter
pylori (Hp) infected gastric cancer cell line, MKN45, through
suppression of p38-ATF2 signaling [45]. Selected traditional
herbs that inhibit ATF2 activities are presented in Table 3.

4.3. Gene Regulatory Factors That Inhibit ATF2 Activity.
Protein factors that modulate ATF2 activity are therapeu-
tically applicable and may be important for revealing the
regulatory networks that involve proteins in this family.
Krüppel-like factor 2 (KLF2), a member of the Krüppel-
like factor family of zinc finger transcription factors, may
exert anti-inflammatory activity through ATF2 inhibition in
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the nucleus [89]. Bone morphogenetic protein- (BMP-) 7
may inhibit phosphorylation of endogenous ATF2 at high
doses (10 nM) [90]. PGE

2
suppresses IL-17-induced ATF2/c-

Jun transactivation andDNAbinding, which is dependent on
Erg-1-mediated inhibition of c-Jun expression [91].

4.4. Clinical Trials of ATF2 Inhibitors. Unfortunately, there
are no reported clinical trials of ATF2 inhibitors. However,
as inhibition of ATF2 activity does not appear to harm
normal cells, systemic administration of the active agent is
acceptable. Given the increasing evidence for the role of ATF2
in inflammation, clinical therapy with its specific inhibitors
could be applied to treat human inflammatory diseases soon.

5. Summary and Perspective

Expanding data on ATF2 as a proinflammatory regulatory
protein prompts us to investigate ATF2 as a molecular target
in treating inflammatory disease. In particular, the strong
influence of ATF2 in hepatitis virus infection is important
for prevention and control of hepatitis, as well as the devel-
opment of therapeutic targets. Specific inhibitors may be
designed and synthesized based on structural and functional
properties of ATF2. Meanwhile, natural compounds and
herbal substances shown to inhibit ATF2 invite systematic
study as safe and specific anti-inflammatory agents. However,
their clinical utility and therapeutic index in humans have
yet to be determined. The identification of newer classes of
compounds with greater specificity and few side effects may
augment treatments for human inflammatory diseases.
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