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Abstract

Sensitive and specific detection of human papillomaviruses (HPV) in cervical samples is a useful tool for the early diagnosis
of epithelial neoplasia and anogenital lesions. Recent studies support the feasibility of HPV DNA testing instead of cytology
(Pap smear) as a primary test in population screening for cervical cancer. This is likely to be an option in the near future in
many countries, and it would increase the efficiency of screening for cervical abnormalities. We present here a microarray
test for the detection and typing of 15 most important high-risk HPV types and two low risk types. The method is based on
type specific multiplex PCR amplification of the L1 viral genomic region followed by ligation detection reaction where two
specific ssDNA probes, one containing a fluorescent label and the other a flanking ZipCode sequence, are joined by
enzymatic ligation in the presence of the correct HPV PCR product. Human beta-globin is amplified in the same reaction to
control for sample quality and adequacy. The genotyping capacity of our approach was evaluated against Linear Array test
using cervical samples collected in transport medium. Altogether 14 out of 15 valid samples (93%) gave concordant results
between our test and Linear Array. One sample was HPV56 positive in our test and high-risk positive in Hybrid Capture 2 but
remained negative in Linear Array. The preliminary results suggest that our test has accurate multiple HPV genotyping
capability with the additional advantages of generic detection format, and potential for high-throughput screening.
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Introduction

Human papillomavirus (HPV) infects mucosal and cutaneous

epithelia and is one of the most common sexually transmitted

infections. Currently there are over 120 known HPV genotypes

[1,2] associated with a number of diseases including many cancers,

particularly cervical cancer. While HPV infection is the cause of

essentially all cases of cervical premalignant lesions and cervical

cancer [3,4], most infections even with high-risk HPV (hrHPV)

types are transient and resolve without causing disease [5].

Persistent high-risk infections among women more than 35 years

of age in contrast have much higher probability of developing into

cervical precancer and eventually progression to invasive cancer

[6]. Primary screening using HPV DNA testing with cytology

triage has been shown to be more sensitive and, importantly, more

specific than conventional testing based on cytology among

women more than 35 years of age [7–9]. The nearly 100%

negative predictive value of hrHPV testing would allow returning

hrHPV negative patients to the normal screening program and

even enable longer screening intervals for the general population

[10]. Regular population screenings have significantly decreased

deaths from cervical cancer in the developed world, but it is still

one of the most common malignancies worldwide [11]. As

hrHPVs, especially HPV types 16 and 18 in comparison to other

hrHPVs, differ in their clinical behavior, HPV genotyping could

help increase the positive predictive value of HPV testing.

Accurate risk prediction is likewise valuable in clinical surveillance

and management of patients after colposcopy.

HPV testing is currently largely based on either direct liquid

hybridization or PCR amplification of polymorphic L1 or E1/E6/

E7 viral genomic region using consensus or multiplex primers. The

current standard non-PCR molecular test, the Hybrid Capture 2

assay, is based on liquid hybridization of RNA probes to target

DNA followed by antibody detection. It is able to differentiate

between low-risk and high-risk HPV infections but cannot

determine specific HPV genotypes. The Linear Array HPV

Genotyping test is capable of differentiating 37 HPV types but is

laborious and has limited throughput capacity. The demand for

high-throughput genotyping has motivated the application of

oligonucleotide DNA microarray technology [12] to HPV

detection and identification by several groups [13–16]. In this

approach, oligonucleotide probes immobilized on microarray
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capture fluorescently labeled HPV PCR amplicons and are

reported to successfully discriminate between HPV types. Thus,

DNA microarray has the potential for a screening tool in clinical

settings. However, currently there is no standard for HPV

multiplex PCR and published primer sets vary in their ability to

amplify multiple HPV templates [17–20].

Here we report a highly sensitive and specific DNA microarray

method for genotyping of 15 different hrHPVs and two low-risk

HPVs (lrHPVs). The method is based on multiplex PCR

amplification of the viral L1 region using an improved set of

type-specific PGMY primers (modified from [21]) and subsequent

ligation detection reaction (LDR). Further, we establish an

objective criterion for HPV type presence by statistical comparison

to a background distribution. The ligation method relies on the

high selectivity of a ligase enzyme which requires complementarity

of the 39 structure to successfully catalyze the covalent joining of

two adjacently hybridized ssDNA probes [22,23]. The probes

constitute a target-specific probe pair, which becomes detectable

only if the probes are ligated together in the presence of target.

The 59 labeled discriminating probe is designed such that the 39-

end matches the target at a unique position that distinguishes the

target from other known DNA targets. The 59 phosphorylated

common probe, flanking a unique 39 ZipCode sequence, is

designed to hybridize adjacent to the discriminating probe, thus

enabling ligation only when an appropriate target is present in the

reaction mixture. The ligation products are detected on a low-

density universal microarray harboring complementary Zip

sequences (cZipCodes) [24]. The ligation method has been shown

to be able to accurately profile complex microbial populations

([25–27]). We applied LDR and universal microarray method to

the specific detection and identification of high risk HPV types

from patient samples after testing the platform with different HPV

types alone and in a mixture.

Materials and Methods

Ethics Statement
The use of human samples was approved by the ethics

committees at all hospitals where participants were recruited and

human samples were collected: the Coordinating Ethics Commit-

tee of the Hospital District of Helsinki and Uusimaa (69/E0/2007)

and the National Supervisory Authority for Welfare and Health

(2461/04/044/07). A written informed consent was signed by all

patients participating in the study. All data were analyzed

anonymously.

HPV plasmids
Cloned plasmids of full-length HPV 6, 11, 16, 18, 31, 33, 35, 39,

42, 43, 44, 51, 52, 56, and 58 were generously provided by Drs E.-

M. de Villiers, W. Lancaster, A. Lorincz, T. Matsukura, G. Orth

and S. Silverstein. Additionally, the PCR target sequences of HPV

types 45, 59, 68, 73, and 82 were synthesized and cloned into the

pCR2.1 vector (Eurofins MWG Operon, Ebersberg, Germany).

Patient samples
HPV samples sent to the Department of Virology for laboratory

diagnostics of HPV infections using the Hybrid Capture 2 test

(HC2; Qiagen, Gaithersburg, MD) were used in the study.

DNA extraction
Extraction of DNA from patient samples on the MagNAPure

LC instrument (Roche Applied Science, Indianapolis, IN) was

optimized for HC2 samples. The MagNA Pure LC Total Nucleic

Acid Isolation Kit (Roche Applied Science, Indianapolis, IN)

turned out to be optimal. For each nucleic acid extraction, 50 ml of

HC2 sample was used. For samples tested with Linear Array,

200 ml of HC2 sample was used.

Hybrid Capture 2 and Linear Array tests
The HC2 test kit for hrHPV was purchased from Qiagen

(Gaithersburg, MD) and was used according to manufacturer’s

instructions. The LA test kit was purchased from Roche (Basel,

Switzerland) and was used according to manufacturer’s instruc-

tions.

PCR amplification
HPV plasmids and patient samples were amplified with Qiagen

Multiplex PCR kit in a 25 ml reaction volume containing 12.5 ml

of 26Master Mix, 5 pmol of each type-specific PGMY-t primer

and 1 ng of plasmid DNA or 8.5 ml of extracted patient sample

DNA. In each PCR reaction using HPV plasmid template, forty

nanograms of extracted DNA from HPV-negative human

placenta was added to mimic an environment containing

chromosomal DNA. Amplifications were performed in a thermal

cycler (MJ Research, MA) starting with polymerase activation at

95uC for 10 min and 40 cycles of 95uC for 1 min, 55uC for 1 min

and 72uC for 1 min followed by a final extension at 72uC for

10 min. The amplification reaction mixtures were stored at 4uC.

Five-ml aliquots were visualized in agarose gels, and 20 ml were

purified using the PCR Purification Kit (Qiagen, Hilden,

Germany) and eluted in 30 ml distilled water. The PGMY-t

HPV multiplex primer mix sequences are listed in File S1. The

PCR primers for human beta-globin gene were 59-GAAGAGC-

CAAGGACAGGTAC-39 (GH20; forward) and 59-CAACTT-

CATCCACGTTCACC-39 (PC04; reverse) [28]. The PGMY-t

primer mix was tested by dividing the mix into four pools of five

primer pairs each in order to assess the multiplexing capacity. The

five low-risk HPV types 6, 11, 42, 43 and 44 were pooled into one

pool (lr-PGMY-t). The 15 high-risk HPV types were divided into

three different pools so that each pool contained five hr-HPV types

which were phylogenetically as distant from each other as possible.

The pools were as follows: HPV 16, 18, 33, 39, 51 (hr1-PGMY-t);

HPV 31, 45, 52, 68, 82 (hr2-PGMY-t); HPV 35, 56, 58, 59, 73

(hr3-PGMY-t). The plasmids were pooled in a similar manner and

40 pg/ml DNA extracted from human placenta testing HPV

negative was added in each pool. The PCR fragments were

sequenced in the DNA sequencing service at the Institute of

Biotechnology, University of Helsinki.

Ligation probe design
The viral genome sequences obtained from NCBI database

were managed using Staden Package Gap 4 v4.8b1 software

[29]. Ligation probe pairs, each consisting of a discriminating

probe and a common probe, were designed to target the variable

L1 genomic region amplified using the MY primers. Target

specificity of the selected probe candidates was verified using

BLAST [30]. Two probe pairs were designed for each HPV type

and one pair for the human beta-globin gene. The Tm for each

discriminating probe and common probe was set to approxi-

mately 55uC as computed by OligoCalc Nearest Neighbor

algorithm [31]. The ZipCode oligo sequences flanking each

common probe were selected from the Affymetrix GenFlex Tag

Array (Affymetrix, Santa Clara, CA) data file downloaded from

the Affymetrix website. The Cy3-labeled discriminating oligos

and phosphorylated common oligos were synthesized by Oligo-

mer Oy (Helsinki, Finland). The ligation probe and ZipCode

sequences are listed in File S1.

HPV Genotyping by Microarray
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Ligation reaction
The LDR (Figure 1) was carried out in a final volume of 20 ml

containing 16 ligation buffer (Taq ligase buffer, New England

Biolabs, MA), 30 mM tetramethylammonium chloride (TMAC;

Sigma-Aldrich, Steinheim, Germany), 250 fmol of each discrim-

inating probe, 250 fmol of each common probe, 2 ml of sample

PCR product or 40 fmol of plasmid PCR product, and 5 U Taq

DNA ligase (New England Biolabs, MA). The reaction was cycled

for 40 rounds at 94uC for 30 s and at 55uC for 4 min in a thermal

cycler (MJ Research, MA).

Microarray fabrication
The 16 compartment microarray slides were spotted with 119

different complementary ZipCode oligonucleotides (synthesized by

Bioneer, Daejeon, South Korea) in triplicate. Each cZipCode oligo

also contained a sequence complementary to the hybridization

control probe (59-TCAATGCACTGAGCCCGAGA-39) [32].

The amine coated SuperMask16 slide substrates and printing

were both purchased from Arrayit (Sunnyvale, CA). The 8615K

format custom synthesized oligonucleotide microarrays were

purchased from Agilent (Santa Clara, CA). The microarray was

designed using Agilent’s eArray web tool. HPV LDR probe

specific oligonucleotide sequences on the microarrays are listed in

File S1.

Microarray hybridization and scanning
The ligation reaction (20 ml) was diluted to obtain 40 ml of

hybridization mixture containing 5X SSC and 10 mg of herring

sperm DNA. After heating the mixture to 94uC for 2 min and

chilling on ice, 5 pmol of the complementary hybridization control

probe was added and the mixture was applied onto the microarray

slide according to manufacturer’s instructions. Hybridization was

carried out in the dark at 55uC for two hours in a temperature

controlled hybridization oven. After hybridization, the microarray

was washed for 3615 min in 0,16SSC, 0.1% SDS and 365 min

in distilled water. Finally, the slide was dried in a table top

centrifuge. For Agilent microarrays, hybridization was performed

according to the manufacturer’s instructions. Briefly, hybridization

mixture containing 16 GEx hybridization buffer (Agilent

Technologies, Cedar Creek, TX), 16 GEx blocking reagent

(Agilent Technologies, Cedar Creek, TX), 18 ml of ligation

reaction and 1 ml (5 pmol) of control oligo was applied on each

subarray and hybridized for 17 h in the dark at 65uC at 10 rpm

rotation. The slide was washed with Gene Expression wash buffer

1 (Agilent Technologies, Wilmington, DE) for 1 min at RT and

Gene Expression wash buffer 2 (Agilent Technologies, Wilming-

ton, DE) for 1 min at 37uC. 10% Triton X-102 was added to both

washing solutions to final concentration of 0.005%. The

fluorescent signal was detected at 5 or 10 mm resolution using a

GenePix Autoloader 4200AL laser scanning system with green

laser for Cy3 dye (abs 532 nm/em 550 nm, LDR-probes) and blue

laser for 6-FAM (abs 488/em 495, hybridization control channel)

[25,33]. Both the laser and the photomultiplier (PMT) tube power

were set at 100%. GenePix program version 6.1 was used to

quantitate the fluorescent signal from each microarray spot. The

microarray data are MIAME compliant and have been deposited

in ArrayExpress database (accession numbers E-MEXP-3152, E-

MEXP-3153, E-MEXP-3154, E-MEXP-3155, E-MEXP-3466, E-

MEXP-3477).

Microarray data processing
The microarray data were managed using R-software [34] and

Bioconductor package marray [35]. The microarray raw signals

were normalized as described previously [32]. Briefly, after local

background subtraction, the control channel values were multi-

plied by the ratio of medians of probe channel and control

channel. Next, negative values were removed and probe channel

signals were adjusted as L9
i = Lilog(Li/Ci), where Li is the raw probe

channel signal value at feature i and Ci is the adjusted control

channel signal value at feature i.

Signal classification
The background signal distribution in HPV detection was

determined by selecting the normalized signals of all non-specific

probes for each template from each microarray used in the type

specificity experiments and excluding signal values over 2000. The

background signal distribution served as a reference against which

probe signals were compared with one-sided statistical testing. The

background distribution was adjusted for each individual micro-

array hybridization by computing the difference between the

background distribution median and the median of three highest

values in known negative probes (non-functional probes; A84,

A106, A87, A88, A89, A90, A111). Three one-sided statistics, t-

test with unequal variances (Welch’s test) and two non-parametric

tests (Mann-Whitney and Kolmogorov-Smirnov), were evaluated

in their ability to differentiate true positive (templates present in

mixture; A99, A117, A101, A119, A102, A120, A59, A83, A112)

and true negative (functional probes but templates not present in

mixture; A100, A103, A104, A105, A107, A108, A109, A110,

A113, A114, A115, A118, A29, A53, A54, A55, A56, A57, A58,

A85, A25, A86, A91) signals from 23 replicated microarrays. The

performance of the tests was evaluated by ROC with p-values

between 0 and 1 and by computing the overlap of p-value

Figure 1. The principle of ligation detection reaction. The
discriminating probe (DP) and the common probe (CP) are designed to
hybridize adjacently on the template DNA and are joined by ligase in
the presence of a matching template (HPV PCR product). The
discriminating 39 base can be A, C, T or G. The reaction is thermally
cycled and ligation products addressed on microarray spots by the
unique ZipCode sequences flanking each CP. Hybridization control
probe carries a different label (6-Fam) than the DP (Cy3).
doi:10.1371/journal.pone.0034211.g001

HPV Genotyping by Microarray
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distributions. Mann-Whitney with p-value limit of 0.005 was used

in final testing.

Results

Evaluation of target specificity of the ligation probe pool
In order to establish functionality and type specificity of the test,

we prepared ligation reactions for each HPV type individually

using 40 fmol HPV plasmid PCR products as templates for the

ligation probe pool. The majority of the probes produced specific

signals on their cognate templates easily distinguishable from the

background of non-specific probe signals (Figure 2). However,

thirteen out of 38 HPV probes turned out not to be properly

functional, resulting in three HPV types (11, 42, 43) not having

any functional probes, and four HPV types (6, 39, 56, 44) each

having only one functional probe in the pool (Figure 2). The probe

A85 (HPV 73) gave a strong nonspecific signal for HPV 44

plasmid while probes A110 (HPV 56), A57 (HPV 52), A86 (HPV

42) and A56 (HPV 51) gave moderate signals to one non-target

plasmid each. The probe A59 (HPV 58) was positive for two non-

target plasmids. In total, out of 684 (1861962) possible

nonspecific probe-template combinations, 8 signals were consid-

ered false positives. The internal control probe for endogenous

human beta-globin was occasionally negative when a strong

positive signal was obtained for HPV.

Testing of multiplex PCR primer mixes
After initial testing of MY09/11, GP5+/6+ [36] and PGMY

primers [37] we selected to use the PGMY which were capable of

more efficient and uniform amplification of different HPV types.

However, after extensive optimization of PGMY PCR conditions,

the multiplexing capacity of these primers still remained

inefficient. Finally, we synthesized PGMY primer pairs specific

and 100% identical to each of the desired HPV types (PGMY-t

primer mix). The performances of the PGMY-t mix, hr1-PGMY-t

mix and the original PGMY mix were assessed by amplifying high-

risk pool 1 plasmids (containing HPVs 16, 18, 33, 39, 51) and

using the PCR products as templates for HPV ligation reactions.

The original PGMY primer mix amplified HPV 33 from hr1

plasmid pool relatively inefficiently. Further, it gave an unspecific

signal with the HPV 59 at higher template concentrations of 1 ng

and 100 pg (Figure 3; File S4). The PGMY-t mix performance was

approximately similar to that of hr1-PGMY-t mix in being able to

amplify all correct templates without producing false positive

signals at 1 pg 21 ng template concentrations with both 0.1 and

0.2 mM primer concentrations (Figure 3; File S4). In each

multiplex PCR reaction with plasmid/placenta or DNA from

human samples, a fragment of the gene coding for human beta-

globin was coamplified together with HPV using the PC04 and

GH20 primers. Test evaluation for human samples was done using

0.2 mM PGMY-t primer mix.

Sensitivity
In order to determine the sensitivity of the method, we

performed a dilution series experiment using HPV 16 and 18

plasmids as templates for PGMY-t HPV PCR. The plasmid

amount ranged from 1 pg to 0.1 fg. The amplicons were detected

by HPV LDR probes on microarray. One fg was the lowest

detectable amount of plasmid, after which the signals from HPV

16 and 18 probes were indistinguishable from other HPV LDR

probes (File S5). Signals from 1 fg plasmid concentration were

slightly higher than from 1000 fg concentration.

Differentiation of positive and negative signals
In order to classify signals into positive and negative categories,

we compared three statistics in their ability to differentiate true

positive and true negative signals. The signals from the

background and true negatives distributed similarly close to zero,

Figure 2. Specificity of HPV LDR probe pool. The HPV LDR probe pool was tested against individual plasmid templates. The horizontal axis
shows the probes by ZipCodes and corresponding HPV types. The vertical axis shows plasmid templates by HPV type. The signals are medians over
spot replicates on 1–3 microarrays. The majority of the probes give a high hybridization signal only for their specific target plasmids. For HPV 11, 42
and 43, there are no functional probes. HPVs 39, 56 and 68 have only one functional probe each. The probe A85 (HPV 73 ) shows a strong nonspecific
hybridization signal to HPV 44 template. Minor nonspecific hybridisation signals are evident in probes A59, A110, A57 and A56.
doi:10.1371/journal.pone.0034211.g002
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as expected, and the true positives distributed more widely

partially overlapping with the background (Figure 4A). All three

statistical tests performed well with basically no differences as

estimated by receiver operating characteristic (ROC) which plots

sensitivity vs. 1-specificity at different classifier parameter values,

i.e. in this case p-values ranging from 0 to 1 (not shown). However,

plots of the p-value distributions show that Welch’s test tends to

give clearly higher p-values for positive signals than the non-

parametric tests (Figure 4B). Only approximately 78% of true

positive signals had p-value below 0.05 with Welch’s test while for

Mann-Whitney and Kolmogorov-Smirnov the percentages were

95 and 93, respectively. Mann-Whitney and Kolmogorov-

Smirnov p-values, 90% and 85% respectively, were below 0.005

whereas only 17% of Welch p-values were below this limit. Based

on the results, we chose Mann-Whitney test to be used in the final

microarray data analysis. A HPV probe signal was classified as

positive if the obtained p-value was less than 0.005. As an

additional criterion of test validity, we performed co-amplification

of human beta-globin in order to control the sample adequacy and

quality, as well as success in DNA extraction and multiplex PCR

(internal control). Microarrays having both negative HPV and

beta-globin were discarded as this indicates that the sample is

inadequate or inhibitory, or that PCR or any other step thereafter

has not worked optimally.

Evaluation of the LDR test using clinical samples
Two sets of patient samples were tested in order to evaluate the

performance of LDR. First, a set of 16 samples was tested with

LDR and the widely used non-genotyping Hybrid Capture 2 test

(HC2) (Table 1). Sample p403/2z was tested in triplicate (File S2)

and sample p411/11z in quadruplicate, respectively, to evaluate

assay reproducibility. Out of 16 patient samples, 12 were hrHPV

positive, one was lrHPV positive and three remained negative in

the LDR test (Table 1). Seven samples were hrHPV positive when

tested with HC2. Ouf of the 12 hrHPV positive samples in LDR,

five were negative in HC2. All samples negative in LDR were also

negative in HC2. In all, 10 out of 16 samples were concordant

between LDR and HC2 (63%). Multiple HPV types were found

by LDR in five samples. Identical HPV types were identified in all

replicates. In addition, the PCR products of the two patient

samples done in replicates were sequenced, confirming the

presence of those HPV types detected by LDR (File S3). A sample

from human placenta (Table 1) was HPV negative in both LDR

and HC2. Second, using another set of 16 samples the

performance of LDR was compared to HC2 and the genotyping

LA (Table 2). Testing of one patient sample (sample 9; PO1075)

by LA was invalid, because the betaglobin control bands failed to

show (File S6). Altogether 14 out of 15 valid samples (93%) gave

concordant results. Sample 13 (PO1084) was HPV 56 positive in

LDR and HC2 whereas it remained negative in LA. There were

minor differences in genotyping results between LA and LDR. In

sample 2 (PO1065) LA detected HPV 83 which is not included in

our test. In sample 7 (PO1070) LA detected HPV type 70, and in

sample 12 (PO1082) HPV 62 was found, which were not covered

by our test (Table 2). The LDR signals for the 16 patient samples

in Table 2 are presented in File S7.

Figure 3. Comparison of the PGMY-t and the original PGMY multiplex PCR primer mixes as measured by HPV LDR signals on
microarray. Both primer mixes at 0.2 mM primer concentration amplify all five HPV types from 1 ng of template (A) & (B) and from 1 pg of template
(C) & (D). With the original PGMY mix at 1 ng template concentration, HPV 59 gives a false positive signal (B). HPV 33 signal is also relatively weak with
the original PGMY at 1 pg template concentrations (D). Data are presented as means6SD from two independent microarrays. Y-axis shows signal
intensity in arbitrary units. Asterisk (*) indicates the target HPV types present in the experiment.
doi:10.1371/journal.pone.0034211.g003

HPV Genotyping by Microarray
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Discussion

Testing for hrHPV DNA in primary screening, cytology triage

and follow-up of treated patients has gained widespread

acceptance as it has been shown to increase the accuracy of

screening [8,9,38]. Oligonucleotide microarrays in glass slide

[14,16,39] and Luminex suspension bead array [40] platforms

Figure 4. Evaluation of positive and negative microarray signals. A) Distributions of background signals and signals from true positive
probes (green) and true negative probes (red). For clarity, frequencies above 1000 and tails of intensity distributions over 2000 are not shown. B) P-
value distributions of three statistical tests. Positive (pos) and negative (neg) probes are tested against the background distribution.
doi:10.1371/journal.pone.0034211.g004

Table 1. Analysis of patient samples with LDR and Hybrid
Capture 2.

Sample Type LDR HC2

PO145 patient HPV 18 neg

PO146 patient HPV6 neg

PO147 patient - neg

PO148 patient HPV 18 16, 73 neg

PO149 patient HPV 18 33 neg

PO150 patient HPV 31 pos

PO151 patient - neg

PO152 patient HPV 16 neg

PO153 patient HPV 16, 82 neg

PO154 patient HPV 16 pos

PO155 patient HPV 33, 35 pos

PO156 patient HPV 18 pos

PO157 patient HPV 33 pos

PO159 patient - neg

p403/2z*) patient HPV 16, 31, 33, 45 pos

p403/2z*) patient HPV 16, 31, 33, 45 pos

p403/2z*) patient HPV 16, 31, 33, 45 pos

p411/11z*) patient HPV 51 pos

p411/11z*) patient HPV 51 pos

p411/11z*) patient HPV 51 pos

p411/11z*) patient HPV 51 pos

placenta placenta - neg

*)Sequenced samples.
doi:10.1371/journal.pone.0034211.t001

Table 2. Analysis of patient samples with Roche Linear Array,
LDR and Qiagen Hybrid Capture 2.

Sample Linear Array LDR HC2

1 (PO1064) 16 16 pos

2 (PO1065) 18, 45, 51, 83 18, 45, 51 pos

3 (PO1066) 52/33/35/58, 58 58 pos

4 (PO1067) 16 16 pos

5 (PO1068) - - pos

6 (PO1069) 16 16 pos

7 (PO1070) 70 - pos

8 (PO1072) 52/33/35/58 52 pos

9 (PO1075) not valid 58 pos

10 (PO1080) 52/33/35/58, 31 31,52 pos

11 (PO1081) 82 82 pos

12 (PO1082) 16, 62 16 pos

13 (PO1084) - 56 pos

14 (PO1060) - - neg

15 (PO1061) - - neg

16 (PO1071) - - neg

Detected HPV types are indicated by numbers for Linear Array and LDR.
doi:10.1371/journal.pone.0034211.t002

HPV Genotyping by Microarray
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have been previously shown to be able to detect HPV PCR

products in a type-specific manner. Importantly, Delrio-Lafreniere

and co-workers [13] earlier established a HPV microarray similar

to ours. Both tests use the same region for original amplification,

but the PCR primer and LDR probe sequences are different and

our test detects a higher number of HPV genotypes. Also, single

nucleotide extension based microarray detection (APEX) of HPV

16 E6 region was reported by Gemignani and coworkers, showing

the capability for highly specific HPV 16 variant discrimination

[41].. APEX has been used for detection of multiple HPV types as

well [42]. In this study we have developed a microarray assay

based on improved PGMY multiplex PCR primers and ligation

reaction for the detection of clinically important hrHPV types

together with two common low risk HPV types. Additionally, to

improve the accuracy of microarray read-out, we have included a

hybridization control probe to enable normalization of back-

ground and technical variation between spots [32].

Specific LDR probes were found for all 15 hrHPV types and two

lrHPV types included in the study, showing good overall

performance of our test using plasmid templates. However, design

of new probes to replace non-functional ones is needed for the

detection of three lrHPV types (HPVs 11, 43, 44) and for those types

with only one functional probe. It should be emphasized that each

probe requires individual experimental validation because current

tools do not allow reliable testing of probe candidate functionality

on the basis of in silico alignment to target genomic sequences.

Furthermore, we found the multiplexing capacity of our PGMY-t

primer set superior to other tested primer sets. This is in agreement

with Gheit and coworkers, who reported that type-specific multiplex

PCR primer pool performs better than GP5+/6+ primers [42].

Generally, the performance of our PGMY-t primers was similar to

that of the original PGMY primers but with less variability in

microarray signals. A possible disadvantage of our PGMY-t primer

set, similar to other generally used HPV PCR amplification systems,

is that it amplifies the L1 region which may infrequently be lost

upon integration of viral DNA into the host genome. However, the

E6/E7 region is always retained [44] and consequently may be a

more sensitive marker of infection than the L1 region [20].

For any test in routine diagnostic use, an objective standard for

target presence or absence is necessary to eliminate problems of

interpretation. Typically these criteria have not been discussed in

reports of diagnostic HPV microarrays but instead obtained

signals are interpreted more or less visually as a sign of presence of

a given type [14,16,41–43]. The approach we have adopted here

is based on testing a set of known positive and negative signals

against a distribution of negative signals collected from multiple

specificity experiments. Since the background signal distribution

and the test data were collected from several microarrays and

probe-template combinations, they include the array-to-array

variation as well as the probe-to-probe variation in ligation and

hybridization.

Studies comparing a HPV DNA microarray with other

detection methods like sequencing [14] or Hybrid Capture 2

and Linear array HPV genotyping [45] have reported equal or

better clinical sensitivity for microarray. This is in accordance with

our findings with a limited number of patient samples where our

LDR microarray identified multiple hrHPV types in samples

remaining hrHPV negative by HC2 assay. The LDR microarray

was highly consistent in identifying multiple HPV types when the

same patient sample was tested in triplicate or quadruplicate,

and the results were further confirmed by sequencing the PCR

amplicons, suggesting reliable genotyping of patient samples.

Comparison of our LDR test with Linear Array and HC2 using

a second set of patient samples further suggested that the

performance of LDR in HPV genotyping is as good as that of

LA. However, LA requires more manual labor and relies on visual

inspection of results. LDR in contrast can be automated to further

improve the throughput of the assay. Our test is also more flexible

than other microarrays because new targets can be easily added to

an existing microarray platform. The platform can be further

expanded to detect other viruses or other clinically relevant

pathogens.

In conclusion, we have demonstrated sensitive and accurate

HPV genotyping by type-specific multiplex PCR followed by

ligation reaction and microarray detection, together with objective

criteria for the presence or absence of HPV types. Preliminary

evaluation demonstrates the feasibility of our test for clinical

samples. In future, HPV genotyping is likely to be launched to

clinical use for the management and follow-up of patients with

cervical epithelial abnormalities requiring accurate and econom-

ical high-throughput testing.
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