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Until the last decade, chemotherapy was the standard treatment for metastatic cutaneous
melanoma, even with poor results. The introduction of immune checkpoints inhibitors
(ICIs) radically changed the outcome, increasing 5-year survival from 5% to 60%.
However, there is still a large portion of unresponsive patients that would need further
therapies. NK cells are skin-resident innate cytotoxic lymphocytes that recognize and kill
virus-infected as well as cancer cells thanks to a balance between inhibitory and activating
signals delivered by surface molecules expressed by the target. Since NK cells are
equipped with cytotoxic machinery but lack of antigen restriction and needing to be
primed, they are nowadays gaining attention as an alternative to T cells to be exploited in
immunotherapy. However, their usage suffers of the same limitations reported for T cells,
that is the loss of immunogenicity by target cells and the difficulty to penetrate and be
activated in the suppressive tumor microenvironment (TME). Several evidence showed
that chemotherapy used in metastatic melanoma therapy possess immunomodulatory
properties that may restore NK cells functions within TME. Here, we will discuss the
capability of such chemotherapeutics to: i) up-regulate melanoma cells susceptibility to
NK cell-mediated killing, ii) promote NK cells infiltration within TME, iii) target other immune
cell subsets that affect NK cells activities. Alongside traditional systemic melanoma
chemotherapy, a new pharmacological strategy based on nanocarriers loaded with
chemotherapeutics is developing. The use of nanotechnologies represents a very
promising approach to improve drug tolerability and effectiveness thanks to the
targeted delivery of the therapeutic molecules. Here, we will also discuss the recent
developments in using nanocarriers to deliver anti-cancer drugs within the melanoma
microenvironment in order to improve chemotherapeutics effects. Overall, we highlight the
possibility to use standard chemotherapeutics, possibly delivered by nanosystems, to
enhance NK cells anti-tumor cytotoxicity. Combined with immunotherapies targeting NK
cells, this may represent a valuable alternative approach to treat those patients that do not
respond to current ICIs.
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1 INTRODUCTION

Cutaneous melanoma is considered as the deadliest form of skin
cancer because of its high tendency to metastatic spread. While
in situ lesions can be effectively cured by surgical removal, the
treatment of the metastatic disease is still challenging. Until the
last decade, the standard therapy for metastatic melanoma was
chemotherapy, based on the usage of three classes of drugs:
alkylating agents, mitotic inhibitors and alkylating-like drugs (1).

The alkylating agents dacarbazine (DTIC) and temozolomide
(TMZ) were the mos t wide ly used and e ff ec t i ve
chemotherapeutic agents used for the treatment of metastatic
melanoma, with a general good tolerance and limited side effects
which include modest bone marrow suppression (1). However,
the outcome was poor, with ORRs around 20%, response
duration of 4-6 months and complete responses observed only
in 5% of treated patients (2, 3). The mitotic inhibitors paclitaxel
(PTX) and docetaxel (DTX) belong to taxanes and were both
associated with ORRs and survival rates similar to those observed
with DTIC. However, they caused more severe side effects,
including myelosuppression, hypersensitivity reactions and
peripheral neuropathy, thus they were generally used as
second-line therapy (1, 2). Along with PTX, the activity of the
alkylating-like agent cisplatin as a first-line single therapy
showed modest results (2). Furthermore, important side effects
and several mechanisms of drug resistance development were
associated to cisplatin usage, thus the drug was generally used in
combinatorial regimens (1).

Overall, the effects of chemotherapy in metastatic melanoma
were modest, mainly palliative and poorly effective in terms of
survival. The picture has been dramatically changed by the
introduction of immunotherapy, particularly by the immune
checkpoints inhibitors (ICIs). The first ICI approved by FDA in
2011 was Ipilimumab, a monoclonal antibody (mAb) targeting the
Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), which increased
ORR to 19% and 5-years survival to 20% (4). The introduction of
Nivolumab and Pembrolizumab, targeting the Programmed cell
death protein 1 (PD-1), further increased ORRs and 5-year survival
rates to 40% and 30-40%, respectively (5–7). Even more striking
results were reached combining Nivolumab and Ipilimumab,
whose subsequential administration in metastatic melanoma
patients gave 45% and 60% of ORRs and 5-year survival,
respectively (7, 8). However, a large portion of metastatic
melanoma patients still does not respond to current treatments,
highlighting the need to develop further therapeutical approaches.
It has been proposed that this lack of effectiveness may be due
to the strong immunosuppression exerted in the tumor
microenvironment (TME) by both cancer and stromal cells.
Indeed, immunosuppression is nowadays considered as a
hallmark of cancer (9). Thus, it is likely that strategies able to
counteract such immune suppression and to generate a supportive
TME would represent valuable approaches to improve
ICIs effectiveness.

In this context, several lines of evidence showed that, together
with the well-known cytotoxic activities, chemotherapeutic drugs
also display the capability to affect immune responses against
tumors. These immunomodulatory properties mainly rely on
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five mechanisms: 1) shrinkage of the cancer mass, which reduces
the systemic immune suppression induced by the tumor, 2)
enhancement of the expression and/or presentation of tumor
antigens, which increases cancer cell antigenicity, 3) emission of
danger signals by damaged cells, which augments cancer cell
immunogenicity, 4) induction of stress signals on cell surface,
which increase the susceptibility of cancer cells to be killed by
immune cells, 5) direct effects on immune and stromal cells
within the TME (10). In addition, even the lympho- and
mielodepletion, generally regarded as an undesired collateral
effect of chemotherapy, may offer a therapeutic advantage by
resetting the immune system and favoring the appearance and/or
expansion of immune cell subsets with anti-tumor activities. It
has been proposed to occur through homeostatic proliferation,
that is the peripheral expansion of specific immune cell clones
induced by targeted stimuli such as cytokines and/or antigens
(11, 12). Thus, the combination with chemotherapy may be a
promising approach to improve the outcome of metastatic
melanoma patients treated with ICIs. Indeed, recent reports
indicated that the standard chemotherapeutics used in
metastatic melanoma can both cooperate with ICIs, increasing
response rates compared to single-agent mAbs, and sensitize
patients that do not respond when ICIs are administrated as first-
line therapies (13–17). However, the molecular mechanisms
underlying this synergism are still not fully elucidated.

Although the main target of current immunotherapies has
been T cells, increasing attention is being given to Natural Killer
(NK) cells because of their alternative mechanism to recognize
cancer cells. However, their usage in clinical settings is limited by
the same issues observed for T cells and needs to be
implemented, possibly by combinatorial approaches. Here, we
discuss the immunomodulatory properties of anti-melanoma
chemotherapeutic drugs that could be exploited to enhance NK
cells anti-tumoral functions within melanoma TME.
Furthermore, we discuss the possibility to further improve
such properties by the usage of nanocarriers for the targeted
release of chemotherapeutic drugs.
2 THE ROLE OF NATURAL KILLER CELLS
IN MELANOMA RECOGNITION

NK cells belong to Innate Lymphoid Cells (ILCs), a family of
innate lymphocytes largely contributing to tissue homeostasis.
Particularly, NK cells are considered the cytotoxic arm of ILCs
and, more in general, of innate immunity, thus playing a pivotal
role in mounting early defenses against stressed, viral-infected
and tumor-transformed cells (18). Phenotypically, NK cells are
characterized by the lack of T cell lineage marker CD3 and the
expression of CD56, which further distinguishes NK cells in two
main subpopulations. CD56bright NK cells are poorly cytolytic
and mainly immunoregulatory, while CD56dim NK cells display
strong cytotoxicity but low secretory capabilities (19).

Peripheral blood NK cells have been shown to be widely
affected by melanoma, as indicated by the association between
NK cell modifications and melanoma progression and/or
October 2021 | Volume 11 | Article 754541
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response to therapy (20). In melanoma, NK cells are recruited by
the inflammatory chemokines CCL5 and CXCL9-11, expressed
within the TME, by the engagement of the cognate receptors
CCR5 and CXCR3, respectively (21). However, infiltrating NK
cells are usually poor and clusterized around the stroma, not in
direct contact with tumor cells (22, 23). Indeed, NK cells have
been proposed to contribute to anti-melanoma responses mainly
by the elimination of tumor cells spreading throughout blood
circulation, particularly cancer stem cells, thus limiting
metastasization (20, 24, 25). Still, the presence of NK cells in
melanoma TME has been associated with tumor regression and
good prognosis (22).

As part of the innate immune system, NK cells recognize cells
to eliminate through germline-encoded receptors that engage
poorly polymorphic molecules/determinants expressed on target
cells. Such ligands can display either inhibitory or activating
effects and are indeed recognized by inhibitory or activating
receptors, respectively. Thus, the activation and killing of NK
cells will depend on the balance between the signals delivered by
the different receptors, as stated by the “missing-self hypothesis”.
Accordingly, the expression of inhibitory molecules will spare
cells from killing, while inhibitory ligands down-regulation and/
Frontiers in Oncology | www.frontiersin.org 3
or activating ligands over-expression will induce NK cell
cytotoxicity (26) (Figure 1).

The main inhibitory molecules for NK cells are classical
Major Histocompatibility Complex (also known as Human
Leucocyte Antigen, HLA, in humans) class I (MHC-I)
molecules recognized by the Killer-cell Immunoglobulin-like
Receptors (KIRs), which represent the most important
inhibitory receptors expressed by NK cells. Of notice, KIRs
interact with common determinants shared by HLA-A, -B, and
-C molecules. While MHC-I molecules are expressed by the
majority of healthy cells, they are usually down-regulated in
infected or transformed cells, avoiding the engagement of KIRs
and thus inducing NK cells activation (27). Indeed, down-
regulation of MHC-I molecules has been widely described in
melanoma and it is regarded as one of the major mechanisms
determining NK cell-mediated killing of melanoma cells
(28) (Figure 1).

Another important NK cell inhibitory receptor is CD94/
Natural Killer Group (NKG) 2A, belonging to the
heterodimeric C-type lectin NKG2 receptor family. CD94/
NKG2A binds to HLA-E, a poorly polymorphic non-classical
MHC-I molecule loaded with peptides deriving from the leader
FIGURE 1 | Receptor-ligand pairs involved in melanoma cells recognition by NK cells. Both MHC class I and MHC-like HLA-E molecules expressed by melanoma
cells counteract NK cells activation by engaging the inhibitory receptors KIRs and CD94/NKG2A, respectively. On the other hand, malignant transformation induces
the expression of NKG2D, DNAM-1 and NCR-ligands on melanoma cells, which are recognized by the cognate activating receptors expressed on NK cells.
Melanoma cells usually up-regulate the expression of activating ligands and down-regulate MHC class I molecules levels tipping the balance towards the activation of
NK cells. Less specific interactions such as LFA-1/ICAM-1 mediate the firm adhesion between NK and melanoma cells whereas Fas/FasL binding activates the
extrinsic apoptosis. Moreover, CD16 contributes to melanoma cell killing by mediating ADCC.
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sequence of the other MHC-I molecules. Thus, CD94/NKG2A
allows NK cells to sense the overall expression levels of MHC-I
molecules on target cells (29) (Figure 1).

While inhibitory signals for NK cells are primarily mediated
by MHC-I molecules, activating ligands are more heterogeneous
and induced by cellular stress. The main class of NK cells
activating receptors are the Natural Cytotoxicity Receptors
(NCRs), consisting of three Ig-like proteins whose ligands are
still poorly defined. NK cells constitutively express two NCRs,
NKp30 and NKp46, while the third member of the family,
NKp44, can be found on NK cell surface only after activation.
Collectively, NCRs are the most important receptors triggering
NK cell-mediated killing of cancer cells. Indeed, their expression
correlates with the magnitude of the NK cell cytolytic activity
(30) (Figure 1).

Another fundamental receptor involved in NK cell activation
is NKG2D. While belonging to the NKG2 family, NKG2D stands
out for being a monomeric receptor. Ligands recognized by
NKG2D include two types of MHC-like molecules, MHC class
I chain-related protein (MIC) A and B and unique long 16-
binding proteins (ULBPs). Both the families of ligands are
generally not found on healthy cells but are induced by stresses
such as malignant transformation (31, 32). The DNAX accessory
molecule-1 (DNAM-1) is a co-receptor enhancing NK cell
activation triggered by the other activating receptors. DNAM-1
recognizes two ligands, CD155 (poliovirus receptor, PVR) and
CD112 (Nectin-2), that are widely expressed by cancer cells (33).
Moreover, NK cells can be activated through the engagement of
CD16, which binds the Fc portion of IgG antibodies and thus
allows NK cells to mediate the antibody-dependent cell
cytotoxicity (ADCC) against opsonized target cells
(34) (Figure 1).

The analysis of large panels of melanoma cells showed that
ligands for NKG2D (MICA/B, ULBPs) and DNAM-1 (PVR,
Nectin-2) are widely expressed by melanoma cells. Of them,
MICA/B were more frequently observed compared to ULPBs
(35, 36) and PVR was widely found, while Nectin-2 was scarcely
expressed (35). The expression of NCR ligands has been also
reported, though to a lesser extent (37, 38).

Either an over-expression of activating ligands or a loss of
inhibitory signals triggers the main cytotoxic pathway of NK
cells, that is the release of cytolytic granules, specialized secretory
organelles containing perforin and granzymes inducing
apoptotic cell death. Specifically, granzymes are serine
proteases able to cleave and activate several intracellular
proteins involved in apoptosis induction, while perforin
generates pores on eucaryotic cell membrane allowing
granzymes entry within the target cell (39).

Though the balance between inhibitory and activating signals
represents the main factor determining target recognition and
cytotoxicity, both the processes are strengthened by accessory
molecules involved in cell adhesion. Among them, the b2-
integrin Leucocyte Functional Antigen (LFA)-1, recognizing
the Intercellular Adhesion Molecule (ICAM)-1, is found to be
expressed on melanoma cells (40, 41), where it plays a central
role in mediating the firm adhesion between NK and target cells
Frontiers in Oncology | www.frontiersin.org 4
as well as the polarized delivery of cytotoxic granules (42).
Additionally, NK cells can eliminate targets by inducing the
extrinsic apoptotic pathway. Indeed, resting NK cells largely
express Fas ligand (FasL), while activated NK cells also express
Tumor Necrosis Factor-related Apoptosis-Inducing Ligand
(TRAIL), which engage death receptors expressed on the
surface of target cells (43, 44). In melanoma cells, NK cell-
mediated activation of the apoptotic extrinsic pathway is induced
by the engagement of Fas (45, 46) (Figure 1).

Activated NK cells also release cytokines, particularly
Interferon (IFN)g and Tumor Necrosis Factor (TNF)a,
exerting both direct and indirect effects contributing to target
cells clearance (19). IFNg is able to directly inhibit cell cycle
progression and to promote apoptosis in infected and/or
transformed cells as well as to increase their immunogenicity
by enhancing antigen presentation (47). IFNg also dampens
proliferation and survival of endothelial cells, thus
counteracting angiogenesis (48). Moreover, IFNg broadly
affects the immune system by stimulating the recruitment,
differentiation and activation of several immune cell subsets
involved in anti-viral and anti-tumoral responses (47). Similar
effects have been observed for TNFa, albeit the activities of the
two cytokines are not completely overlapping. Indeed, TNFa is
considered to be poorly cytotoxic/cytostatic against tumor cells,
while it is particularly effective in inducing inflammation and
vasculature destruction (49).

The proper activation of NK cells is also supported by several
cytokines produced by different immune cell subsets. Interleukin
(IL)-2, IL-15, IL-12 and IL-18 as well as type I IFNs are known to
promote several aspects of NK cell functioning, including
proliferation, maturation, survival, cytokine secretion and up-
regulation of activating receptors and cytotoxic molecules (50).
Moreover, IFNg can act as autocrine factor to stimulate NK cell
cytotoxicity by up-regulating the expression of perforin,
granzymes and FasL. Of notice, while most of the processes
can be induced by individual cytokines, they represent a weak
stimulus for IFNg secretion, which instead requires the
cooperation between IL-12 and the other cytokines (50).
3 NATURAL KILLER CELLS WITHIN
MELANOMA TME

Solid tumors consist of cancer cells and the surrounding tissue
cells that constitute TME, which include several types of cells
such as fibroblasts, endothelial and immune cells as well as
extracellular matrix (ECM). In melanoma, the elevated
mutational burden makes the tumor highly immunogenic. In
addition, oncogenes commonly mutated in melanoma induce the
expression of cytokines, chemokines, enzymes and growth
factors recruiting and regulating immune cells (51). As a
consequence, melanoma lesions usually show a substantial
immune infiltrate composed by several distinct populations
exerting specific, and even opposed, functions towards cancer
cells. Moreover, the same subset can display different activities
based on its state of maturation/polarization (52). The dynamic
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interactions between tumor and immune cells largely contribute
to determine tumor progression. This complex interplay can be
described through the immunoediting paradigm, that postulates
an elimination phase in which the immune system efficiently
eliminates cancer cells, an equilibrium phase in which immune
response acts as an evolutive pressure selecting resistant clones,
and an escape phase in which the tumor overcomes the immune
response and successfully progresses (53). The immune escaping
of melanoma cells can occur through two not mutually exclusive
mechanisms: intrinsic phenomena reducing the capability of
tumor cells to be recognized and killed by immune cells and
extrinsic processes involving the active production of molecules
generating, directly or indirectly, an immunosuppressive TME
(54). Moreover, the capability of the TME to support or limit
melanoma progression is affected by the relative proportion and
contribution of the different immune cell subsets (52) (Figure 2).
Many of these processes can be, at least partially, counteracted by
standard chemotherapeutics, which provides the rationale for
their combination with ICIs.

3.1 Chemotherapy Improves Melanoma
Cells Recognition by NK Cells Within TME
Among the intrinsic mechanisms, both down-modulation and
up-regulation of activating NK cell ligands have been reported. A
reduced surface expression of activating ligands has been
observed during melanoma progression, with metastatic lesions
showing lower levels of these molecules compared to the primary
counterpart (37, 38). Commonly, this lower expression has been
attributed to ligands shedding, that is the generation of a soluble
form of the molecule and its release in the extracellular space.
The best-described ligands shed by melanoma cells are the
NKG2D ligands MICs and ULBPs, but also the shedding of
B7-H6, engaged by NKp30, has been reported. As expected, shed
ligands show an opposite pattern compared to the surface
counterpart, increasing in the course of disease (55–57).
Although paradoxical, the over-expression of activating ligands
has also been reported as an important mechanism to down-
regulate NK cell cytotoxicity (58, 59). Both ligands shedding and
over-expression culminate in the hyper-stimulation of the
receptor which is in turn internalized to prevent excessive
activation, thus resulting in NK cell desensitization and lower
cytotoxic potential (55) (Figure 2A). Indeed, NK cells from
melanoma patients often show a reduced expression of
activating receptors and an impaired capability to respond to
cancer cells (24, 60, 61).

DNA damage occurring in early tumorigenesis is recognized
by the damage sensor kinases ATR and ATM, which in turn
induce a kinase cascade involving downstream mediators such as
the checkpoint kinases CHK1 and CHK2 and the tumor
suppressor p53. The pathway is known as DNA damage
response and is able to induce apoptosis and/or senescence,
thus blocking cancer cell proliferation (62). This stress response
also affects tumor cells susceptibility to NK cell-mediated
elimination by inducing the expression of NKG2D ligands
(63). The cytotoxic effects of DTIC and TMZ as well as
cisplatin against melanoma cells rely on their capability to
Frontiers in Oncology | www.frontiersin.org 5
generate adducts within DNA and to induce the stress
response, thus exerting an analogue immunomodulatory effect
(62–64).

The evidence that DTIC is able to up-regulate NKG2D ligands
expression was observed in amelanomamurinemodel (Figure 3A),
together with the needing of a competent immune system for the
drug to exert its antitumor activity (65). Indeed, NKG2D ligands
expression induced by DTIC enhanced both perforin/granzyme B-
dependent killing of melanoma cells and IFNg secretion by NK cells.
In turn, IFNg was mandatory to up-regulate MHC-I molecules
expression and endogenous antigen presentation on melanoma
cells, which allowed their recognition and elimination by
cytotoxic T cells possibly through both perforin/granzyme- and
Fas-mediated pathways (65, 66). A similar mechanism of action has
been later reported also for TMZ (67).

Thus, NK cell targeting of melanoma cells sensitized by
alkylating agents would be pivotal to trigger both innate and
adaptive cytotoxic anticancer responses within TME, resulting in
an effective restrain of tumor growth. Supporting this notion, NK
cells expressing NKp46 have been found to be increased in
DTIC-treated melanoma patients (68). Furthermore, DTIC
responding patients displayed higher NK cell activation and
cytolytic activity against melanoma cells (69).

A similar capability to increase NKG2D ligands expression
has been described also for cisplatin, by which the drug can
enhance NK cells cytotoxicity. In addition, cisplatin-induced up-
regulation of other activating molecules such as B7-H6, ICAM-1
and Fas has been reported (70–75) (Figure 3A). Moreover,
cisplatin can sensitize tumor cells to granzyme B by
augmenting tumor cell permeability and by increasing the
expression of the granzyme-target caspase-3, which mediates
the execution phase of apoptosis (76, 77).

Effective killing relies on a functioning cytoskeleton in order
to mediate the correct aggregation of signaling receptors and
adhesion molecules as well as the polarized movement of
cytotoxic granules at the immune synapse (78). Since PTX
interferes with microtubules dynamics, it is expected to
dampen NK cell cytotoxicity, as demonstrated by several
authors (79–81). However, other reports challenged these
observations, indicating that PTX might actually enhance NK
cell-mediated elimination of tumor cells by increasing NK cell
cytotoxicity, by inducing the expression of ICAM-1 and MIC-B
and/or by sensitizing melanoma cells to killing (76, 81–84)
(Figure 3A). These apparently contradictory results probably
depend on the amounts of PTX used in the different
experimental settings, since immunomodulation is usually
induced by low doses of chemotherapeutics, while high doses
are considered to be frankly immunosuppressive (85).

The immunological effects induced by DTX are largely
overlapping with those observed for PTX. DTX effects on NK
cell-mediated killing are variable, with some authors reporting a
suppression while others showed that DTX enhanced NK cell
cytotoxicity (81, 86). The underlying molecular mechanisms
appeared to be shared with PTX, involving an increased
expression of NKG2D ligands and ICAM-1 (86, 87) (Figure 3A).
However, the DTX-mediated up-regulation of Fas has also been
October 2021 | Volume 11 | Article 754541
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reported, suggesting that the two taxanes may also elicit different
pathways (88).

Collectively, these evidences indicate that drugs used in
melanoma chemotherapy possess the capability to up-regulate
the expression of NK cell activating ligands on melanoma cells,
thus improving their NK-cell mediated recognition and killing,
Frontiers in Oncology | www.frontiersin.org 6
an immunomodulatory activity that may contribute, together
with direct cytotoxicity, to the anti-tumoral effects of
chemotherapeutics. Moreover, while the main targets of such
up-regulation appear to be NKG2D ligands, different drugs have
been also shown to induce different additional activating ligands
such as B7-H6, ICAM-1 and Fas. These non-overlapping
A

B

C
E

D

FIGURE 2 | The complex cross-talk affecting the activity of NK cells within melanoma TME. (A) Melanoma cells phenotype, characterized by low levels of MHC class
I molecules and high levels of activating ligands, promotes NK cells activation and killing. Additionally, melanoma cells can exploit both intrinsic (down-regulation/
shedding of activating ligands) and extrinsic (secretion of immune suppressive molecules) mechanisms to escape from NK cell-mediated elimination. (B) Dendritic
Cells (DCs) secrete cytokines such as IL-15, IL-12, IL-18 and type I IFNs which induce NK cells activation. In turn, activated NK cells produce IFNg and TNFa,
promoting DCs maturation. (C) Similar to DCs, M1 macrophages promote NK cells activation through the release IL-1b and type I IFNs, while IFNg and TNFa
secreted by activated NK cells further support M1 polarization. (D) Aside from direct effects against NK cells, immune suppressive molecules secreted by melanoma
cells also induce M2 polarization, MDSCs recruitment and Tregs accumulation. (E) In turn, MDSCs and Tregs exploit suppressive molecules (Adenosine, TGFb,
kynurenine) to counteract NK cells activation.
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activities could be effectively used to develop patient-tailored
therapies in which the choice of the chemotherapeutic to be used
is driven by the specific melanoma immune phenotype.

3.2 Chemotherapy Facilitates NK Cells
Infiltration Within TME
In order to effectively eliminate targets, killer cells must first of all
make contact with them. As previously mentioned, NK cells are
effective in eliminating circulating melanoma cells (20, 24, 25)
but their activity against the tumor mass is strongly limited by
their poor capability to infiltrate melanoma TME (22, 23). Thus,
strategies aimed to improve NK cells infiltration would represent
valuable approaches to exploit their natural cytotoxicity.

In addition to directly increase the susceptibility to immune-
mediated clearance of melanoma cells, alkylating drugs have
been shown to also affect immune cells infiltration within TME.
In a mouse model of spontaneous melanoma, both DTIC and
Frontiers in Oncology | www.frontiersin.org 7
TMZ have been shown to induce the secretion of chemokines
such as CCL5, CXCL9, CXCL10 and CXCL11 by melanoma
cells (Figure 3A). Effector T cells expressed the cognate
receptors CCR5 and CXCR3, thus the augmented chemokines
release promoted robust infiltration of anti-tumor T cells
within melanoma TME, which correlated with a better
disease control and survival also in melanoma patients (89,
90). NK cells are equipped with the same receptors as effector T
cells, thus they might be recruited within melanoma TME
through the same pathway (21). Similar findings have been
reported for cisplatin and DTX, which promoted lymphocyte
recruitment and infiltration within tumor by inducing
melanoma cells to express CXCL10 and CXCL11, respectively
(91, 92) (Figure 3A).

On the other hand, the mechanism by which PTX recruits
effector cells has been shown to be different. Indeed, PTX
promoted lymphocytes migration and infiltration within
A

C

D

E

B

FIGURE 3 | Immunomodulatory effects of anti-melanoma chemotherapeutics promoting NK cells activation. (A) Chemotherapeutic drugs induce the secretion of
CCL5 and CXCL9-11 chemokines by melanoma cells as well as the up-regulation of activating ligands on their surface, which in turn promote NK cells infiltration and
activation, respectively. (B–E) Moreover, chemotherapeutic drugs promote maturation in DCs (B) and M1 polarization in macrophages (C), which support NK cells
functioning through cytokines secretion and cell-to-cell contacts, and blunt accumulation and functions of MDSCs (D) and Tregs (E), counteracting their inhibitory
effects against NK cells.
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melanoma TME by down-regulating CD62L, a lymph node
homing receptor also expressed by NK cells (93, 94).

Another factor affecting lymphocyte infiltration is the
composition of tumor stroma, particularly the density of
collagen fibers which limit chemokines availability (90). In this
context, DTIC-sensitive melanoma lesions have been shown to
up-regulate genes involved in ECM remodeling, suggesting that
the drug may trigger two different pathways synergizing to
promote the effective recruitment of cytolytic cells (95).

Overall, the changes induced by chemotherapy in stroma
composition may facilitate the migration of NK and other killer
cells within TME, helping to overcome one of the main problem
of ICIs treatment, that is the poor infiltration of effector cells.
These evidences also suggest the assessment of NKG2D ligands,
chemokines and/or ECM components within TME as possible
strategies to predict and/or follow the therapy outcome.

3.3 Chemotherapy Selectively Targets
Immune Suppressive Cells Affecting NK
Cell Activity Within TME
As previously mentioned, immune infiltrate within tumors is
highly heterogeneous, being composed by different
subpopulations with distinct activities. Immune system
components are profoundly interconnected each other, thus
several subsets can interact with NK cells (Figure 2). In
addition, their activity can be affected by tumor cells. The net
result of this complex connections plays a pivotal role in
determining tumor progression (96), thus therapeutic
approaches able to shift the balance toward anti-tumor
activities would contribute to melanoma elimination by the
immune system. In this context, standard chemotherapeutics
may represent a valuable tool due to their capability to
preferentially target immune cell subsets inhibiting NK cells
and supporting the generation of a suppressive TME.

3.3.1 Dendritic Cells
Dendritic Cells (DCs) are tissue-resident innate immune cells
characterized by a marked variability in terms of phenotype and
functional properties. While mature DCs (mDCs) play a positive
role against tumors thanks to their capability to induce adaptive
responses and to secrete immune-stimulating cytokines, immature
DCs (iDCs) instead display tolerogenic properties, promoting
tumor escape (97). TME features such as hypoxia and acidosis
are common to inflamed tissues and thus promote DCsmaturation
and anti-tumor responses thanks to the secretion of IFNg and IL-12
(98, 99). However, other molecules produced by tumor cells such as
lactic acid, suppressive cytokines and adenosine prevent DCs
recruitment and differentiation (100–103). In turn, iDCs express
TGFb, IL-10 and IDO, thus generating a positive loop that
maintains the immunosuppressive milieu (100–103).

DCs represent one of the major immune subsets recruiting
and triggering NK cells. By expressing the same range of
chemokines secreted by melanoma cells, DCs are able to
attract NK cells within TME (104). Moreover, DCs produce
several cytokines involved, together with cell-to-cell contact, in
NK cell activation. Particularly, DCs express IL-15 promoting
NK cells proliferation, survival and activation; IL-12 and IL-18
Frontiers in Oncology | www.frontiersin.org 8
needed to stimulate cytokines secretion as well as cytotoxicity;
and type I IFNs which stimulates killing (105). In turn, cytokines
secreted by NK cells, such as IFNg and TNFa as well as NKp30
engagement, support DCs maturation and polarization towards
an anti-tumor phenotype (106, 107) (Figure 2B). In addition,
NKp30, together with NKp46 and DNAM-1, mediates DCs
editing, allowing recognition and killing of iDCs (108, 109).
The choice between induction of maturation or killing appears to
be dependent on NK/DC ratio: if NK cells are preponderant, they
tend to kill iDCs, while maturation is induced when DCs prevail
(106, 107). Additionally, mDCs are spared thanks to the high
levels of MHC-I molecules that act as inhibitory signals (108,
109). In this way, NK cells select DCs able to properly present
antigens. Antigen presentation by DCs can be further supported
by NK cells killing, which may induce the release of antigens and/
or danger signals (110). However, iDCs editing can be prevented
by TGFb secreted by both iDCs and melanoma cells, which
determines NKp30 down-regulation (111).

Taxanes and cisplatin have been shown to promote DCs
motility, maturation and activation through the stimulation of
toll-like receptor (TLR) 4, a typical pattern recognition receptor
(PRR) expressed by myeloid cells (112–116) (Figure 3B).
However, although similar in the engaged pathway as well as the
general effects exerted on DCs, the activation mediated by the two
classes of drugs relies on different mechanisms and ends up in the
secretion of different cytokines. Taxanes directly stimulate TLR4
by mimicking its natural ligand lipopolysaccharide and mainly
induce the secretion of IL-12 (112, 113, 117). On the other hand,
cisplatin-induced maturation of DCs has been proposed to be
indirect, due to the capability of this drug to trigger immunogenic
cell death, a peculiar type of apoptosis in which cell death is
accompanied by the release of endogenous danger signals (115,
118). As a consequence, DCs are induced to mature by such
danger molecules mainly secrete type I IFNs (115, 116).

Since DCs are the main immune subset involved in early NK
cells recruitment and activation, their chemotherapeutics-
induced maturation would represent an effective mechanism to
boost NK cells functioning within TME. In turn, the cross-talk
between activated NK cells and mDCs would be pivotal to
generate more effective adaptive anti-tumoral responses.

3.3.2 Macrophages
Tumor Associated Macrophages (TAMs) are the most abundant
leukocyte subpopulation infiltrating tumors. Similar to DCs,
macrophages are characterized by high plasticity in response to
environmental stimuli and can display a huge range of
phenotypes and functions whose extremes are represented by
two opposed states of polarization. Classical M1 macrophages
are pro-inflammatory cells able to present antigens and to secrete
anti-tumor Th1 cytokines, while alternatively-activated M2
macrophages promote immune suppression, angiogenesis and
tissue remodeling (119). In melanoma, TAMs mainly derive
from circulating monocytes recruited by hypoxia as well as by
pro-inflammatory cytokines secreted by melanoma cells, DCs
and tissue-resident macrophages (120).

NK cells cross-talk with macrophages largely recapitulates
phenomena occurring with DCs. Similar to mDCs, M1
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macrophages promote NK cell activation and cytolytic activity
against tumor cells and iDCs by releasing IL-1b and type I IFNs,
which up-regulate NCRs and NKG2D, respectively. In addition,
the physical interaction between NK cells and macrophages,
mainly mediated by DNAM-1, induces IFNg release which in
turn promotes M1 polarization (121–123) (Figure 2C). Of
notice, type I IFNs also stimulate IL-15 cis-presentation on NK
cells, that further induces IFNg secretion (121). Moreover,
activated NK cells are able to edit macrophage pool by
selectively killing M2 subset through the engagement of
NKp46 and DNAM-1. Again, M1 macrophages appear to be
cytotoxicity-resistant thanks to the high expression of MHC-I
molecules (123, 124). In melanoma models, monocytes and M1
macrophages have been shown to play an important role in
recruiting and priming NK cells in the TME in order to prevent
metastasization (125, 126). However, the hypoxic and acid TME
largely contributes to monocytes switching towards an M2
phenotype, a phenomenon that is further supported by
molecules expressed by either melanoma and stromal cells
such as adenosine, IL-10 and TGFb (127–130). In turn, M2
macrophages produce IL-10, TGFb and IDO, which further
support M2 polarization, dampen DCs maturation and widely
suppress NK cell functions (120) (Figure 2D). Indeed, TAMs are
usually associated with a poorer outcome in melanoma (131).

Similar to what has been described for DCs, taxanes affect
macrophages polarization and function by engaging TLR4 (117).
In murine macrophages, PTX-mediated stimulation of TLR4 not
only induced the acquisition of an M1 phenotype, as indicated by
the secretion of TNFa and IL-12 but was also able to counteract
M2 polarization and to revert melanoma TAMs towards an M1
profile, which in turn caused melanoma regression (132, 133).
DTIC has also been demonstrated to counteract M2 polarization
and activity of melanoma TAMs by reducing PD-L1 expression
and CCL22 secretion, although the underlying molecular
mechanism is unknown (134) (Figure 3C).

On the other hand, cisplatin has been shown to induce the
secretion by tumor cells of soluble factors that promoted
macrophages polarization towards a M2 phenotype, which in
turn may favor cancer cells migration (135, 136). Nevertheless,
these effects could be counteracted by the higher sensitivity of
M2macrophages to cisplatin-induced apoptosis compared to M1
macrophages and DCs (136). Similar findings have been reported
also for PTX (137, 138).

Compared to DCs, the effects of chemotherapy on
macrophages polarization are less defined and partially
conflictual, suggesting that the same drug could activate
different pathways in different cell subsets. Still, the balance
appears to lean in favor of M1 polarization, which would
contribute to generate an anti-tumoral TME supporting the
cytotoxic activities of both NK and T cells.

3.3.3 Myeloid-Derived Suppressor Cells
While DCs and macrophages can establish both positive and
negative interactions with melanoma and NK cells, Myeloid
Derived Suppressor Cells (MDSCs), the third myeloid
subpopulation composing TME, are outright pro-tumoral and
suppressive. MDSCs are immature precursors of DCs,
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macrophages and neutrophils whose presence within
melanoma TME is due to the chronic release of pro-
inflammatory molecules by tumor cells, which recruit MDSCs
from the bone marrow blocking at the same time their
maturation and inducing their polarization towards
suppressive cells (139) (Figure 2D). Thus, MDSCs generation
represents a physiological mechanism aimed to prevent immune
system over-activation and tissue damage that is subverted by
melanoma cells in order to support tumor development. Indeed,
MDSCs have been proven to enhance malignant properties of
melanoma cells, including proliferation, epithelial-to-
mesenchymal transit ion (EMT), dissemination and
metastasization (140, 141). Moreover, MDSCs dampen anti-
tumor functions of other myeloid cells by inhibiting DCs
maturation and enhancing M2 switching (139). The
suppressive activities of MDSCs rely on several mechanisms
also exploited by melanoma cells, such as IDO up-regulation,
PD-L1 expression, TGFb secretion and adenosine production
(142). The induction of such suppressive pathways by MDSCs is
further enhanced by the hypoxic and acid conditions of TME
(141, 143). Thus, MDSCs largely contribute to maintain the
immune suppressive TME firstly generated by melanoma cells.

NK cells cross-talk with MDSCs ends up with the suppression
of the former. MDSCs have been shown to inhibit NK cell
cytolytic activity and IFNg secretion through cell-to-cell
contacts mostly mediated by membrane-bound TGFb, which
induce the down-regulation of NCRs and NKG2D expression
both in vitro and in murine models (144–146) (Figure 2E).
Moreover, IFNg secreted by NK cells can activate a negative loop
by enhancing TGFb production by MDSCs (147). In addition,
acid conditions found in TME can further increase MDSCs
suppressive capabilities against NK cells (148) (Figure 2D).

The capability of taxanes and cisplatin to dampen the
accumulation and suppressive properties of MDSCs has been
well described in melanoma (116, 149–153) (Figure 3D).
Moreover, PTX have been also shown to promote their
maturation toward a DC phenotype (149, 150).

Since MDSCs immune suppressive activities largely affect the
functions of the other immune cells, particularly myeloid cells,
the capability of chemotherapeutic drugs to selectively deplete
this subset may largely contribute to restore a Th1 milieu within
TME and tumor elimination by cytotoxic effector cells.

3.3.4 Regulatory T Cells
Regulatory T cells (Tregs) represent the most important
suppressive immune cell subset within TME. Tregs are adaptive
lymphocytes able to counteract the activation of all the immune
cells in order to prevent autoimmunity and maintain self-
tolerance. However, they are also widely recruited within TME
by chemokines and hypoxia in order to promote immune evasion
(Figure 2D). In addition, Tregs accumulation can also rely on the
local expansion of infiltrating Tregs as well as on the trans-
differentiation of conventional T cells, both mediated by IL-10
and TGFb (154). Indeed, Tregs presence within melanoma TME
has been associated with tumor progression and poor survival
(155). Once activated, Tregs can directly eliminate killer cells
through the perforin/granzyme-mediated pathway, suppress their
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activity by producing TGFb, IL-10 and adenosine and/or limit
their survival by depleting IL-2. Additionally, Tregs-released
cytokines and cell-to-cell contacts largely contribute to dampen
DCs maturation, promote MDSCs expansion and induce IDO
expression on myeloid cells (156–158). In turn, iDCs and MDSCs
can further stimulate Tregs functions through TGFb (159, 160).

Data on the interactions between NK cells and Tregs in TME
are limited, but they appear to overlap those observed for
MDSCs. Degranulation, IFNg release and expression of NKp44
and NKG2D by NK cells have been shown to be impaired by
Tregs (Figure 2E). Again, such inhibition appears to be induced
by the membrane-bound TGFb expressed by Tregs (160, 161).

All the classes of drugs used in metastatic melanoma
chemotherapy have been shown to preferentially target Tregs
compared to the other lymphocytes (Figure 3E). However, the
mechanisms employed to deplete Tregs are different and not
completely overlapping. Alkylating agents have been
demonstrated to affect Tregs by reducing their infiltration within
TME. Particularly, DTIC acted by inhibiting PD-L1 expression
and CCL22 secretion by M2 macrophages (134), while TMZ
reduced the production of CCL2 by tumor cells (162).

Regard taxanes, several reports have shown that PTX
treatment at low doses markedly impaired Tregs viability,
suppressive functions and infiltration rates within TME, while
cytotoxic lymphocytes were poorly affected (149, 163, 164)
(Figure 3E). The molecular mechanism underlying this
depletion appeared to be TLR4-indipendent and to involve
instead an increased tendency to apoptosis due to the
PTX-mediated up-regulation of Fas and/or alteration in the
balance between pro- and anti-apoptotic factors in Tregs (165,
166). DTX activity against Tregs recruitment has also been
widely reported, especially in tumor models but also in clinical
settings (167–169) (Figure 3B). For this drug, the proposed
mechanism of action resembled the one observed for alkylating
agents, relying on its capability to dampen tumor cells secretion
of CCL20, recognized by the CCR6 receptor expressed on Tregs
(170). Cisplatin also appeared to be cytotoxic for Tregs since its
usage is associated with reduced Tregs numbers in animal
models, although the underlying molecular mechanism is not
defined (171–173) (Figure 3E).

Considering the wide role of Tregs in inhibiting all the anti-
tumoral components of the immune system stimulating at the
same time those subsets equipped with suppressive properties,
their selective elimination probably represents the most
important immunomodulatory property of drugs used in
metastatic melanoma chemotherapy.
4 THE USE OF NANOSYSTEMS TO
IMPROVE THE EFFECT OF
CHEMOTHERAPEUTICS IN MELANOMA

Nanomedicine represents an alternative strategy to deliver anti-
neoplastic agents. Nanotechnology-based drug delivery systems act
to improve effectiveness of chemotherapeutics in terms of bio-
distribution, water solubility, targeting capability and therapeutic
Frontiers in Oncology | www.frontiersin.org 10
index. Many different types of nanosystems have emerged in the last
years, empathizing their important role in the treatment of solid
tumors, especially melanoma (174, 175). To facilitate their
accumulation within TME, drugs can be encapsulated, adsorbed
or covalently attached on nanocarriers. Furthermore, in the past
decades, nanocarriers have been used to target TME in order to
inhibit it suppressive capability by modulating immune cells, tumor
stroma, cytokines and enzymes (176).

4.1 General Features of Nanocarriers
In recent years, several types of nanocarriers have been
developed exploiting both organic and inorganic molecules
(177–180) as well as natural vesicles (181, 182). Physical and
chemical properties of nanocarriers affect their bio-distribution,
internalization and degradation (183, 184). Additionally, they
facilitate drug release and avoid accumulation and toxicity (185).
Many strategies have been identified to prevent nanocarrier
opsonization and clearance by Reticuloendothelial System
(RES), thus increasing circulation time in blood stream (186).
Among them, surface decoration with polyethylene glycol (PEG)
or the generation of erythrocytes-membrane coated nanocarriers
have been shown to be particularly effective (187, 188).
Moreover, the PEG shell can be functionalized in order to
target molecules specifically expressed by tumor cells or TME
(189). Complement recognition and opsonization further
depend on nanocarriers shape, which also plays an important
role in their bio-distribution and circulation and ensures their
penetration in the different skin layers (190).

Specific targeting of tumor TME by nanocarriers can be
achieved by two non-mutual strategies: passive and active
targeting. Passive targeting relies on the Enhanced Permeability
and Retention (EPR) effect, which in turn depends on the typical
features of tumor neo-vascularization (Figure 4). Tumor
angiogenesis leads to high vascular density aimed to ensure a
sufficient amount of nutrients and oxygen to tumor tissues.
Furthermore, the large gaps between endothelial cells in tumor
blood vessels facilitate the extravasation. Together, the two
mechanisms allow the penetration of nanocarriers within TME
(191, 192) (Figure 4). At the same time, tumors are unable to
develop lymphatic vessels de novo, which results in poor drainage
promoting nanocarriers retention (193). Furthermore, most
solid tumors, including melanoma, show high levels of vascular
permeability mediators that can further enhance EPR effect and
drug delivery (192) (Figure 4).

On the other side, active targeting aims to facilitate the
interaction between drug-loaded nanocarriers and target cells,
reducing non-specific drug interactions. This mechanism
depends on nanocarriers surface functionalization with ligands,
such as mAbs or peptides, able to recognize with high affinity
receptors and/or molecules expressed on specific target cells, thus
conferring more specificity to the delivery system (178) (Figure 4).

In this context, NK cells have been proved to be a valuable
source of targeting molecules for tumor cells. Indeed, NK cell
activating receptors can be fused to drug-loaded nanocarriers to
form NKsomes, which are able to target cancer cells thanks to the
high expression of activating ligands (194).
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4.2 Use of Nanocarriers to Deliver
Chemotherapeutics and Target Immune
Cells Within Melanoma TME
TME takes part in cancer development, proliferation and
metastasis as well as immune escape and contributes to the
failure of many conventional cancer therapies (53, 54).
Nanomedicine has been proposed as a new therapeutic strategy
Frontiers in Oncology | www.frontiersin.org 11
to modulate TME components to increase cancer chemotherapy
performance (195, 196).

Because of EPR effect, nanocarriers accumulate inside TME
after intravenous administration and are retained for long
periods (197). Aside from tumor cells, nanocarriers can be
acquired also by the other cells constituting TME, particularly
by tumor-infiltrating phagocytes. Among them, DCs are the cell
FIGURE 4 | Passive and active targeting of nanocarriers within melanoma TME. Under certain conditions (e.g., hypoxia and inflammation) different factors
(bradykinin, nitric oxide, prostaglandins, VEGF, cytokines) induce an increased permeability of the endothelium of tumor blood vessels. The rapidly growing tumor is
facilitated by new vessels formation that contribute to the permeation of nanocarriers to the tumor stroma. Furthermore, the absence of normal lymphatic drainage in
tumors contribute to the nanocarriers retention (EPR effect). In these conditions, the passive uptake of nanocarriers is improved (passive targeting). On the contrary,
the decoration of the nanocarrier surfaces with ligands that recognize the tumor cell receptors facilitates the drugs delivery in melanoma TME.
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type equipped with the widest range of uptake mechanisms
(198). Thus, they represent the best targetable immune cell
subset within TME. Particularly, nanocarriers with a size
between 20 to 200 nm enter in the capillaries, are retained in
the draining lymph nodes and are taken up by resident DCs,
while those with a size range of 500-2000 nm are taken up by
local DCs at the site of injection. Therefore, smaller nanocarriers
size correlates with higher DC uptake. Additionally, positively
charged nanocarriers are more actively taken up by DCs, most
probably due to the negative charge of ECM that immobilizes
nanocarriers. On the contrary, negatively charged nanocarriers
may be cleared by RES or opsonized by the complement
system (199).

From a pharmacological point of view, chemotherapeutics
used in metastatic melanoma circulate into the body through
blood stream and penetrate into the tumor by passive diffusion.
This causes a weak delivery of the drug with non-specific
distribution, low response, no overall survival benefit and drug
toxicity (1).

In recent years, the application of nanotechnologies became
an efficient strategy to improve the effectiveness of
chemotherapeutic agents for melanoma treatment (200).
Particularly, nanocarriers appeared to be more advantageous
in comparison with traditional chemotherapeutics for their
capability to encapsulate lipophilic drugs, to provide higher
stability and longer circulation time in the bloodstream as well
as to control drug release (189). These innovative strategies
increased drug accumulation into TME (EPR effect) compared
with the poor solubility, penetration capability and bio-
availability of standard chemotherapeutic drugs. Moreover,
the decoration of nanocarrier shells with targeted ligands
(active targeting) facilitates the interaction with tumor
cells (Figure 4).

Several nanosystems for the delivery of therapeutics at
melanoma site have been studied. They include lipid and
polymer-based nanoparticles designed to improve delivery and
release of drugs to melanoma cells, thus exhibiting robust effects
against melanoma cells proliferation and angiogenesis both in
vitro and in vivo (201, 202). In addition, nanocarriers, if
combined with photothermal/photodynamic therapy,
specifically target melanoma cells, accumulate within
melanoma TME and inhibit tumor growth more efficiently
than the free chemotherapeutic agents (203, 204). To overcome
PTX poor water solubility, new drug delivery strategies have been
investigated (205). Notably, liposomal systems able to directly
deliver PTX to melanoma cells have been developed and studied
both in vitro and in vivo. Liposomes allow a sustained release of
PTX that is not affected by low pH, a condition commonly
observed in melanoma TME. Furthermore, liposomes surface
can be functionalized by adding peptides able to both recognize
integrins expressed by melanoma cells and promote low pH-
mediated internalization of liposomes, with increased anti-
tumoral effects and survival compared to free PTX (206).
Moreover, liposomes can be functionalized with Fibroblast
Growth Factor (FGF)-derived peptides to improve melanoma
cells targeting and favor their accumulation within TME (207).
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One of the most important barriers which compromises the
efficacy of nanocarriers is associated with the ability of immune
cells to recognize and engulf nanoparticles. To overcome this
problem, the possibility to deliver immunoregulating agents for
specific immune cell populations has been investigated (208).
This combination is useful to activate killer cells facilitating the
elimination of metastatic cells during the invasion and
metastasization process and could potentiate the efficacy of
immunotherapy by increasing delivery and retention and by
reducing immunomodulation toxicity (196, 209). Nanocarriers
for the delivery of IL-12 are generated to improve tumor
infiltration of killer cells, while other peptides may specifically
modulate T cells proliferation, infiltration, and activation (209).
Furthermore, PLA microspheres carrying IL-12 or TNFa have
been developed to overcome the suppressive effects of the TME.
In particular, the injection of microspheres in B16 melanoma-
bearing mice provoked the induction of a tumor-specific
memory T cell response and consequently the tumor
rejection (210).

Recently, the role of NK cell-derived exosomes has gained
attention since they are equipped with the same cytotoxic
molecules found in NK cells, such as perforin and FasL.
Therefore, they can eliminate tumor cells by the same
mechanisms as NK cells. In melanoma, NK cell-derived
exosomes have been shown to induce apoptosis in vitro as well
as to limit tumor growth in vivo (211). Taken together, these data
underlie the role of nano-based drug delivery systems combined
with chemoimmunotherapy as a future strategy to treat
metastatic melanoma by boosting immune response.
5 DISCUSSION

In the clinical practice, the introduction of ICIs reactivating T
cell-mediated immune responses against metastatic melanoma
has dramatically changed patients’ outcome. However, the failure
of a fraction of patients to respond to therapy spurred the
investigation of novel approaches in order to improve the
success rate. In this context, NK cells gained increasing
attention because of their alternative and complementary
capability to kill tumor cells compared to T cells. Most of the
ICIs that are currently used or under development target
inhibitory receptors also expressed by NK cells. Indeed, it has
been shown that their blockade is able to reactivate NK cell-
mediated cytotoxicity and that NK cells are essential for ICIs
anti-tumoral activity (212). Based on these evidences, ICIs
targeting NK cell inhibitory receptors such as NKG2A and
KIRs have been developed and tested in clinical trials (213).
An alternative strategy to improve NK cell-mediated killing is the
usage of bi- and trispecific Killer Cell Engagers, which engage
activating receptors on NK cells and specific antigens on tumor
cells, thus favoring immune synapse formation and NK cell
degranulation (212).

In addition, NK cells have been evaluated for adoptive cell
transfer both in autologous and allogenic settings. Of notice, NK
cells to transfer can be modified to express a Chimeric Antigen
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Receptor (CAR). Initially developed for T cells to allow them to
recognize naïve antigens, CAR technology can be applied also
to NK cells to redirect them against specific targets. Compared to
CAR-T cells, CAR-NK cells are not antigen-restricted and
maintain their capability to recognize the target through
multiple pathways, ensuring effective activation. Moreover,
CAR-NK cells are short-living cells that do not generate
memory, thus displaying a very low risk of adverse reactions
and a high safety profile (214). However, when used in solid
tumors, these approaches suffer from the same limits observed
for T cells, that is the presence of an immune suppressive TME
that limits NK cell trafficking within the tumor and/or blunts
their cytotoxic activities.

The usage of chemotherapeutics to treat cancer relied on their
capability to counteract uncontrolled tumor cells proliferation.
However, their action is not cell-specific, which means that all the
cell types with high rates of replication, including immune cells,
are negatively affected by chemotherapy. Indeed, immune
suppression is one of the most important collateral effect of
standard-dosage chemotherapy and thus was regarded as the
major mechanism making chemotherapy incompatible with
immunotherapy. However, more recent evidence challenged this
assumption, showing that sub-toxic concentrations of
chemotherapeutics exert immunomodulatory activities able to
reactivate immune responses. Additionally, it has been shown
that suppressive immune subsets display a higher sensitivity to
chemotherapy-mediated cytotoxicity, making low doses of
chemotherapeutics a potential strategy to deplete specific
immune cell populations (85). Thus, the usage of chemotherapy
is nowadays gaining attention as therapeutic strategy to improve
effectiveness rates of current immunotherapy.

The evidence discussed here indicate that metastatic melanoma
chemotherapy affects not only tumor cells but also the TME, thus
having the potential to unleash the anti-tumor activities of the
immune system. However, the combination between chemo- and
immunotherapy has recently begun to be investigated and there is
still not a consensus about the schedule to be used. Indeed, while
some reports suggested that chemotherapy should be
administrated before immunotherapy (11–13), other studies
demonstrated that the survival benefit could be achieved also by
the concomitant administration of the two kinds of drugs (14, 15).
Moreover, some case reports indicated that chemotherapy could
be effectively used after immunotherapy in non-responding
patients (16, 17). Although in theory initial chemotherapy would
represent the best strategy to reactivate the immune system and
sensitize patients to immunotherapy, the lack of biomarkers
predicting immunotherapy response makes the subsequent
usage of chemotherapy a more feasible approach. Overall,
additional studies are needed in order to define the best
therapeutic strategy to combine chemo- and immunotherapy as
well as to identify those patients actually needing the
combinatorial therapy.

NK cells within melanoma TME can directly kill tumor cells
and/or promote anti-tumoral activities by other immune
subpopulations. However, cell-intrinsic pathways in melanoma
cells as well as their capability to recruit and activate suppressive
Frontiers in Oncology | www.frontiersin.org 13
subsets can profoundly impair NK cells cytolytic and anti-
proliferative functions. The evidences reported here clearly
suggest that chemotherapeutic drugs may support NK cell-
mediated elimination of melanoma cells by four different,
complementary mechanisms: 1) increase of melanoma cells
immunogenicity, mainly occurring through the up-regulation of
NKG2D ligands but also involving other activating molecules
specifically induced by the different drugs, thus boosting the
natural cytotoxic activity of NK cells; 2) induction of NK cells
infiltration within TME, which would contribute to overcome an
important limitation in the usage of autologous, allogenic as well
as CAR-NK cells; 3) promotion of myeloid cells activation and
differentiation towards anti-cancer phenotypes that largely
contribute to develop and support NK cells functions; 4) specific
impairment and depletion of immune suppressive cells, which
play the major role in generating and maintaining the suppressive
conditions blunting NK cells cytotoxicity within TME.

Moreover, these effects could be further enhanced by nano-
based drug delivery systems designed to improve pharmacokinetics
behaviors and to increase drugs stability in vivo, thus allowing
the effective usage of sub-toxic amounts of drugs that keep the
immunomodulatory properties avoiding at the same time the
immune suppression commonly associated to high-dosage of
chemotherapeutics (215).

Overall, the association of immunotherapies with low dosages of
chemotherapeutics possibly delivered by nanosystems could restore
NK cells anti-tumor properties thus representing an effective
alternative therapeutic strategy for those melanoma patients that
fail to respond to the current immunotherapeutic treatments.
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