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Abstract

Background: Profound skeletal muscle wasting and weakness is common after severe burn and persists for years
after injury contributing to morbidity and mortality of burn patients. Currently, no ideal treatment exists to inhibit
muscle catabolism. Metformin is an anti-diabetic agent that manages hyperglycemia but has also been shown to
have a beneficial effect on stem cells after injury. We hypothesize that metformin administration will increase
protein synthesis in the skeletal muscle by increasing the proliferation of muscle progenitor cells, thus mitigating
muscle atrophy post-burn injury.

Methods: To determine whether metformin can attenuate muscle catabolism following burn injury, we utilized a
30% total burn surface area (TBSA) full-thickness scald burn in mice and compared burn injuries with and without
metformin treatment. We examined the gastrocnemius muscle at 7 and 14 days post-burn injury.

Results: At 7 days, burn injury significantly reduced myofiber cross-sectional area (CSA) compared to sham, p < 0.05.
Metformin treatment significantly attenuated muscle catabolism and preserved muscle CSA at the sham size. To
investigate metformin’s effect on satellite cells (muscle progenitors), we examined changes in Pax7, a transcription
factor regulating the proliferation of muscle progenitors. Burned animals treated with metformin had a significant
increase in Pax7 protein level and the number of Pax7-positive cells at 7 days post-burn, p < 0.05. Moreover,
through BrdU proliferation assay, we show that metformin treatment increased the proliferation of satellite cells at

7 days post-burn injury, p < 0.05.

Conclusion: In summary, metformin’s various metabolic effects and its modulation of stem cells make it an
attractive alternative to mitigate burn-induced muscle wasting while also managing hyperglycemia.
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Introduction

Burn injury results in a debilitating stress response termed
the hypermetabolic response resulting in profound changes
to several organ systems. Despite recent advances in thera-
peutic strategies such as protocolized acute burn care,
enhanced wound coverage, improved resuscitation, and
suitable infection control, severe burns still affect nearly
every organ system resulting in significant morbidity and
mortality [1-6]. A significant increase in circulating
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catecholamines, glucocorticoids, glucagon, and dopamine
secretion is thought to initiate the cascade of events leading
to this hypermetabolic response [7-9]. A hallmark of the
hypermetabolic response is significant muscle wasting,
weakness, and debilitation, which persists for the duration
of the hypermetabolic response [10, 11]. This muscle wast-
ing occurs in muscles distal to the burn site and is due to
proteolysis to provide proteins and amino acids for the
hugely increased metabolic demands. While this process is
per se needed, the ensuing catabolism and associated
weakness complicate and delays recovery. Several groups
are trying to identify novel treatment approaches to miti-
gate this catabolism and hypothesize that a reduced cata-
bolic response would improve outcomes after burn.
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Although investigations to date have identified probable
leads and developed useful strategies to manage inflamma-
tion and muscle cachexia, no satisfactory drugs are yet
available to curtail these conditions.

Metformin is an anti-diabetic agent that is recom-
mended as a first-line oral therapy for type 2 diabetes
(T2D) [12]. Metformin manages hyperglycemia by de-
creasing hepatic glucose production through the inhib-
ition of mitochondrial respiratory-chain complex 1 [13].
With regard to skeletal muscle, metformin increases glu-
cose uptake through upregulation of the glucose trans-
porter type 4 (GLUT4) [14-17]. In addition to these
effects, metformin also activates the cellular energy sen-
sor, AMP-activated protein kinase (AMPK) [17], which
has a wide range of effects throughout the body in nu-
merous organs which will be discussed in more detail
later. The activation of AMPK leads to the inhibition of
hepatic gluconeogenesis and peripheral glucose uptake
in the skeletal muscle [17]. This activation of AMPK
leads to the translocation of GLUT4 and increased glu-
cose uptake and glycolysis within the skeletal muscle.
Under conditions of severe burn injury, adenylate cyclase
converts ATP to AMP, reducing levels of ATP and in-
creasing AMP [18, 19]. This conversion reaches its highest
peak at 72 h post-burn injury and results in activation of
AMPK and phosphorylation of mTOR which initiates
autophagy pathways [18, 19].

The therapeutic potential of metformin is not just lim-
ited to its ability to manage hyperglycemia and diabetes.
Recently, metformin has been shown to effectively treat
several diseases including cancer [20-22], cardiovascular
diseases [23], and brain trauma [24, 25]. Moreover, there
is evidence to suggest that metformin’s pleiotropic ef-
fects delay the aging process [26, 27]. Several studies
have shown that metformin can rescue muscle wasting in
response to cardiovascular injury or skeletal muscle injury
caused by cardiotoxin [28-31]. Recently, metformin has
been found to promote the differentiation of human and
mouse neural stem cells in culture. Moreover, after brain
injury, metformin treatment increases the proliferation of
endogenous neural stem cells, increases their total number
of neural stem cells, and improves sensory-motor function
after brain injury in mice [24]. Considering metformin’s
beneficial effects on neural stem cells in the context of in-
jury, it is plausible that metformin has a similarly benefi-
cial effect on muscle progenitor cells.

Skeletal muscle regeneration is dependent on contri-
bution from muscle resident stem cells, named satellite
cells. Satellite cells are marked by the paired-box tran-
scription factor 7 (Pax7). Satellite cells are essential for
skeletal muscle regeneration following injury [32] and
for muscle hypertrophy and homeostasis [33—35]. Recent
reports have illustrated a reduction in satellite cell num-
bers and an increase in myonuclear apoptosis post-burn
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injury in both humans and mice [36, 37]. Dysregulation
of satellite cells may impair their ability to repair skeletal
muscle after thermal injury. Indeed, depletion of satellite
cells worsens muscle catabolism in mice after scald-burn
injury [38] illustrating the importance of satellite cells in
the recovery of lean muscle mass. Metformin is a drug
that could potentially target satellite cells to prevent
their dysregulation after thermal injury leading to less
erosion of muscle mass. Gore et al. demonstrated that
metformin treatment increases protein synthesis in se-
vere burn patients [39]. One explanation for this in-
crease in protein synthesis may be metformin increasing
the proliferation of muscle progenitor cells (satellite
cells). These findings suggest the diverse effects of met-
formin may extend into treating burn patients and im-
proving their outcomes. Insulin resistance and muscle
wasting are chronic complications of burn trauma. Met-
formin targets both insulin resistance and muscle wasting
and is economically beneficial and easily administered
orally. These advantages make it an attractive alternative
for the long-term treatment of burn patients.

To date, the effects of metformin on muscle proteoly-
sis and structure are essentially unknown. Using a 30%
total burn surface area (TBSA) murine burn model, we
examined the effect of metformin treatment on mitigat-
ing burn-induced muscle wasting. We hypothesized that
metformin treatment would (1) increase the proliferation
of satellite cells after severe burn injury in the gastrocne-
mius muscle distal from the burn site and (2) attenuate
muscle wasting after severe burn injury.

Materials and methods

Mice

All mice used were male, 8 weeks old, and C57BL/6.
Mice were randomly divided into the following groups:
sham, burn, and burn + metformin treatment (1#=18
per group). Within each group, mice were subdivided
into groups sacrificed at three different time points: 2
days, 7 days, and 14 days post-thermal injury (n =6 per
group). The animal experiments were performed in ac-
cordance with the guidelines and regulations set forth by
the Sunnybrook Research Institute and Sunnybrook
Health Sciences Animal Policy and Welfare Committee
of the University of Toronto, Ontario Canada. The Sun-
nybrook animal care committee approved all animal
experiments (approval #15-503(M-1)) under the auspices
of the Canadian Council on Animal Care.

Burn

Animals were anesthetized with isoflurane and received
an intraperitoneal (IP) buprenorphine injection (0.1 mg/kg).
The dorsum of the animal was shaved, and lactated Ringer’s
solution was subcutaneously injected along the spine. The
mice were placed in a mold that exposes the dorsum to a
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pre-determined TBSA. A 30% TBSA full-thickness scald
injury was induced by exposing the dorsum of the animal
to water pre-heated to 98 °C for 10's and the ventrum for 2
s. Following the burn, the animals were placed in separate
cages. Sham animals were anesthetized and received bupre-
norphine injection but did not receive a thermal injury.

Metformin treatment and cell proliferation analysis

Each animal in the metformin group was injected intra-
peritoneally with 100 mg/kg of metformin hydrochloride
(Sigma-Aldrich) dissolved in 1x PBS. Injections began 24
h after burn injury and continued every day at the same
time until endpoint. To analyze cell proliferation in the
skeletal muscle, we injected animals with 5-Bromo-2'-
deoxyuridine (BrdU) (Sigma) 24-h prior to harvest. Each
animal received an intraperitoneal injection with 250 uL
of 2 mg/ml BrdU.

Muscle harvest and dry/wet muscle ratio

We dissected the gastrocnemius muscle from mice 2, 7,
and 14 days after exposure to cutaneous thermal injury
for histological and protein analysis. Whole gastrocne-
mius muscle was also weighed at the time of harvest to
obtain the wet muscle weight. The dry muscle weight
was obtained by dehydrating the whole gastrocnemius
muscle for 5 days at 50 °C. The dry muscle weight was
weighed. The dry muscle weight was divided by the wet
muscle weight to obtain the dry/wet muscle ratio. For
histology, muscle samples were tied to a support prior to
excision to prevent contraction. Samples were either
snap frozen in liquid nitrogen-cooled isopentane or fixed
in 10% neutral buffered formalin for 24 h.

Hematoxylin and eosin staining (H&E)

Frozen sections were allowed to dry for 5 min at room
temperature. Sections were then stained with Mayer’s
hematoxylin (Sigma-Aldrich) for 10 min and rinsed in
running tap water. Sections were then dipped in 0.5%
eosin 12 times and dipped in distilled water until eosin
stops streaking. Sections were then dehydrated in various
ethanol solutions and xylene. Finally, slides were mounted
and cover slipped with xylene-based aqueous mounting
media (SHUR/Mount™).

Myofiber cross-sectional area analysis

Representative images of the gastrocnemius muscle sec-
tions were captured at x20 magnification. The cross-
sectional area of individual myofiber was obtained through
Image]® software. For each animal, the cross-sectional areas
of approximately 500 myofibers were counted blindly in
five images (field-of-views) and subsequently the average
cross-sectional area was determined. We did not differenti-
ate between type I and type II fibers when measuring
muscle cross-sectional area.
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Western blot

The gastrocnemius muscle was harvested, and protein was
isolated from tissue lysates using RIPA lysis buffer. Protein
concentrations were then measured using bicinchoninic
acid (BCA) assay as previously reported [40]. Briefly,
30 mg of each protein sample was separated by SDS-
polyacrylamide gel electrophoresis, transferred to a nitro-
cellulose membrane, blocked with 5% milk in tris-buffered
saline/0.1% Tween 20, and hybridized with the follow-
ing primary antibodies: anti-Pax7 (1:500, DHSB), anti-
AMPKa (1:1000, Cell Signaling), anti-Phospho-AMPKa
(Thr172) (1:1000, Cell Signaling), and GAPDH (1:5000,
Cell Signaling). The membranes were then incubated with
anti-rabbit or anti-mouse horseradish peroxidase (HRP)-
conjugated secondary antibody (1:2500, Santa Cruz).
Detection of the signal was accomplished using western
HRP chemiluminescence (ECL) reagents (Bio-Rad Labora-
tories), and imaging of the blots was performed using
ChemiDoc™ MP System (Bio-Rad). To analyze the blots,
Image Lab™ Software (Bio-Rad) was used to quantify band
intensity and calculate the absorbance ratio of the target
protein to the loading control, GAPDH.

Immunohistochemistry

Gastrocnemius muscle samples for histological analysis
were collected and fixed in 10% formalin for 24 h and
transferred to 70% ethanol. Samples were then embed-
ded in paraffin and sectioned at 5pum across the trans-
verse plane. Paraffin-embedded slides were heated at
60°C for 30 min and deparaffinized with citrosol and
rehydrated through a series of decreasing alcohol con-
centrations. Antigen decloaker solution (Biocare Med-
ical) was preheated in an antigen decloaking chamber at
70°C for 20 min before slides were added. The slides
were then heated at 100°C in the antigen decloaking
solution for 4 min, cooled to 60 °C, and washed with tap
water. After blocking endogenous peroxidase activity
with 3% H,O, for 10 min, sections were incubated with
the following primary antibodies: anti-Pax7 (1:100,
DHSB), anti-MPO (1:200, Abcam), and anti-NF-xB p65
(1:200, Cell Signaling). Slides were washed with washing
buffer (0.05 M Tris-HCI, 0.15 M NaCl, and 0.05% Tween
20 in double distilled water). Sections were then incu-
bated in MACH3 probe (Biocare Medical) for 15 min
and washed, and MACHS3 horseradish peroxidase poly-
mer detection was added for 15min. After washing
again, betazoid diaminobenzidine (DAB) chromogen kits
(Biocare Medical) were mixed and incubated for 10 min,
or until the brown color was observed. Slides were
rinsed in running tap water, stained with hematoxylin
for 30's, washed, and differentiated in 1.5% acid alcohol
briefly. Slides were then placed in 0.1% sodium bicar-
bonate for 10s and dehydrated in citrosol and alcohol
solutions. Lastly, slides were mounted and cover slipped
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with xylene-based aqueous mounting media (SHUR/
Mount™).

For quantification, five different fields were randomly
chosen for each sample. The sections were imaged via
an optical microscope (Leica Microsystems) with x 20
and x40 objective lenses. The percentage of positive
cells for each target was determined by dividing the
number of positive cells by the total number of nuclei in
each histological field. The average ratio for each subject
was considered. Negative controls without primary anti-
body but with DAB staining were prepared to confirm
the staining observed.

Immunofluorescence

Frozen muscle samples were embedded in OCT and fro-
zen in liquid nitrogen-cooled isopentane. The samples
were cut perpendicularly via a cryostat (10-um thick-
ness). Sections were allowed to cool for 5 min at room
temperature and subsequently fixed in 4% paraformalde-
hyde (PFA) for 5min. Sections were washed with PBS
and incubated with glycine solution to quench the PFA
signal. For BrdU staining, sections were incubated in 1.5
M HCI for 30 min at 37 °C and subsequently neutralized
in 0.1 M borate buffer solutions for 5 min. After washing,
sections were permeabilized in 0.25% Triton-X for 10 min
and washed again. Sections were then incubated in block-
ing buffer (5% normal goat serum, 2% BSA, and mouse-
on-mouse blocking reagent diluted PBS) for 1h at room
temperature. Sections were rinsed in PBS and incubated
in primary antibody overnight at 4 °C overnight. The fol-
lowing antibodies were used: anti-Pax7 (1:100, mouse,
DHSB), anti-BrdU (1:250, rat, Abcam), and Laminin (1:
200, rabbit, Abcam). Sections were rinsed with PBS and
incubated in secondary antibody solution diluted in block-
ing buffer: goat anti-rabbit Alexa Fluor 488 (1:1000), goat
anti-mouse IgG1 Alexa Fluor 546 (1:1000), or goat anti-
mouse IgGl Alexa Fluor 488 (1:1000). Sections were
rinsed and mounted with fluorescent mounting media
containing DAPI (Vector Laboratories). Samples were im-
aged with a Zeiss Apotome fluorescent microscope.

Oil Red O staining

The gastrocnemius muscle was harvested, snap frozen in
liquid nitrogen-cooled isopentane, and embedded in
OCT. Using a cryostat, the muscle was cut perpendicu-
larly (thickness 10 um) and added onto the slide. Slides
were fixed in formalin and briefly washed with running
tap water. Sections were then rinsed in 60% isopropanol
and stained with freshly prepared Oil Red O working
solution for 15 min. After another rinse with 60% isopro-
panol, nuclei were lightly stained with hematoxylin
(Sigma-Aldrich) for 30 s and rinsed with distilled water.
Slides were mounted and cover slipped with xylene-
based aqueous mounting media (SHUR/Mount™).
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Statistical analysis

Statistical analysis was performed using one-way ANOVA.
Data are represented as mean + SEM (1 = 6). p < 0.05 were
taken as statistically significant.

Results

Metformin treatment attenuates muscle wasting in mice
To assess whether metformin attenuates muscle catabolism
after severe burn injury, we examined animal weights, the
dry/wet muscle ratio, and the cross-sectional muscle area.
As expected, animal weights in the burn groups decreased
significantly at 7 days, and this was sustained until 14 days
post-thermal injury (Fig. 1a), p < 0.05. This corresponded to
a 5% decrease in weight. In contrast, with metformin treat-
ment, there was only a 2.5% decrease in weights, a differ-
ence that is significant compared to the burn groups
(Fig. 1a), p <0.05. This indicates that metformin attenuates
muscle catabolism post-thermal injury. Lastly, the change
in muscle weight relative to body weight (muscle weight/
body weight) can be seen in Additional file 1.

To examine changes in muscle histology, we performed
hematoxylin and eosin (H&E) staining. There was a signifi-
cant reduction in myofiber cross-sectional area at these
7 days in the burn group (Fig. 1c, d), p < 0.05. Several studies
have shown that metformin can rescue muscle wasting in
response to cardiovascular injury or skeletal muscle injury
caused by cardiotoxin [28—31]. Indeed, in our burn-induced
muscle wasting model, metformin treatment attenuated
muscle wasting at 7 days post-thermal injury (Fig. 1c, d),
p<0.05. There was no significant difference in dry/wet
muscle ratio and muscle cross-sectional between the
metformin-treated group and the sham group at 7 days
post-thermal injury (Fig. 1b). These results suggest that met-
formin mitigates muscle wasting in severely burned mice.

Metformin does not affect myofiber size at 14 days

At 14 days post-thermal injury, we observed no differences
in the dry/wet muscle ratio or the muscle cross-sectional
area between sham, burn, and metformin groups (Fig. 2a,
b). We hypothesize that by day 14 post-thermal injury, the
mice have likely recovered in terms of their lean muscle
mass regardless of metformin treatment. This might be
expected due to the reduced morbidity observed in mice
as a result of accelerated healing time [41] and differences
in immune function [42] compared to humans. Moreover,
as opposed to humans, mice are highly mobile after burn
injury which may accelerate recovery of muscle mass.
Metformin seems to exert its effect on the skeletal muscle
and myofiber size early in the burn response of mice.

Metformin treatment reduces fat infiltration in the
skeletal muscle

After burn injury, there is massive lipolysis and re-
lease of free fatty acids that lead to fat infiltration
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Fig. 1 Metformin treatment attenuates muscle wasting in severely burned mice. a The percentage (%) body weight change in sham, burn, and
burn + metformin at 7 days post-burn in mice. b Gastrocnemius muscle mass expressed as a dry/wet muscle ratio in sham, burn, and burn +
metformin at 7 days post-burn in mice. ¢ Representative images of hematoxylin and eosin staining of the gastrocnemius muscle from sham, burn,
and burn + metformin mice at 2 and 7 days post-burn injury. Myofibers are significantly smaller at 7 days post-burn injury. Metformin treatment
restores myofiber size. Images were taken at x 20 magnification. d Quantification of muscle cross-sectional area (um?) in sham, burn, and burn +

metformin at 2 and 7 days post-burn injury

in several organs, including the liver and skeletal
muscle [43]. Intramuscular fat accumulation in the
skeletal muscle is linked with decreased muscle
strength, reduced insulin sensitivity, and increased
mortality [44]. Metformin has numerous systemic
effects, one of which is reducing fat infiltration in
the liver [45-47] and kidney [48]. Therefore, met-
formin may have indirect effects on the skeletal
muscle such as reducing fat infiltration that facili-
tates recovery of lean muscle mass. To examine fat
infiltration in the muscle, we performed Oil Red O
staining to visualize intramuscular lipid droplets.
There was fat infiltration at 7 days post-thermal in-
jury in the burn group when compared with sham and
metformin animals (Fig. 3). With metformin treatment,
we observed less fat infiltration compared to the burn
group (Fig. 3). The extent of Oil Red O staining in the
metformin group was comparable to the sham group
(Fig. 3).

Metformin treatment activates AMPKa in the skeletal
muscle after severe burn injury

To evaluate pathway activation of metformin in our
burn model, we performed western blotting for AMPKa
and the activated version of AMPK, phospho-AMPKa
(Thr172). We observed no significant difference in the
protein level of AMPKa between the sham, burn-, and
metformin-treated groups at 7 days (Fig. 4a, b). However,
there was a significant increase in the protein level of
phospho-AMPKa in the metformin treatment group at
7 days post-thermal injury (Fig. 4a, b), p <0.05. We did
not observe an increase in phospho-AMPKa in the burn
group. This might be because 7 days post-burn is too late
of a time point to examine as activation of AMPK occurs
during the acute phase of the burn response (i.e., 72 h or
less) [18, 19]. Nevertheless, these results confirm that
metformin-activated AMPK and AMPKa phosphorylation
may be the mediator by which metformin alleviated
muscle catabolism. Studies suggest that chronic activation
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Fig. 2 Metformin has no effect on myofiber size at 14 days. a Representative images of hematoxylin and eosin staining of the gastrocnemius
muscle from sham, burn, and burn + metformin mice at 14 days post-burn injury. Images were taken at x 20 magnification. b Quantification of
muscle cross-sectional area (um?) in sham, burn, and burn + metformin at 14 days post-burn injury

N

of AMPKa in the skeletal muscle increases the ex-
pression of muscle hexokinase and glucose transporter
4 (GLUT4), which mimics the effects of exercise training
in muscle [49].

Metformin treatment increases the number of Pax7+ cells
and protein level at 7 days in the skeletal muscle after
severe burn injury

The importance of AMPKa activation in attenuating
burn-induced muscle wasting is further supported by the
fact that AMPKa activation in satellite cells is essential for
muscle regeneration [50]. To examine whether metformin
treatment influences satellite cell activity after severe burn
injury, we performed immunohistochemistry and western
blotting for Pax7, a transcription factor expressed by

quiescent and proliferating satellite cells. Protein expres-
sion of Pax7 in the burn group was significantly reduced
in the muscle at 7 days post-thermal injury when com-
pared with sham and metformin groups, which is in line
with our previous report (Fig. 5a, b) [37]. Interestingly,
metformin significantly increased protein expression of
Pax7 compared to sham and burn groups (Fig. 53, b), p <
0.05. Immunohistochemistry revealed a significant reduc-
tion in the number of Pax7-positive nuclei in the burn
group compared to sham and metformin-treated groups
at 7 days post-thermal injury (Fig. 5¢, d), p < 0.05. Metfor-
min treatment significantly increased the number of Pax7-
positive nuclei compared to sham and burn groups
(Fig. 5¢, d), p <0.05. This increase in the number of satel-
lite cells may have contributed to the rescue of muscle

Fig. 3 Metformin reduces fat infiltration in the skeletal muscle after severe burn injury. Representative Oil Red O images. Images were taken at x
40 magnification. Metformin treatment reduced fat infiltration in mice at 7 days post-burn injury
.

Burn (14 days)
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Fig. 4 Metformin treatment activates AMPKa in the skeletal muscle after severe burn injury. a Representative western blot for AMPKa and
phospho-AMPKa (Thr172). b Quantification of phospho-AMPKa (Thr172) protein level normalized to AMPKa

wasting observed in metformin-treated mice. Another
possibility is that metformin enhanced anabolism of the
skeletal muscle at an earlier time point post-burn resulting
in the recovery of Pax7+ cells earlier. A greater pool of
satellite cells (muscle progenitors) increases the re-
generative capacity of the skeletal muscle to build
new myofibers.

Metformin treatment increases the proliferation of
satellite cells in the skeletal muscle

To further assess whether metformin affects satellite
cells or the changes in satellite cells are secondary to the
effect of metformin on muscles after severe burn injury,
we investigated metformin’s effect on the proliferation of
these stem cells. The increase in Pax7-positive cells ob-
served in the metformin group at 7 days may be due to
increased proliferation caused by metformin. Recently,
metformin has been shown to increase the absolute
number of neural precursor cells in mice and increase
their proliferation in response to brain injury [24, 25].
To determine whether metformin has a similar effect in
satellite cells, we performed immunofluorescence double
staining for Pax7 and BrdU to identify muscle progenitors
that were proliferating. Animals were injected with BrdU
24 h prior to sacrifice to label proliferating myonuclei.
Quantification of the proportion of Pax7/BrdU-positive
cells revealed a significant increase in proliferating Pax7-
positive cells as well as a total number of Pax7-positive

cells (Fig. 6a, b), p <0.05 (Additional file 2). Fifteen per-
cent of Pax7-positive cells were positive for BrdU in the
metformin group indicating a proliferation rate of 15%
after burn injury (Fig. 6b). Collectively, these data suggest
that metformin increases the proliferation and the total
number of muscle progenitor cells in the skeletal muscle
after severe burn injury. Metformin’s mitigation of muscle
wasting after burn injury may in part be due to its benefi-
cial effects on muscle progenitors and the regenerative
capacity of the skeletal muscle.

Metformin treatment does not attenuate inflammation in

the skeletal muscle of severely burned mice

We have recently shown that the reduction in satellite
cells post-burn injury is tightly associated with an in-
flammatory cascade. Metformin has anti-inflammatory
properties [51]. Studies have suggested that metformin
suppresses inflammation in diabetes and intestinal in-
flammation by inhibiting the activity of NF-«kB via
AMPK-independent and AMPK-dependent processes
[52-55]. Metformin’s effect on satellite cells may in part
be due to its anti-inflammatory effects. To investigate
metformin’s effect on inflammation after severe burn injury,
we performed immunohistochemistry and western blotting
for NF-kB p65. This protein complex has been implicated
in causing muscle wasting in several different diseases [56,
57]. Activation of NF-kB results in the transcription of
muscle-specific ubiquitin ligases such as MurF1 that cause
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Fig. 5 Metformin treatment increases the number of Pax7+ cells and protein level at 7 days in the skeletal muscle after severe burn injury. a
Representative western blot for Pax7 and GAPDH protein. b Quantification of Pax7 protein level normalized to GAPDH. ¢ Representative images
of Pax7 immunohistochemistry in sham, burn, and burn + metformin mice at 7 days post-burn injury. Arrows indicate positive cells, and
arrowheads show negative cells. Images were obtained at x 40 magnification. d Quantification of Pax7-positive nuclei in sham, burn, and burn +
metformin mice at 7 days post-burn injury

protein degradation [58, 59]. Furthermore, NF-kB p65 has
been shown to be elevated in the skeletal muscle of mice
[37] and in the serum of burn patients [60]. We observed a
significant increase in NF-kB p65 protein level and the
number of NF-kB p65-positive myonuclei after severe
burn injury (Fig. 7), p < 0.05. Unlike previous studies, met-
formin treatment did not attenuate NF-kB p65 activity in
this model. It is possible that metformin’s mitigation of
muscle atrophy may be attributed to its effect on satellite
cell proliferation rather than its anti-inflammatory proper-
ties. Further studies are needed to confirm this effect.

Discussion

Numerous studies have illustrated the protective effect
of metformin in mitigating skeletal muscle damage [28—
31, 61, 62] and its modulation of stem cell function in
the context of injury [24]. Given that metformin is a
metabolic drug that can potentially enhance muscle
regeneration and stem cell function, we investigated the
effect of metformin on the skeletal muscle in response
to burn injury. Here, we show that metformin treatment
attenuates muscle wasting in response to burn-induced
skeletal muscle wasting. Metformin treatment increased
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gastrocnemius muscle weight and muscle cross-sectional
area when compared with the non-treated burn group
(Fig. 1b), p<0.05. There was no significant difference
between the sham and metformin groups at 7 days indi-
cating a recovery of muscle mass with metformin treat-
ment (Fig. 1b). This rescuing of muscle atrophy is
consistent with previous findings showing that

metformin rescues muscle wasting in other injury
models. Metformin’s attenuation of muscle atrophy after
burn injury was also supported by our measurements of
the myofiber cross-sectional area (Fig. 1c, d).

To characterize metformin’s mechanisms in mitigating
burn-induced muscle wasting, and with the consideration
that our latest report revealed temporal changes in Pax7-
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positive muscle progenitor cells post-thermal injury [37],
we examined how satellite cells responded to metformin
treatment. Metformin treatment significantly increased
the number of muscle progenitors (Pax7") and the protein
level of Pax7 when compared with sham and burned ani-
mals (Fig. 5), p <0.05. Metformin treatment also signifi-
cantly increased the proliferation of satellite cells (Fig. 6)
as approximately 15% of Pax7+ cells were BrdU positive,
p <0.05. In various models of muscle regeneration, a pro-
liferation rate of 15-20% is reported after injury in the
skeletal muscle [63-65]. Furthermore, as the severity of
muscle injury increases (e.g., polytraumatic injury), the
proliferation rate increases to 28% after 1 week post injury

[66]. Although the method of inducing muscle injury dif-
fers between these studies (e.g., cardiotoxin, cold lesion
injury) and our model of burn-induced muscle wasting,
they all present almost similar levels of muscle atrophy.
As such, the similar proliferation rate araise in our study
was expected. Mechanistically, metformin’s metabolic
effects might be the underlying mechanism for this pro-
proliferatory effect of it. Activated satellite cells proliferate
to expand their population and undergo myogenic differ-
entiation into new myofibers [67]. Studies show that stem
cells, including satellite cells, rely on glycolysis to provide
energy and proliferate [68, 69]. This is due to their deep
location within the tissue that limits access to oxygen and
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protects against damage from reactive oxygen species
[70-72]. Satellite cells have few mitochondria and rela-
tively small cytoplasm; hence, they normally have low
metabolic rates [73]. When activated, the metabolism of
satellite cells rapidly elevates to provide the energy needed
for proliferation and differentiation [73]. Like cancer cells,
satellite cells rely on Warburg-like glycolysis as the pri-
mary source of energy and fast proliferation [50, 74]. As
discussed, metformin’s main effect on the skeletal muscle
is to increase glucose uptake and glycolysis. Therefore, it
is plausible that metformin treatment provides more
energy to proliferating satellite cells thus enhancing their
ability to regenerate and repair damaged myofibers after
burn injury. Recently, Pavlidou et al. reported that metfor-
min reduced the number of Pax7*/BrdU* muscle progeni-
tor cells and depleted skeletal muscle regeneration, a
finding contrary to ours [75]. The differences between
the two studies may be the nature of the injury. We
used a burn model to induce muscle wasting rather
than cardiotoxin to induce “muscle crush injury.” The
local recruitment of inflammatory cells in cardiotoxin
injury is different from the systemic inflammatory
reaction to burn injury. For example, local muscle
injury is characterized by a local increase in neutro-
phil activity and release of TNFa by M1 macrophages
which is sustained for up to 2 weeks after injury [76].
Moreover, local cardiotoxin injury specifically increases
the expression of osteopontin (OPN), a regulator of
muscle inflammation, an event 48 h after injury [77]. Burn
injury on the other hand results in a systemic cascade of
proinflammatory such as IL-6, TNF, IL-15, MCP-1, and
GM-CSF [6]. These cytokines decrease significantly at 2
weeks when there is a switch to anti-inflammatory pheno-
type [6]. This key difference changes in the nature of the
injury between the two studies and may change metfor-
min’s effect on the skeletal muscle. Another difference
between the two studies may be the mobility of mice after
cardiotoxin injury versus burn injury. Our lab has shown
that after severe burn injury, mice are quite mobile [78].
Cardiotoxin injury, however, significantly reduces the mo-
bility of mice post injury [79]. As a result, the differences
in mobility will affect the dynamics of muscle proliferation
and differentiation, and thus muscle recovery. Lastly, an-
other study showed that metformin protects against
cardiotoxin-induced degeneration [31] and metformin’s
effects may be context-dependent [80].

To confirm metformin activity within the skeletal
muscle after treatment, we performed western blotting
for AMPK. AMPK is a master regulator of metabolism
which has an a catalytic subunit with two isoforms, al
and a2 [81]. AMPK’s overall function in the skeletal
muscle is to respond to cellular energy deprivation by
increasing the potential for ATP production, and AMPK
is typically activated during exercise [81]. We observed a
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significant increase in the protein level of the active form
of AMPKa, phospho-AMPKq, in the metformin group
after severe burn injury (Fig. 4), p < 0.05. This is consist-
ent with the literature showing that metformin exerts its
effects through the activation of AMPK in the liver and
skeletal muscle [17]. The activation of AMPK in the
skeletal muscle after burn injury has important implica-
tions in metformin’s observed effect. Recently, AMPK
has been shown to be a critical mediator of satellite cell
activation and muscle regeneration [50]. In transgenic
mice with satellite cell-specific AMPKal knockout, there
is impairment of the activation and myogenic differenti-
ation of satellite cells during muscle regeneration, thus
sustaining muscle atrophy [50]. Researchers also illus-
trated that activation of AMPK is essential for the
Warburg-like glycolysis of satellite cells during muscle
regenerations [50]. Therefore, the activation of AMPK
we observed in the metformin-treated burn group might
be another underlying mechanism to the increase in sat-
ellite cell proliferation and attenuate of burn-induced
muscle wasting observed (Fig. 4).

Metformin may have also indirectly influenced satellite
cell activity through decreasing fat infiltration in the
skeletal muscle. After severe burn injury, lipid metabol-
ism is significantly altered resulting in extensive lipolysis
[82]. Lipolysis is the breakdown of triacylglycerol into
free fatty acids (FFA) and glycerol [82]. The release of
free fatty acids contributes to post-burn morbidity and
mortality by mediating insulin resistance and increasing
fat infiltration in various organs, including the skeletal
muscle [82]. Intramuscular fat infiltration is the accumu-
lation of fat within the myofibers themselves [44]. This
is because free fatty acids impair insulin-mediated glu-
cose uptake [83, 84] and inhibit glucose transport activ-
ity [85]. Furthermore, fat infiltration in the muscle is
associated with increased risk of fracture and frailty [86],
inflammation [87], and functional deficits [44]. In this
animal study, we show that metformin reduces fat infil-
tration in the skeletal muscle after severe burn injury
(Fig. 3). Recent findings from our lab have also shown
that metformin reduces fat infiltration in the liver and
improves mitochondria bioenergetics. One way by which
metformin may reduce fat infiltration is through the ac-
tivation of AMPK [80]. One of AMPK’s many effects is
to inhibit the activity of Acetyl-CoA carboxylase (ACC),
a key enzyme in the synthesis of fatty acids [80]. A re-
duction in ACC activity by metformin treatment may re-
duce fatty acid synthesis after burn injury leading to a
reduction in circulating fatty acids and thus less fat
accumulation in organs such as the skeletal muscle and
liver. Perhaps this reduction in intramuscular fat infiltra-
tion reduces inflammation in the skeletal muscle, thus
improving the function of satellite cells and reducing the
extent of muscle wasting observed.
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Severe burn injury is associated with insulin resistance
and hyperglycemia. Clinically, this is detrimental to pa-
tients because it is associated with worse outcomes due
to increased infections, increased catabolism and hyper-
metabolism, and increased incidence of pneumonia. The
gold standard to treat hyperglycemia is insulin. Insulin
treatment achieves tight glucose control and reduces the
morbidity of patients. While this is encouraging, there
are limitations to insulin treatment. For example, insulin
treatment is associated with a fourfold increased risk of
hypoglycemia. This is important because patients that
experience a hypoglycemic episode have a ninefold in-
creased risk of mortality [82]. Thus, the use of insulin in
intensive care units is limited. Alternatively, treating
burn patients with an anti-diabetic drug that manages
glucose levels with fewer factors than insulin is ideal.
Metformin is a drug that can achieve tight glucose con-
trol without the added risk of hypoglycemia like insulin.
Gore et al. investigated the effect of metformin on severely
burn adults through a stable isotope infusion study [39].
One group received metformin treatment (1 = 8) for 7 days
while another received the placebo (n = 5) for the duration
of the study [39]. In the metformin group, endogenous
glucose production decreased by 50%, and serum glucose
levels were significantly lower compared to the placebo
group [39]. Researchers found that the rate of protein
breakdown was unaffected despite the reduction in glu-
cose production and levels [39]. However, there was a net
improvement in protein balance in the metformin group
due to an elevation in protein synthesis levels [39]. A pos-
sible downside to using metformin is the potential for pa-
tients to experience lactic acidosis. A randomized phase II
clinical trial by Jeschke et al. has demonstrated that met-
formin decreased glucose levels equally as well as insulin
and was safe to use in burn patients. Furthermore, metfor-
min treatment is not associated with lactic acidosis in
burn patients [82]. A systemic review of 347 clinical trials
found no evidence of fatal lactic acidosis [88].

There are a few limitations to our study which could be
addressed in future studies. First, besides in vivo, we can
explore the mechanisms of metformin further through
in vitro studies. For instance, metformin’s effect on satellite
cells can be confirmed by isolating satellite cells from
humans or mice and treating them with metformin. Based
on our current study, we would expect metformin to
increase proliferation of satellite cells in vitro. Moreover,
treating satellite cells with metformin and dorsomorphin (a
reversible and selective AMPK inhibitor) and examining
their effects on proliferation is important. This will help
determine whether metformin’s effect on satellite cells is
through AMPK or some other mechanisms independent of
AMPK. Unfortunately, a challenge with in vitro studies is
replicating the inflammatory niche unique to burn injury.
Therefore, we believe that the value of in vivo studies is
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greater. Second, repeating our study with Pax7 reporter
mice to trace the lineage of proliferation and differentiation
after severe burn injury would be insightful [35]. Further-
more, developing mice that are deficient for AMPK in Pax7
reporter cells is important to uncover the mechanisms
of metformin on satellite cells after burn injury. Last,
using mice models may not accurately replicate post-
burn hypermetabolism observed in burn patients [78].
Larger animal models like porcine would be more
reflective of humans [78].

Conclusion

In summary, our work shows that metformin mitigates
burn-induced muscle wasting in vivo through enhance-
ment of a myogenic phenotype by affecting Pax7-
positive skeletal muscle progenitor cells. The underlying
mechanism might mainly rely on the activation of
AMPK, modulation of muscle progenitor activity, or
reduction of fat infiltration in the muscle. These find-
ings, in conjunction with recent findings illustrating the
safety and efficacy of metformin treatment in burn pa-
tients, support the notion that long-term treatment with
metformin could have beneficial effects in attenuating
hypermetabolism and muscle catabolism in burn pa-
tients. Future research should focus on the development
of therapies that address burn-induced alterations in sat-
ellite cell activity to maximize the recovery of muscle
mass in burn patients.
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