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ABSTRACT

Four myogenic regulatory factors (MRFs); MyoD,
Myf-5, MRF4 and Myogenin direct muscle tissue
differentiation. Heterodimers of MRFs with E-pro-
teins activate muscle-specific gene expression by
binding to E-box motifs d(CANNTG) in their promo-
ters or enhancers. We showed previously that in
contrast to the favored binding of E-box by MyoD-
E47 heterodimers, homodimeric MyoD associated
preferentially with quadruplex structures of regula-
tory sequences of muscle-specific genes. To inquire
whether other MRFs shared the DNA binding
preferences of MyoD, the DNA affinities of hetero-
and homo-dimeric MyoD, MRF4 and Myogenin were
compared. Similarly to MyoD, heterodimers with E47
of MRF4 or Myogenin bound E-box more tightly than
quadruplex DNA. However, unlike homodimeric
MyoD or MRF4, Myogenin homodimers associated
weakly and nonpreferentially with quadruplex DNA.
By reciprocally switching basic regions between
MyoD and Myogenin we demonstrated dominance
of MyoD in determining the quadruplex DNA-binding
affinity. Thus, Myogenin with an implanted MyoD
basic region bound quadruplex DNA nearly as tightly
as MyoD. However, a grafted Myogenin basic region
did not diminish the high affinity of homodimeric
MyoD for quadruplex DNA. We speculate that the
dissimilar interaction of MyoD and Myogenin with
tetrahelical domains in muscle gene promoters may
differently regulate their myogenic activities.

INTRODUCTION

Skeletal muscle develops from pluripotent mesodermal
stem cells by multiple consecutive steps. In an initial

determination phase, external signals emanating from
neighboring cells induce mesodermal cells to differentiate
into dividing myoblasts that become committed to the
myogeneic lineage. In subsequent differentiation stages,
additional external signals induce the myoblasts to
differentiate into nondividing myocytes that ultimately
fuse to form syncitial myotubes (1,2). The development of
muscle tissue is directed by four myogenic regulatory
factors (MRFs); MyoD, Myf-5, MRF4 and Myogenin
(Myf4) that comprise a sub-group within the basic helix–
loop–helix (bHLH) superfamily of proteins (3). MRFs act
as master transcription factors that induce the expression
of a wide array of muscle-specific genes (4). Conversion of
mesenchymal cells into dividing myoblasts during the
initial determination step is directed by three primary
MRFs; MyoD, Myf5 and MRF4 (5,6). Progression from
myoblasts to nondividing myocytes and then to myotubes
during the subsequent differentiation stage is mediated by
Myogenin together with MRF4 (7–10). The different
members of the MRF family appear to have distinct but
overlapping roles in that each protein induces the
expression of different but partially overlapping sets of
muscle-specific proteins (11).

The HLH segment of the bHLH domain in MRFs
mediates their dimerization, whereas the basic region
serves as a DNA-binding site (12). Each MRF either
forms homodimers or generates heterodimers by associat-
ing with Class I bHLH E-proteins; E12, E47 or E2-2/ITF2
(3,12,13,). Studies of muscle cell differentiation in culture
revealed that transcription of muscle-specific genes is
activated by the binding of MyoD–E protein heterodimers
to conserved E-box, d(CANNTG), motifs in the promoter
or enhancer regions of the genes. Such heterodimers bind
E-box significantly more tightly than MyoD homodimers
(13–15). E-box elements are highly abundant in regulatory
regions of a large number of both muscle-specific and
nonmuscle genes. However, while MRF heterodimers
selectively induce transcription of muscle-specific genes,
they do not affect the expression of E-box regulated
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nonmuscle genes. Multiple factors appear to contribute to
this specificity of gene activation. One factor is the
presence in the bHLH region of MRFs, but not of other
bHLH proteins, of three amino acids Ala, Thr and Lys
(residues 114, 115 and 124 in the prototypical MyoD)
(12,16–18). Other attributes are the identity of the two
variable residues d(CANNTG) within E-box (19), the
effects of cis-acting suppressor elements (20) and the
interaction of MRFs with additional transcription factors.

As conjectured by Larsen and Weintraub (21), the
activity of transcription factors may also be regulated by
their differential interaction with noncanonical DNA
structures. In line with this proposal, quadruplex struc-
tures in promoter or upstream sequences were implicated
in the negative or positive regulation of the expression of
genes such as those that encode insulin (22–25), c-MYC
(26–28), c-kit (29,30), bcl-2 (31), VEGF (32) and PDF-A
(33). Correspondingly, some transcription factors were
found to interact specifically with tetraplex formations of
gene regulatory regions (15,25). That homodimeric MyoD
may preferentially recognize quadruplex structure in DNA
was initially indicated by the finding that it formed weaker
complexes with E-box than with tetrahelical structures of
a guanine-rich mouse creatine kinase enhancer sequence
or of Tetrahymena telomeric DNA (34). Promoter and
enhancer regions of several muscle-specific genes were
later found to contain a disproportional high frequency of
clusters of contiguous guanine residues that readily
formed hairpin and parallel-stranded G04 unimolecular
and G02 bimolecular quadruplex structures (35). Sub-
sequently, MyoD homodimers were shown to bind
bimolecular tetraplex formations of the muscle-specific
regulatory sequences significantly more tightly than
double-stranded E-box (15). Since these sequences are
present as single copies in the genome, they cannot
associate in vivo to form G02 structures. However, a
bimolecular-like quadruplex was also generated by the
association of hairpin structures of two neighboring
guanine-rich sequences in the integrin promoter region
(35). This more physiologically relevant tetraplex structure
was also bound by MyoD more tightly than E-box (15). In
contrast, MyoD–E47 heterodimers bound E-box more
tightly than G02 tetraplex DNA structures. Additional
investigation revealed that the MyoD basic region served
as the binding site for E-box as well as quadruplex DNA.
However, whereas complex formation with E-box
required integrity of the complete basic domain, MyoD
whose basic region was largely deleted except for a single
remaining cluster of three basic amino acids, maintained
its capacity to bind quadruplex DNA (36).

In this work, we inquired whether or not the differential
affinities of MyoD homo- and hetero-dimers for E-box
and quadruplex DNA were shared by other MRFs. We
report that similarly to MyoD, homodimeric MRF4
associated more tightly with quadruplex than with E-box
DNA and that its heterodimers with E47 protein bound
E-box more strongly than tetraplex DNA. Distinctly,
whereas Myogenin-E47 heterodimers behaved like hetero-
dimeric MyoD and MRF4 by preferentially binding
E-box, unlike homodimeric MyoD and MRF4,
Myogenin homodimers bound tetraplex DNA weakly

and nonpreferentially. By reciprocally exchanging com-
plete basic regions between homodimers of MyoD and
Myogenin, we showed that MyoD dominantly dictated
high affinity for quadruplex DNA. The distinct affinities
of homodimeric MyoD and MRF4 on one hand and of
Myogenin on the other for tetrahelical structures
of regulatory sequences of muscle-specific genes may
contribute to their differently modulated activities during
myogenesis.

MATERIALS AND METHODS

Hairpin, double-stranded and monomolecular
and bimolecular quadruplex DNA structures

Nucleotide sequences of synthetic DNA oligomers (prod-
ucts of Sigma/Genosys Rehovot, Israel) represented
guanine-rich segments of promoter regions of the a7
integrin and sarcomeric mitochondrial creatine kinase
(sMtCK) genes (35), included the core E-box DNA
sequence or encoded the basic regions of MyoD or
Myogenin (Table 1). Following purification of the single-
stranded oligonucleotides by denaturing gel electrophoresis
in 8.0M urea, 12% polyacrylamide (acryl/bisacrylamide,
19:1) (37), their 50 ends were labeled by 32P in bacteriophage
T4 polynucleotide kinase (PNK)-catalyzed reaction (38).
Hairpin, monomolecular and bimolecular tetraplex struc-
tures of the integrin and sMtCK DNA oligomers were
formed as we described (35). E-box or basic region
encoding DNA duplexes were prepared by annealing
under described conditions (39) equimolar amounts of 50

and 30 complementary oligomers.

Preparation, purification and expression of full-length
and mutant recombinantMyoD,MRF4 andMyogenin

Plasmids harboring cDNA that encoded full-length unmo-
dified member proteins of the MRF family were: pGEX-
6P-MyoD (Mus musculus) (15); pGEX-MRF4 (Rattus
norvegicus) (gift of Dr P. Muñoz-Cánoves, Center for
Genomic Regulation, Barcelona, Spain); pEMSV-
Myogenin (Rattus norvegicus) (contributed by
Dr S.J. Tapscott, FHCRC, Seattle, WA, USA) was sub-
cloned into a pGEX-6P vector. The pGEX4T1-E47
harboring cDNA that encoded full-length Mus musculus
E47 protein was a gift of Dr A. Cano (CSIC-UAM,
Madrid, Spain).
To create mutant Myogenin with basic amino acid

clusters identical to those of MyoD and MRF4, an R84K
mutation was introduced by PCR into the second triad
using the 50 and 30 primers; 50-d(GTCTGTGGACCGGC
GGAAGGCAGCCCACACTGAGGG)-30 and 50-d(CCC
TCAGTGTGGGCTGCCTTCCGCCGGTCCACAGA
C)-30, respectively, and full-length pGEX-6P-Myogenin
cDNA template. Following verification of the mutation by
sequencing, an additional K91R mutation was introduced
by PCR into the third triad using a pGEX-6P-myogenin
R84K cDNA template and the respective 50 and 30

primers; 50-d(GCCACACTGAGGGAGAGGCGCAG
GCTCAAGAAAG)-30 and 50(CTTTCTTGAG CCTG
CGCCTCTCCCTCAGTGTGGC)-30.
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To construct chimerical MyoD, which had its native
basic region replaced by a Myogenin basic region
(MyoD/Myogeninb), SphI and BsmI cleavage sites were
generated at positions 99 and 126, respectively, upstream
and downstream to the MyoD basic region (residues
102–121). A BsmI restriction site was formed by PCR as
we described (36) using as template GST-fused full-length
MyoD cDNA in pGEX-6P and the 50 and 30 primers;
50-d(GCAAAGTGAATGAGGCATTCGAGACGCTCA
AGC)-30 and 50-d(GCTTGAGCGTCTCGAATGCCTCA
TTCACTTTGC)-30, respectively. Presence of the BsmI
restriction site was verified by sequencing and the mutated
cDNA was used as template to generate by PCR a SphI
restriction site using the respective 50 and 30 primers;
50-d(CTGCTTGCTGTGGGCATGCAAGGCGTGCAA
G)-30 and 50-d(CTTGCACGCCTTGCATGCCCACAGC
AAGCAG)-30. The doubly mutated MyoD DNA was cut
by SphI, treated with calf intestinal phosphatase (CIP),
cleaved by BsmI, resolved by gel agarose electrophoresis
and isolated. Myogenin basic region 50 and 30 oligomers
(Table 1) that were annealed and phosphorylated at their
50-termini by PNK were ligated into the restricted MyoD
cDNA. The insert had at its ends SphI and BsmI
complementary sites and 50 and 30 sequences that encoded
MyoD residues 99–101 and 122–126, respectively whereas
its core encoded the Myogenin basic region (residues
74–93). Reciprocal chimerical Myogenin that contained a
MyoD basic region (Myogenin/MyoDb) was prepared as
follows: GST-fused full-lengthMyogenin cDNA in pGEX-
6P vector served as a template into which a BsmI restriction
site was introduced by PCR using the 50 and 30 primers;
50-d(GAAAGTGAATGAGGCATTCGAGGCTCTGAA
GAGAAGC)-30 and 50-d(GCTTCTCTTCAGAGCCTC
GAATGCCTCATTCACTTTC)-30, respectively. To have
the generated BsmI site as a single a BsmI restriction
sequence in the Myogenin cDNA, PCR was employed to
eliminate a native site at position 486 by using the
respective 50 and 30 primers; 50-d(CCCAGTGAATGT
AACTCCCACAGCGCCTCC)-30 and 50-d(GGAGGCG
CTGTGGGAGTTACATTCACTGGG)-30 and the mod-
ifiedMyogenin cDNA template. A SphI restriction site was
introduced into the mutated Myogenin cDNA template by

PCR using the respective 50 and 30 primers; 50-d(CAGTGC
CTGCCCTGGGCATGCAAGGTGTGTAAGAG)-30

and 50-d(CTCTTACACACCTTGCATGCCCAGGGCA
GGCACTG)-30. Restriction and isolation of linear Myo-
genin DNA was conducted as described for MyoD DNA.
MyoD basic region 50 and 30 oligomers (Table 1) were
annealed, phosphorylated and ligated into the restricted
Myogenin DNA as detailed above. The insert had at its
ends SphI and BsmI complementary sites and 50 and 30

sequences that encoded Myogenin residues 71–73 and
94–98, respectively, whereas its core encoded the MyoD
basic region (residues 102–121).

Recombinant unmodified or mutant proteins were
expressed and purified as follows: pGEX-6P plasmids
harboring the respective cDNA sequences were electro-
porated into competentEscherichia coli BL21 (DE3)pLysS
cells that were grown in LB medium containing ampicillin
and chloramphenicol to an A600 of �0.6. Synthesis of the
GST-fused proteins was induced by exposure to 100 mM
IPTG for 3 h. Purification of the recombinant proteins
from the bacterial cell extracts to >95% homogeneity was
attained by glutathione-agarose (Sigma) affinity column
chromatography. The GST residue was cleaved from the
MyoD or Myogenin fusion proteins by incubating 100 mg
protein at 48C for 4 h with 1.0 unit preScission protease
(GE Healthcare, Bucks, UK). The DNA-binding capacity
ofMyogenin that was used in some experiments as an intact
fusion protein was found to be indistinguishable from that
of the preScission protease cleaved protein.MRF4 and E47
were used as uncleaved fusion proteins.

Electrophoresis mobility shift separation of
protein–DNA complexes and determination of
their dissociation constants

Heterodimers of MyoD, MRF4 or Myogenin with E47
were generated prior to their binding to the various DNA
probes by incubating at 378C for 10min purified recombi-
nant MRF protein with an equimolar amount of E47 in
reaction mixtures that contained in a final volume of 10 ml:
45mM KCl, 4.5mM MgCl2, 0.5mM EDTA, 1mM DTT,

Table 1. DNA oligomers used in this study

Oligomer designation Bases Nucleotide sequence

Integrin DNA 26 50-d(CATGGGGGCGGGAAGGGGCGGGGTCT)-30

sMtCK DNA 24 50-d(CTGAGGAGGGGCTGGAGGGACCAC)-30

50 E-box 26 50-d(TCGATCCCCCAACACCTGCTGCCTGA)-30

30 E-box 26 50-d(TCAGGCAGCAGGTGTTGGGGGACGA)-30

50- Myogenin basic region 89 50-d(CAAGGCGTGTAAGAGGAAGTCTGTGTCTGTGGACCGGCGGAGGGCAG
CCACACTGAGGGAGAAGCGCAGGCTCAGCAAAGT GAATGAGG)-30

30- Myogenin basic region 91 50-d(TCATTCACTTTGCTGAGCCTGCGCTTCTCCCTCAGTGTGGCTGCCCTCC
GCCGGTCCACAGACACAGACTTCCTCTTACACGCCTTGCATG)-30

50- MyoD basic region 89 50-d(CAAGGTGTGCAAGCGCAAGACCACCAACGCTGATCGCCGCAAGGCCG
CCACCATGCGCGAGCGCCGCCGCCTGAAGAAAGTGAATGAGG)-30

30- MyoD basic region 91 50-d(TCATTCACTTTCTTCAGGCGGCGGCGCTCGCGCATGGTGGCGGCCTTGC
GGCGATCAGCGTTGGTGGTCTTGCGCTTGCACACCTTGCATG)-3

The integrin and sMtCK oligomers are tetraplex-forming guanine-rich sequences derived from promoter regions of the respective genes (35).
Underlined are guanine clusters that participate in quadruplex formation. The core E-box sequence is underlined in the 50 and 30 E-box
complementary oligomers. Sequences representing the Myogenin and MyoD basic regions are italicized in the respective basic region 50 and 30

complementary oligomers and the BsmI and SphI complementing ends are underlined.
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20% glycerol in 20mM Tris–HCl buffer, pH 8.0. Protein–
DNA binding was conducted in reaction mixtures that
contained in a final volume of 10 ml: specified amounts of
homodimeric MRF proteins or their heterodimers with
E47 and 50-32P labeled DNA probe, 10mM KCl, 1.0mM
EDTA, 0.5mM DTT, 20% glycerol in 25mM Tris–HCl
buffer, pH 8.0. Mixtures for the binding of end-labeled
bimolecular tetraplex DNA structures of muscle-specific
regulatory sequences were also supplemented with 10mM
KCl. The mixtures were incubated at 308C for 20min and
protein–DNA complexes were resolved from free DNA by
electrophoresis at 48C and under 200–250V in nondena-
turing 4 or 6% polyacrylamide gel (acryl/bisacrylamide,
19:1) in 10mMKCl in 0.25�TBE buffer (0.5mMEDTA in
22.5mM Tris–borate buffer, pH 8.3). Electrophoresis of
the DNA was conducted until a bromophenol blue marker
dye migrated 7.5 cm into the gel. The gels were dried on
DE81 filter paper and the relative proportions of bands of
free and protein-bound DNA were quantified by phosphor
imaging analysis.

Dissociation constants, Kd, values of complexes of
homodimeric MRF proteins or their heterodimers with
E47 with E-box DNA or with bimolecular tetraplex
structures of guanine-rich muscle-specific DNA sequences
were determined as follows: increasing amounts of
32P-labeled DNA were incubated with a constant amount
of protein in the above described protein–DNA binding
reaction mixtures. Following electrophoretic resolution of
the protein–DNA complexes from free DNA by mobility
shift, their relative amounts were determined by phosphor
imaging quantification of the respective radioactive bands.
Kd values were deduced from the negative reciprocal of the
slope of a Scatchard plot of the results as described
elsewhere (40).

RESULTS

HomodimericMyogenin andMRF4 selectively bind and
stabilize bimolecular quadruplex forms of muscle-specific
promoter sequences

Tetrahelical forms of the a7 integrin promoter DNA
consist of a mixture of unimolecular, G04, and bimolecular,
G02, tetraplexes and the G02 structure of sMtCK promoter
DNA is in mixture with single strands of this sequence (35).
We showed recently that homodimers of MyoD bind
preferentially only the bimolecular tetraplex forms of
integrin and sMtCK DNA (15). To examine the binding
preferences of homodimeric recombinant Myogenin or
MRF4, increasing amounts of the proteins were incubated
under binding conditions with a mixture of G02 and G04
integrin DNA. Results indicated that both Myogenin and
MRF4 associated only with the bimolecular quadruplex
structures of integrin DNA (Figure 1A and B, respectively)
without forming appreciable complexes with the unim-
olecular quadruplex structure of this sequence. Similarly,
homodimeric Myogenin and MRF4 were also found to
selectively bind a G02 tetraplex structure of sMtCK DNA
without associating with the single-stranded form of this
oligomer (data not shown). Further, both Myogenin and
MRF4 failed to detectably bind double-stranded structures

of the guanine-rich integrin and sMtCK sequences (data
not shown). Thus, homodimers of all the three examined
MRFs;MyoD,Myogenin andMRF4 share similar binding
preference for bimolecular quadruplex forms of muscle-
specific promoter sequences.
To examine whether theDNAmaintained its quadruplex

conformation when in complex with protein, G02 integrin
DNA was bound to homodimers of recombinant
Myogenin and aliquots of the binding mixtures were
either incubated for 10min each at increasing temperatures
or heated at 578C for different periods of time. To follow
the heat denaturation of free G02 DNA, control mixtures
that did not contain Myogenin were similarly heat-treated.
DNA denaturation was terminated by placing the mixtures
on ice and stripping the bound protein by 0.5% sodium
dodecyl sulfate (SDS). Remaining G02 integrin DNA was
resolved from its G04 form by nondenaturing gel electro-
phoresis and their amounts were quantified by phosphor
imaging analysis. As seen in Figure 2A and B, not only did
the Myogenin-bound G02 DNA maintain its quadruplex
structure, but also became more heat resistant relative to
free DNA. Thus, similarly to MyoD, (15) Myogenin
stabilized the bound G02 DNA.

Homodimers ofMyoD andMRF4 but not ofMyogenin
bind quadruplex DNAmore tightly than E-box DNA

We previously reported that MyoD homodimers formed
tighter complexes with G02 quadruplex structures of
guanine-rich regulatory sequences of muscle-specific
genes than with E-box DNA (15). To inquire whether or
not homodimers of other members of the MRF family
also bind tetraplex DNA preferentially, we determined the
dissociation constants, Kd, of complexes of homodimeric
recombinant MRF4 and Myogenin proteins with G02
quadruplex integrin DNA and with E-box. Typical results
of such analysis (Figure 3) indicated that similarly to
homodimeric MyoD, MRF4 homodimers bound G02
integrin DNA more tightly than E-box as reflected by the
lower Kd of its complex with the tetrahelical DNA.
Distinctly, however, Myogenin homodimers did not dis-
play preference for the quadruplex DNA, forming similarly
relatively weak complexes with tetraplex or E-box DNA
(Figure 3). These representative results were substantiated
in multiple independent determinations of the Kd values of
complexes of homodimers of MyoD, MRF4 or Myogenin
with quadruplex or E-box DNA (Table 2). As is evident
from their calculated relative affinities, (Kd E-box/Kd G02
DNA), homodimers of MyoD and MRF4, respectively,
bound G02 integrin DNA 21- and 4-fold more tightly than
E-box DNA. By clear contrast, however, complexes of
Myogenin with this DNA tetrahelix or with E-box had
practically indistinguishable relatively high dissociation
constants (Table 2). In a similar set of multiple measure-
ments, we found that the Kd value of complexes of
homodimeric MyoD with G02 quadruplex sMtCK DNA
was 27-fold lower than the dissociation constant ofMyoD–
E-box complexes. In contrast, Myogenin homodimers had
a 1.8-fold higher relative affinity for E-box than for G02
sMtCK DNA (data not shown). Thus, contrary to
homodimeric MyoD or MRF4, Myogenin homodimers
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bound weakly and nonpreferentially quadruplex structures
of regulatory sequences of the two examined muscle-
specific genes.

Heterodimers ofMyoD,MRF4 or myogenin with
E47 bind E-box more tightly than quadruplex DNA

We showed in the past that in contrast to homodimeric
MyoD, its heterodimers with E47 displayed greater affinity
for E-box than for tetraplex DNA (15). Figure 4 presents
typical results of determinations of the Kd values of
complexes of MRF4-E47 or Myogenin-E47 heterodimers
with G02 integrin DNA or with E-box. It is evident that
both types of heterodimers formed significantly tighter
complexes with E-box thanwith quadruplex integrinDNA.
That the heterodimeric forms of all the three examined
MRFs prefer E-box over quadruplex DNA was confirmed
by multiple determinations of the dissociation constants of

the respective protein–DNA complexes. As shown in
Table 2, the relative affinities of heterodimeric MyoD,
MRF4 or Myogenin for E-box were, respectively, greater
by 6.6-, 97- or 42-fold than for G02 integrin DNA. In a
parallel set of experiments, we found that MyoD-E47 and
Myogenin-E47 heterodimers, respectively, bound E-box
15- and 128-fold more tightly than G02 quadruplex sMtCK
DNA (data not shown). Thus, heterodimers of all three
MRFs displayed significant binding preference for E-box
over tetraplex structures of promoter sequences of the two
examined muscle-specific genes.

Two divergent amino acids in the core of theMyogenin
basic region are not responsible for its low relative affinity
for G’2 DNA

The binding of quadruplex DNA structures by MyoD was
recently shown to be mediated by either one of three

Figure 1. Homodimeric Myogenin and MRF4 bind preferentially bimolecular quadruplex structures of integrin DNA. Increasing amounts of
homodimers of recombinant Myogenin or MRF4 were incubated under binding conditions with, respectively, 0.18 or 1.0 pmol of 50-32P quadruplex
integrin DNA. Protein-bound G02 DNA was resolved from free DNA by nondenaturing 4% polyacrylamide electrophoresis. (A) Binding of
Myogenin to G02 integrin DNA. Shown are the retarded protein–G02 integrin DNA complex and the G02 and G04 forms of free DNA. (B) Binding of
MRF4 to G02 integrin DNA.

Figure 2. Homodimeric Myogenin raises the heat stability of bound G02 integrin DNA. (A) Heat denaturation of Myogenin-bound and free G02
integrin DNA. Reaction mixtures that contained each 0.18 pmol of 50-32P labeled G02 integrin DNA were incubated under binding conditions with or
without saturating amounts of recombinant homodimeric Myogenin. Following completion of the binding reaction, the mixtures were heated at the
indicated temperatures for 10min. Heat denaturation was terminated by rapid cooling of the mixtures to 48C and the addition of 0.5% SDS to strip
the protein off the DNA. Residual G02 integrin DNA was resolved from G04 DNA by nondenaturing 10% polyacrylamide gel electrophoresis and
their relative amounts were quantified by phosphor imaging analysis. Shown is a plot of the remaining amount of G02 DNA in mixtures that
contained or were devoid of Myogenin as a function of the increasing temperature. (B) Kinetics of heat denaturation of Myogenin-bound or free G02
integrin DNA. Binding conditions, heat denaturation and electrophoretic resolution of remaining G02 DNA were as described in (A) except that all
the mixtures were heated at 578C for the indicated increasing periods of time. Shown is a plot of the residual amount of G02 DNA in mixtures that
contained or were devoid of Myogenin as a function of increasing time at 578C.
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clusters of three conserved basic amino acids each in its
basic region (36). Whereas the amino acid sequence of the
three basic triads were identical in MyoD and MRF4,
Myogenin had K84R and R91K conservative replace-
ments in the second and third basic clusters, R2 and R3,
respectively (Figure 5A). The similar preferential binding

of quadruplex DNA by MyoD and MRF4 homodimers
could potentially be due to their identical basic clusters,
whereas the changed residues in the R2 and R3 triads of
Myogenin could be the source of its relatively weak and
nonpreferential association with tetrahelical DNA. To
examine this possibility we constructed a Myogenin
double mutant, mut-Myogenin whose three basic clusters
were identical to those of MyoD and MRF4, and
compared its G02 integrin DNA-binding capacity to that
of the unmodified protein. Results showed that the
quadruplex DNA-binding curves of both proteins were
essentially indistinguishable and that the Kd values of
complexes of the two proteins with G02 integrin DNA
were also statistically interchangeable (Figure 5B). Thus, it
appears that the distinctive two amino acids in the core
basic triads were unlikely to cause of the relatively low
affinity of homodimeric Myogenin for quadruplex DNA.

MyoDdominantly dictates high affinity for quadruplexDNA

The basic regions of the three MRFs include between their
R1 and R2 basic triads distinctly different intervening
tracts of four residues. Also, leucine located in the stretch
that separates the R2 and R3 clusters of MRF4 and
Myogenin (residues 100 and 88, respectively) is substituted
by methionine (residue 116) in MyoD (Figure 5A). We
inquired whether these differences and/or the conforma-
tion of the basic region as a whole may dictate the dis-
similar tetraplex DNA-binding affinities of homodimeric

Figure 3. Homodimers of MRF4, but not of Myogenin, bind bimolecular quadruplex integrin DNA more tightly than E-box. Constant amounts of
homodimers of recombinant MRF4 or Myogenin were incubated under DNA-binding conditions with increasing amounts of either 50-32P labeled
E-box or G’2 integrin DNA. Formed protein–DNA complexes were resolved from free DNA by nondenaturing polyacrylamide gel electrophoresis
and their relative proportions were determined by phosphor imaging analysis (see Materials and methods section). Shown are representative
electrophoregrams (insets) and Scatchard plots of the measured ratios of bound to free DNA as a function of the concentration of protein-bound
DNA. The indicated Kd values in different plots were derived from the negative reciprocal of their slopes.

Table 2. Dissociation constants of complexes of homodimeric and

heterodimeric MRFs with E-box and G02 quadruplex integrin DNA

Protein Kd (nM) [N] G02 integrin
DNA/E-box
relative affinity
(Kd E-box/Kd
G02 integrin)

E-box DNA G02 integrin DNA

MyoD homodimer 91.8� 1.6 [4] 4.4� 2.5 [10] 20.9
MyoD/E47

heterodimer
1.7� 0.6 [4] 11.2� 4.3 [5] 0.15

MRF4
homodimer

21.3� 11.0 [4] 5.3� 1.3 [3] 4.0

MRF4/E47
heterodimer

0.2� 0.1 [5] 19.5� 2.7 [4] 0.01

Myogenin
homodimer

25.4� 11.0 [5] 30.0� 8.0 [4] 0.85

Myogenin/E47
heterodimer

0.2� 0.1 [4] 8.5� 2.0 [4] 0.02

Dissociation constants, Kd, of the different protein–DNA complexes were
determined as described under Materials and methods section and in the
legends to Figures 1 and 2. Listed are average Kd values� SD with [N]
marking the number of independent measurements of each value.
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MyoD and Myogenin. To this end, we constructed
chimerical MyoD and Myogenin proteins with recipro-
cally switched basic regions and compared their G02
integrin DNA-binding capabilities to those of the unmo-
dified proteins. As indicated by schemes of the unmodified
and reconstructed proteins (Figure 6A), the chimerical
MyoD or Myogenin maintained in full their respective
original sequences except for the reciprocally exchanged
basic regions. In line with their distinctly different affinities
for G02 integrin DNA (Table 2), unmodified Myogenin
was significantly less efficient than native MyoD in
binding this tetrahelix (Figure 6B). However, Myogenin
whose basic region was replaced by that of MyoD bound
quadruplex DNA nearly as efficiently as native MyoD
(Figure 6B). In accord with this observation, measure-
ments showed that the Kd value of complexes of Myogenin

Figure 4. Heterodimers of MRF4 and Myogenin with E47 bind E-box more tightly than G02 quadruplex integrin DNA. Constant amounts of
MRF4-E47 or Myogenin-E47 heterodimers that were prepared as described under Materials and methods section, were incubated under DNA-
binding conditions with increasing amounts of either 50-32P labeled E-box or G02 integrin DNA. Electrophoretic resolution and phosphorimage
analysis quantification of protein-bound and free DNA were conducted as detailed in the legend to Figure 5. Shown are representative
electrophoregrams (insets) and Scatchard plots of the ratios of bound to free DNA as a function of the concentration of protein-bound DNA. The
Kd values that were calculated for each plot were derived from the negative reciprocal of their respective slopes.

Figure 5. Mutated Myogenin with clusters of basic amino acids
identical to those of MyoD and MRF4 maintains low relative affinity
for G02 integrin DNA. To render the basic amino acids clusters in the
Myogenin basic region identical to those of MyoD and MRF4, two
mutations R84K and K91R were introduced into full-length Myogenin

cDNA in pGEX-6P vector as detailed under Materials and methods
section. G02 integrin DNA binding by unmodified and mutated
Myogenin (mut-Myogenin) recombinant proteins and Kd values of
the respective complexes were measured (see Material and methods
section). (A) Basic regions of MyoD, MRF4 and Myogenin. The three
conserved clusters R1, R2 and R3 of three basic amino acids each are
highlighted. The two amino acids, R84 and K91 that distinguish
Myogenin from MyoD and MRF4 are circled in red. (B) Binding of
quadruplex integrin DNA by Myogenin and mut-Myogenin. The
indicated increasing amounts of the respective proteins were incubated
under DNA-binding conditions with 0.18 pmol of 50-32P labeled G02
integrin DNA and the formed protein–DNA complexes were resolved
by electrophoresis and quantified as detailed under Materials and
methods section. Inset: average Kd values � SD of complexes of G02
integrin DNA with unmodified or mutated Myogenin that were
determined in [N] independent measurements.
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with G02 integrin DNA was decreased by >4-fold when its
native basic region was replaced by that of MyoD
(Table 3). Surprisingly, however, reciprocal transplanta-
tion of the weakly binding basic region of Myogenin into
MyoD did not significantly change the high-binding
efficiency of the modified protein (Figure 6C) and the
dissociation constant of its complex with the G’2 DNA
remained statistically indistinguishable from that of native
MyoD (Table 3). Thus, MyoD dictated high-binding
affinity for quadruplex DNA not only through its basic
region but also via the structure of the whole protein,
which forced tight tetraplex DNA-binding capacity upon
the transplanted Myogenin basic region (see Discussion
section).

DISCUSSION

Myogenesis is initiated and directed by MRF hetero-
dimers with Class I bHLH E-proteins that act as master
transcription factors, which activate muscle gene

expression. The heterodimeric MRFs activate expression
of muscle tissue genes by binding to E-box elements in
their promoter or enhancer regions. Extensive studies on
MyoD, the prototypical MRF, showed that its hetero-
dimers with E protein induce the expression of a subset of
muscle-specific genes by binding to E-box elements in their
promoters. The E-box bound MyoD then summons
ancillary proteins that affect chromatin remodeling and
enable transcription (11). Less defined are the modes of
gene activation by other members of the MRF family and
the extent of their redundant or specific involvement in
myogenesis. A recurrent question is how any given MRF
activates only selected genes among all that contain an
E-box in their promoters. It is likely that the selectivity of
different MRFs is governed at several regulatory levels
such as sequence variations within and at the flanks of
E-boxes and the identity of different auxiliary proteins
that associate with the MRF-E protein heterodimers.
Heterodimeric MRFs bind E-box considerably more
tightly than MRF homodimers and are thus more
potent activators of gene expression (13–15). This raises
the possibility that the transcriptional activity of MRFs
may also be modulated by the equilibrium between their
homo- and hetero-dimeric forms. One way to affect this
equilibrium is to confine homo- and hetero-dimeric
proteins to different DNA targets. In this context, the
observed preferential binding of homodimeric MyoD to
quadruplex structures of muscle-specific gene promoter
sequences (15) may serve to attract it to the regulatory
region of a target gene without activating its expression.
By forming heterodimers with E-proteins, MyoD may
then lose its tight association with the promoter quad-
ruplex, bind with greater avidity to neighboring E-boxes
and activate gene expression.
In the present study, we inquired whether the different

binding affinities of MyoD homo- and hetero-dimers for

Figure 6. The MyoD basic region and its peripheral domains dominantly dictate high affinity for G02 integrin DNA. MyoD or Myogenin cDNA in
pGEX-6P vectors were modified and restricted to remove their basic regions, which were then replaced by synthetic DNA duplexes that reciprocally
encoded the respective Myogenin or MyoD basic regions (see Materials and methods section). Unmodified or proteins with exchanged basic regions
were expressed and their capacities to bind 50-32P labeled G02 integrin DNA were determined. (A) Schemes of unmodified and basic region-switched
chimeras of MyoD and Myogenin. The tract transplanted into MyoD at positions 102–121 corresponded to the amino acids sequence of the
Myogenin basic region (bmg), whereas the flanking inserted tracts (residues 99–101 and 122–126) maintained the respective MyoD native sequences.
The amino acid run transplanted into Myogenin (residues 74–93) represented the MyoD basic region (bMD), whereas the flanking inserted tracts
(residues 71–73 and 94–98) retained the respective Myogenin native sequences. (B) Binding of G02 quadruplex integrin DNA by MyoD, Myogenin
and Myogenin/MyoDb chimerical protein. Increasing amounts of the respective proteins were incubated under DNA-binding conditions with 0.18
pmol of 50-32P labeled G02 integrin DNA and the protein–DNA complexes that were formed were resolved by electrophoresis and quantified as
detailed under Materials and methods section. The presented results are averages� SD of 3–5 independent measurements. (C) Binding of G02
quadruplex integrin DNA by MyoD, Myogenin and MyoD/Myogeninb chimerical protein. Binding of G02 integrin DNA by the MyoD/Myogeninb
protein was assayed as described in (B) above. The results represent averages of four independent determinations� SD. The binding curves for
unmodified MyoD and Myogenin are the same as in (B).

Table 3. Dissociation constants of complexes of G02 quadruplex

integrin DNA with unmodified and chimerical MyoD and Myogenin

homodimers

Protein homodimer Kd (nM) of protein-G02
integrin DNA complex [N]

Myogenin 30.0� 8.0 [4]
Myogenin/MyoDb chimera 7.1� 1.9 [4]
MyoD 4.4� 2.5 [10]
MyoD/Myogeninb chimera 6.0� 3.1 [5]

Dissociation constants, Kd, of protein–DNA complexes were deter-
mined as described under Materials and methods section and in the
legends to Figures 1 and 2. Shown are average Kd values�SD with [N]
denoting the number of independent measurements of each value.
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quadruplex and E-box DNA are shared by other members
of the MRF family. We first showed that similarly to
MyoD (15), homodimers of Myogenin and MRF4
associated preferentially with bimolecular quadruplex
forms of promoter sequences of the muscle-specific genes
a7 integrin and sMtCK (Figure 1A and B) and that
Myogenin increased the heat stability of the bound G’2
integrin DNA (Figure 2). Further, our results confirmed
that in line with their role as muscle gene activators and
similarly to heterodimeric MyoD, MRF4-E47 and
Mygenin-E47 heterodimers also bound E-box consider-
ably more tightly than quadruplex structure of a promoter
sequence of the integrin gene (Figure 4 and Table 2). Also,
in accord with the previously described preferential
association of homodimeric MyoD with tetraplex DNA,
MRF4 homodimers also bound G02 integrin DNA more
tightly than E-box (Figure 3 and Table 2). By clear
contrast, however, Myogenin homodimers did not bind
preferentially to quadruplex DNA and displayed similar
relatively weak affinities for both integrin or sMtCK
tetraplexes and E-box DNA (Figure 3, Table 2, and
accompanying text). Thus, by failing to form tight
complexes with quadruplex structures of promoter
sequences of the two examined muscle-specific genes,
homodimeric Myogenin was distinguished from homo-
dimers of both MyoD and MRF4. Whereas MyoD and
MRF4 are involved in the conversion of mesenchimal cells
into dividing myoblasts during the initial determination
step (5,6), Myogenin jointly with MRF4 mediates the
subsequent phase of differentiation of myoblasts into
nondividing myocytes and then to myotubes (7–10). It is
tempting to speculate, therefore, that whereas quadruplex
DNA structures may modulate the activity of MRFs
during the earlier determination stage, they are not
required for the regulation of MRFs action in the
differentiation step.
In a second part of this report, we determined the

protein structure basis for the different affinities of
homodimeric MyoD and Myogenin for quadruplex
DNA. All MRFs bind DNA at their basic region and as
we recently reported, full intactness of this region is a
prerequisite for the binding of E-box (36). In contrast,
MyoD mutants whose basic regions were largely deleted
except for a single triad of basic amino acids maintained
their ability to associate with quadruplex DNA (36). The
basic region of Myogenin differs from that of MyoD by
two conservative substitutions in the R2 and R3 triads, by
an intervening tract of four residues between the R1 and
R2 triads and a single L!M substitution in the stretch
between R2 and R3 (Figure 5A). Comparing the quad-
ruplex binding capacities of unmodified and mutant
Myogenin homodimers, we first showed that the two
different amino acids in its R2 and R3 basic triads were not
the source of the weak association of its with tetraplex
DNA (Figure 5B). However, replacing the Myogenin
complete basic region with that of MyoD increased the
affinity of its homodimers for quadruplex DNA to nearly
that of homodimeric MyoD (Figure 6B, Table 3). Thus,
the MyoD basic region was capable of maintaining its
high affinity for quadruplex DNA in the foreign environ-
ment of the Myogenin homodimer. Yet, reciprocal

substitution of the MyoD basic region by the weakly
binding Myogenin homolog domain did not diminish
significantly the high affinity of MyoD for quadruplex
DNA (Figure 6C, Table 3). This outcome indicated that
MyoD regions outside the basic region affected enhance-
ment of tetraplex binding by the normally weak Myogenin
basic region. Previous comparison of the DNA-binding
efficacies of intact MyoD and its isolated bHLH domain
had suggested that domains that surround the basic region
modulate its affinity for DNA ligands. We reported that
an isolated bHLH domain bound E-box at �10-fold
greater efficiency than full-length MyoD, whereas its
capacity to bind G02 integrin DNA was decreased by
close to 2-fold (15). Thus, peripheral domains in homo-
dimers of intact MyoD quenched the affinity of its basic
region for E-box, while increasing its avidity for quad-
ruplex DNA. In a similar vein, results presented in
Figure 6C and in Table 3 indicated that a MyoD periphery
was capable of augmenting the quadruplex DNA affinity
of a transplanted Myogenin basic region. Interestingly,
however, the effect of domains outside the basic region on
the binding of quadruplex DNA was restricted to MyoD
as the Myogenin periphery did not extinguish the high
affinity of an implanted MyoD basic region for G02 DNA
(Figure 6B and Table 3). It appeared, therefore, that both
the basic region and peripheral domains of MyoD
dominantly contribute to high avidity for tetraplex DNA.
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