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Abstract

Uncovering the complexities of trophic and metabolic interactions among microorganisms is

essential for the understanding of marine biogeochemical cycling and modelling climate-

driven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools

for examining these complex interactions, although this remains challenging, as many

microorganisms are difficult to isolate, identify and culture. We use two species of planktonic

foraminifera from the climatically susceptible, palaeoceanographically important genus Neo-

globoquadrina, as ideal test microorganisms for the application of 16S rRNA gene metabar-

coding. Neogloboquadrina dutertrei and Neogloboquadrina incompta were collected from

the California Current and subjected to either 16S rRNA gene metabarcoding, fluorescence

microscopy, or transmission electron microscopy (TEM) to investigate their species-specific

trophic interactions and potential symbiotic associations. 53–99% of 16S rRNA gene se-

quences recovered from two specimens of N. dutertrei were assigned to a single operational

taxonomic unit (OTU) from a chloroplast of the phylum Stramenopile. TEM observations

confirmed the presence of numerous intact coccoid algae within the host cell, consistent

with algal symbionts. Based on sequence data and observed ultrastructure, we taxonomi-

cally assign the putative algal symbionts to Pelagophyceae and not Chrysophyceae, as

previously reported in this species. In addition, our data shows that N. dutertrei feeds on

protists within particulate organic matter (POM), but not on bacteria as a major food source.

In total contrast, of OTUs recovered from three N. incompta specimens, 83–95% were

assigned to bacterial classes Alteromonadales and Vibrionales of the order Gammaproteo-

bacteria. TEM demonstrates that these bacteria are a food source, not putative symbionts.

Contrary to the current view that non-spinose foraminifera are predominantly herbivorous,
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neither N. dutertrei nor N. incompta contained significant numbers of phytoplankton OTUs.

We present an alternative view of their trophic interactions and discuss these results within

the context of modelling global planktonic foraminiferal abundances in response to high-lati-

tude climate change.

Introduction

Food web networks represent a range of pathways in ecological communities including preda-

tor-prey interactions, symbiotic associations, nutrient uptake and remineralisation that enable

characterization of the transfer of nutrients and energy between species and trophic levels.

This provides a basis for understanding large-scale ecosystem processes such as community

structure and biogeochemical cycles. However, understanding these complex ecosystems is

inherently limited by the methods available to study the links between predator and prey [1].

Whereas high-throughput DNA sequencing techniques have been adopted to address preda-

tor-prey interactions for many multicellular organisms [2–4], it is the viruses, prokaryotic and

eukaryotic microorganisms that play fundamental roles within the food web and drive biogeo-

chemical cycling [5–10]. To unravel the complexity of these marine microbial interactions,

high-throughput sequencing of environmental DNA (eDNA) has been utilised to generate

microbial association networks both at local (e.g. [11–13]) and global scales [14]. This holistic

approach has uncovered previously unknown interactions between organisms, whether preda-

tor-prey, symbiont-host or parasitic associations, allowing targeted investigation of newly rec-

ognised interactions. Currently, such targeted investigations using high-throughput DNA

sequencing methods of protists, their prey, and other interacting organisms are still in their

infancy [15–17]. This is due to the difficulty in isolating, identifying and culturing specimens

from this biogeochemically important group [16, 18]. Among protists, the planktonic forami-

nifera are comparatively easy to collect (plankton net tows and scuba diving) and isolate using

stereo microscopy, due to their relatively large size (50–1000μm). They are also identifiable to

the morphospecies and small subunit (SSU) ribosomal (r)RNA gene bar code level [19]. The

morphology of their calcite shells and biogeographic ranges of their representative SSU rRNA

genetic types are relatively well known [20]. They therefore represent an ideal organism for

testing high-throughput DNA sequencing methodologies in the protists.

Understanding the ecology of planktonic foraminifera is particularly significant, as they are

used extensively in the prediction of future climate change. The deposition and burial of their

calcitic shells in the ocean sediments generates a fossil record that dates back 180 million years

[21]. Their morphospecies assemblage composition and shell geochemistry in the sediments

provides palaeoceanographers with numerous proxies for reconstructing past environmental

conditions, which are used to constrain projections of future climate change [22–24]. Many

proxies derived from the planktonic foraminiferal fossil record require species-specific calibra-

tion (e.g. [25–28]), due in part to the differing environmental preferences and ecology of the

various species [29, 30]. Interpretation of the fossil archive therefore relies heavily on obtaining

a thorough understanding of the ecology and biology of planktonic foraminifera in the water

column of the modern ocean.

Ecological knowledge is also necessary for modelling the responses of planktonic foramini-

fers to changes in seawater temperature, stratification, pH and dissolved inorganic carbon

(DIC) content as they respond to increasing anthropogenic CO2 levels [31, 32]. Such changes

affect the rates of foraminiferal shell calcification [33, 34] which would modify calcite export

from the surface and dissolution at depth, a cycle which buffers global ocean carbonate
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chemistry and atmospheric CO2 [33, 35–39]. Models currently suggest that non-spinose

macro-perforate planktonic foraminifera of the genus Neogloboquadrina are most at risk from

climate change [31, 32] in the order of increasing susceptibility from low-latitude to high-lati-

tude species: N. dutertrei<N. incompta<N. pachyderma. This is not surprising given that high-

latitude oceans have a naturally lower buffering capacity due to the higher solubility of CO2 in

their cold waters (c.f. [38]). Arctic waters are therefore expected to be the first to experience

under-saturation and dissolution of calcium carbonate minerals [40–43].

Currently, whilst the biogeographic distribution of the neogloboquadrinids is well known

[44–48], knowledge of their ecology is limited to observations of a predominantly herbivorous

diet and the inconsistent presence of putative algal symbionts in the lower latitude morphospe-

cies, N. dutertrei [29]. These intact and abundant algae are thought to be of the class Chryso-

phyceae, (chrysophyte algae), due to their observed ultrastructure which includes the presence

of a girdle lamella. They are also considered to be facultative rather than obligate symbionts

[29, 30, 49–51] although a metabolic link is yet to be demonstrated. While the neogloboquadri-

nids are known to feed on unicellular algae [29, 52], there have been no investigations of the

(trophic) interactions between the neogloboquadrinids and bacteria, which are highly abun-

dant in the water column and in POM [53–55]. Such bacteria may therefore be a potential

major food source for the neogloboquadrinids.

High-throughput DNA sequencing methods now permit an extensive examination of the

algal and bacterial trophic profiles of the climatically susceptible and palaeoceanographically

important genus Neogloboquadrina. In this study, we combine traditional observational meth-

ods (TEM and fluorescence microscopy) with 16S rRNA gene metabarcoding. This enables us

to taxonomically identify the full range of bacterial/chloroplast sources of DNA from within

single cells of the two Neogloboquadrina morphospecies N. dutertrei and N. incompta (previ-

ously N. pachyderma (dextral) [56]), collected at two sites off the coast of California. In this

oceanographic region, only a single SSU rDNA genotype of each of N. dutertrei and N.

incompta have been identified [56–58], N. dutertrei Type Ic and N. incompta Type II. We dem-

onstrate that these genotypes have completely contrasting 16S rRNA gene sequence assem-

blages within their cells. With support from microscopy studies, we discuss the significance of

their specific microbiotas and their trophic interactions for incorporation into ecological and

modelling studies.

Materials and methods

Oceanographic setting, sample collection and preservation

The oceanographic setting off the coast of California and the location of sampling sites in this

study are fully described in Bird et al. [59]. No specific permissions were required for collection

at the chosen sampling locations, and no protected habitats or endangered species were

involved. Details of sampling locations and processing information for collected individuals

is listed in Table 1. Individual N. dutertrei were collected in July 2013 from a water depth of

40–50 m (water temperature at this depth ~11˚C) via an open-close plankton net (Aquatic

Research, 150μm mesh) offshore Santa Catalina Island (33.4˚ N, 118.4˚ W) in the San Pedro

Basin, Southern California Bight. Tow material was transferred to ambient surface seawater

and kept chilled during transit to shore at the Wrigley Marine Science Center, where live fora-

minifera were wet picked. Individual specimens of N. dutertrei were rinsed in 0.6 μm filtered

surface seawater and preserved in RNALater1 (AmbionTM) for fluorescence microscopy and

genetic analysis, or fixed in 3% glutaraldehyde for TEM. Individual specimens of N. incompta
were collected along the narrow central California shelf between 1 and 32 km off Bodega

Head, (38.3˚ N, 123.0˚ W) in April 2014 just after the onset of sustained, but weak, spring
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upwelling, [60] and during April-July 2015. Samples were obtained from vertically integrated

150μm mesh–size net tows, deployed to a maximum depth of 160 m, or to 10 m above the sea-

floor at shallower sites. Individual specimens of N. incompta were processed as described

above and transferred to RNALater1 or 3% glutaraldehyde, at the Bodega Marine Laboratory.

Sampling and processing information for collected individuals is listed in Table 1.

Decalcification and washing of samples

Individual specimens for genetic analysis and fluorescence microscopy were decalcified during

exposure to RNALater1 (AmbionTM), which dissolves the shell and removes shell–associated

external contaminants [59]. Following decalcification, the naked cell was then washed in filter-

sterilised, salt-adjusted phosphate buffered saline (PBS) or sterile artificial seawater and trans-

ferred to a sterile 1.5 ml tube. The cell washing procedure was repeated three more times and

Table 1. Details of planktonic foraminiferal specimens collected.

Morphospecies Sample ID Sampling site Sampling date Co-ordinates Sea surface temperature Analysis

N. dutertrei DUT41 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ Control for fluorescence microscopy

N. dutertrei DUT43 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ DAPI staining

N. dutertrei DUT44 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ DAPI staining

N. dutertrei DUT45 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ DAPI staining

N. dutertrei DUT46 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ DAPI staining

N. dutertrei DUT47 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ DAPI staining

N. dutertrei DUT48 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ DAPI staining

N. dutertrei DUT49 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ Genotyping

N. dutertrei DUT55 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ Metabarcoding and genotyping

N. dutertrei DUT59 Santa Catalina Island July 2013 33.4˚N, 118.4˚W 18˚C-21.5˚C‡ Metabarcoding

N. dutertrei K129 Bodega Head July 2015 38.3˚N, 123.0˚W 14˚C-15˚C TEM

G. bulloides� BUL34 Bodega Head Nov 2014 38.3˚N, 123.0˚W 14˚C-15˚C Metabarcoding and genotyping

N. incompta INC25 Bodega Head April 2014 38.3˚N, 123.0˚W 10˚C-13˚C Metabarcoding

N. incompta INC27 Bodega Head April 2014 38.3˚N, 123.0˚W 10˚C-13˚C Metabarcoding

N. incompta INC28 Bodega Head April 2014 38.3˚N, 123.0˚W 10˚C-13˚C Metabarcoding

N. incompta INC30 Bodega Head April 2014 38.3˚N, 123.0˚W 10˚C-13˚C DAPI staining

N. incompta INC41 Bodega Head April 2014 38.3˚N, 123.0˚W 10˚C-13˚C TEM

N. incompta INC42 Bodega Head April 2014 38.3˚N, 123.0˚W 10˚C-13˚C TEM

N. incompta INC46 Bodega Head April 2014 38.3˚N, 123.0˚W 10˚C-13˚C DAPI staining

N. incompta K100 Bodega Head June 2015 38.3˚N, 123.0˚W 10˚C-12˚C† TEM

N. incompta K104 Bodega Head June 2015 38.3˚N, 123.0˚W 10˚C-12˚C† TEM

N. incompta K105 Bodega Head June 2015 38.3˚N, 123.0˚W 10˚C-12˚C† TEM

N. incompta K121 Bodega Head July 2015 38.3˚N, 123.0˚W 14˚C-15˚C TEM

N. incompta K124 Bodega Head July 2015 38.3˚N, 123.0˚W 14˚C-15˚C TEM

N. incompta K126 Bodega Head July 2015 38.3˚N, 123.0˚W 14˚C-15˚C TEM

N. incompta F106 Bodega Head July 2015 38.3˚N, 123.0˚W 14˚C-15˚C TEM

N. incompta F004 Bodega Head April 2015 38.3˚N, 123.0˚W 10.5˚C TEM

Table 1 Individual samples collected from two sites offshore California with details of the sampling locations and processing information for each specimen collected for

this study.

�This G. bulloides specimen is documented fully in Bird et al. [59]

‡ Temperature off Santa Catalina Island was obtained from the San Pedro Ocean Time Series data portal (https://dornsife.usc.edu/spot/cruise-log/)) for July 18, 2013

†Temperature at 1-m water depth obtained from Bodega Marine Lab obtained from Bodega Marine Lab Offshore Buoy located 1.2 km off Bodega Head at the 30-m

isobath (http://boon.ucdavis.edu/bml_buoy.html)).

https://doi.org/10.1371/journal.pone.0191653.t001
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the cell was then transferred into DOC DNA extraction buffer [61] for DNA analysis, or 4%

(w/v) paraformaldehyde in salt–adjusted PBS for fluorescence microscopy.

Foraminifera genotyping and Sanger DNA sequencing

DNA was extracted from individual foraminifer specimens using the DOC extraction method

[61] for partial SSU rRNA gene amplification to identify the specific genotype. PCR was per-

formed according to Seears et al. [62]. PCR products were ligated into the pGEM1-T Easy

Vector (Promega) and transformations were carried out in JM109 (Promega) competent cells

according to the manufacturer’s protocol. DNA sequencing was carried out using the Big-

Dye1 Terminator v3.1 Cycle Sequencing Kit and an ABI 3730 DNA sequencer (both Applied

Biosystems).

DNA extraction, amplification and 16S rRNA gene metabarcoding

DNA for 16S rRNA gene metabarcoding was extracted from the decalcified and washed cells

using the DOC extraction method [61] The DNA from five Neogloboquadrina specimens

were amplified together with three reagent controls as follows: N. dutertrei (DUT55 and

DUT59) from Santa Catalina Island, N. incompta (INC25, INC27 and INC28) from Bodega

Head, 2 x Controls with no DNA template and 1 x Control with DOC buffer only. The V4

region of the 16S rRNA gene was chosen for amplification using the 515F forward primer and

a barcoded 806R reverse primer series [63]. This primer set amplifies a 253bp DNA fragment.

DNA degradation in prey items limits the success of amplification of DNA sequences greater

than ~250bp [2]. Therefore this primer set provides information not only about intact undi-

gested bacteria and chloroplasts, but also about those phagocytosed for food. These primers

are widely used by the Earth Microbiome Project [64] and therefore the amplification biases

are known and well documented. For example, there is a bias against amplification of the

SAR11 group of marine Alphaproteobacteria, and a slight bias towards over amplification of

Gammaproteobacteria [65–67]. The thermal cycling conditions are detailed by Caporaso et al.,

[63] and PCR reactions described by Bird et al., [59]. Next-generation DNA sequencing was

performed at Edinburgh Genomics using an Illumina MiSeq v2 to generate 250 base pair (bp)

paired-end reads.

Quality filtering, operational taxonomic unit (OTU) picking, and

taxonomic assignment

The Quantitative Insights in Microbial Ecology (QIIME, v1.8.0, [68]) pipeline was used to

assemble paired–end reads and quality filter the sequences as described by Bird et al., [59].

Chimeras were detected using Usearch v6.1.544 default settings [69] and version 13_8 of the

Greengenes 16S rRNA gene references database [70]. The default QIIME pipeline was used for

both de novo OTU picking and closed reference OTU picking followed by taxonomic assign-

ment also using version 13_8 of the Greengenes 16S rRNA gene database [70]. De novo pick-

ing clusters DNA sequences into OTUs with 97% similarity with no external reference and

selects a representative sequence of each OTU for alignment and subsequent assignment of

taxonomy. This script keeps all diversity, including unknowns in the sample set. Closed refer-

ence picking was also performed which removes OTUs that are not closely matched (<97%)

with OTUs in the Greengenes database. This output is required for Normalisation By Copy

Number, developed for the PICRUSt pipeline [71] using the online Galaxy tool (http://

huttenhower.sph.harvard.edu/galaxy/). This corrects the abundance of each OTU to better

reflect the true organism abundance by normalising predicted 16S rRNA gene copy number
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for each OTU. In both OTU picking methods, OTUs with fewer than 10 sequences across all

samples were removed from the sample set.

Contaminant removal

Given the low yield of endogenous bacterial DNA in these small-sized samples, it was antici-

pated that amplicon contamination from PCR amplification reagents, DNA extraction

reagents, and the ultra-pure water system would contribute a significant number of DNA

sequences and OTUs from contaminant genera to the sample set [72, 73]. Contaminant OTUs

were removed according to Bird et al. [59]. Two OTUs were removed due to contamination in

the two PCR controls; a Bradyrhizobiaceae OTU of the class Alphaproteobacteria and an Aci-
netobacter OTU of the class Gammaproteobacteria. Ten contaminating OTUs were removed

due to contamination via the DOC buffer, six of these were also of the class Alphaproteobac-

teria, order Rhizobiales, with four classified to a lower taxonomic rank including a second

Bradyrhizobiaceae; a Methylobacterium; a Mesorhizobium; and a Pedomicrobium. One final

Alphaproteobacteria OTU was removed, a Sphingomonas of the order Sphingomonadales. The

final three OTUs were Burkholdaria bryophila of the class Betaproteobacteria; Sediminibacter-
ium of the phylum Bacteriodetes; and a chloroplast OTU of the Streptophyta. A single Bradyr-

hizobiaceae OTU was by far the largest contaminant with a total of 130,244 sequences from

the three control samples (224,399 sequences across all samples) and it is known to be, together

with other Alphaproteobacteria, a common contaminant of next-generation sequencing data

[73].

Alpha-rarefaction and sequencing depth

In QIIME, the script alpha_rarefaction.py was used to assess whether the sequencing depth

(i.e. the numbers of sequences generated for each sample) was adequate to detect the full range

of bacterial diversity found in each foraminiferal specimen. Samples were rarefied to the lowest

sequencing depth observed across all samples (57,929 sequences in closed reference picking

and 57,177 sequences in de novo picking, both in DUT59). Rarefaction curves for OTU rich-

ness (S1 Fig) were generated using the observed species metric which counts the number of

unique OTUs found in a sample. The numbers of new OTUs increased rapidly up to 6,000

sequences per sample (demonstrated by the steepness of the curve), before slowing (demon-

strated by flattening curves), confirming that the sequencing depth was sufficient to capture

the full bacterial assemblage diversity within each species.

Fluorescence and transmission electron microscopy

Individual N. dutertrei (n = 6) and N. incompta (n = 2) cells were stained with 4’,6–diama-

dino–2–phenylindole (DAPI) following the procedure of Bird et al. [59]. Exposure of cells

to DAPI causes the formation of a highly fluorescent DAPI–DNA complex that allows the

visualisation of bacterial cells and eukaryotic cell nuclei under fluorescence microscopy. An

unstained specimen of N. dutertrei (Table 1, DUT41) was also examined by fluorescence

microscopy to observe the background levels of autofluorescence under the DAPI filter set to

compare with the appearance of DAPI-stained individuals.

Transmission Electron Microscopy (TEM) was used to observe and document the struc-

tural relationships between the internal microorganisms and foraminiferal cells. N. dutertrei
and N. incompta were fixed following the protocol of Spero [74] to decalcify the foraminifera

after initial fixation in 3% glutaraldehyde. Ultrathin sections (60 nm) were cut from selected

areas, stained in Uranyl Acetate and Lead Citrate, and then viewed in a JEOL JEM-1400 Plus

transmission electron microscope.
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Results

In total, 26 specimens of the two planktonic foraminiferal morphospecies N. dutertrei (n = 11)

and N. incompta (n = 15), collected off Santa Catalina Island and Bodega Head, were investi-

gated during this study. The sampling information is shown in Table 1 and the sampling strat-

egy and genetic characterisation is described in the methods.

Genetic characterisation

The partial SSU rRNA gene sequences amplified from specimens DUT55 and DUT49 identi-

fied them as N. dutertrei Type Ic. The DUT55 SSU DNA sequence (1000 bp) was submitted to

Genbank (NCBI, accession number KX816048 [59]. This genotype has been found routinely

in the Southern California Bight [57] and no other genotype has been reported in the region.

Therefore, we are confident that all the individuals analysed in this study were N. dutertrei
Type Ic. Although the amplification of the SSU rRNA gene of N. incompta proved unsuccess-

ful, we are also confident that it was N. incompta Type II. Only two N. incompta genotypes

have been identified globally (Types I and II). Type I has been found throughout the North

and South Atlantic, while only Type II has been identified within the northeast Pacific waters

of the California Current [21, 57, 58], within our study area.

16S rRNA gene metabarcoding

16S rRNA gene metabarcoding was carried out on two specimens of N. dutertrei (DUT55,

DUT59) and three specimens of N. incompta (INC25, INC27, INC28). This raw dataset is

submitted to the sequencing read archive (SRA, NCBI); Bioproject accession PRJNA341096,

Biosample accessions SAMN07249166-SAMN07249169, SRA run accessions SRR5710159-

SRR5710162. A total of 1,226,456 sequences were generated by Illumina sequencing from the

five samples and three controls after quality filtering. After removing control sequences and

control contaminant OTUs from the dataset, a total of 741,768 sequences (closed reference

picking) and 742,871 sequences (de novo picking) were clustered in OTUs and taxonomically

assigned. The numbers of sequences and OTUs generated in individual specimens for both

closed reference picking and de novo picking are shown in S1 Table. Since the within-speci-

men OTU profiles were highly comparable between de novo picking and closed reference

picking with normalisation by copy number, we present results for closed reference picking

with normalisation by copy number.

The taxonomic composition and relative abundance of OTUs in each of the Neogloboqua-
drina specimens is shown in Fig 1. An individual specimen of the spinose planktonic forami-

nifera, Globigerina bulloides, (BUL34, Table 1; [59]) is also shown for additional comparison.

All three morphospecies contain a substantially different 16S rRNA gene assemblage, with a

high degree of consistency in the microbial assemblage between individuals of the same spe-

cies. However, there are differences in the relative composition of the microbial populations

between specimens.

16S rRNA gene assemblage in N. dutertrei
Two individual N. dutertrei (DUT55 and DUT59; Table 1) were investigated (Fig 1). In the

first individual (DUT55), 53% of all sequences are assigned to nine Stramenopile chloroplast

OTUs (phylum containing diatoms and Chrysophyceae). However, the majority of these Stra-

menopile chloroplast sequences (99%) are found within a single OTU, the representative

sequence of which in turn has a 99% match to algae of the class Pelagophyceae (GenBank

accession LN735509, a sister class to the Chrysophyceae). In addition, 45% of sequences in
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DUT55 are assigned to four Cercozoa (phylum of mixotrophic protists) chloroplast OTUs, of

which one OTU is dominant (92% of Cercozoa sequences). In DUT55, Stramenopile and Cer-

cozoa sequences together account for over 98% of the sequence assemblage. In the second

individual (DUT59), Stramenopile chloroplasts contribute more than 95% of sequences across

only three OTUs, with 99.9% of all Stramenopile sequences belonging to the same single OTU

as that dominating in DUT55, and related to the Pelagophyceae. Whilst this second individual

does contain two Cercozoa chloroplast OTUs, the relative abundance of these sequences is

only 0.4%. In both cases, bacterial sequences contribute very little: 2%–4% of the assemblage.

Fig 1. Relative abundance of taxonomically assigned 16S rRNA gene sequences from six individual foraminifer

specimens. Two N. dutertrei (DUT55 and DUT59), three N. incompta specimens (INC25, INC27 and INC28) and one

G. bulloides specimen (BUL34; [59]) are shown for comparison. Sequences are assigned to operational taxonomic units

(OTUs) and have been grouped in the figure at higher levels of taxonomic classification for visual clarity (see key).

Assignation of lower taxonomic ranks are discussed in the text, such as the OTUs grouped within the

Gammaproteobacteria, in the order Vibrionales.

https://doi.org/10.1371/journal.pone.0191653.g001
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16S rRNA gene assemblage in N. incompta
The three N. incompta replicates, (INC25, INC27 and INC28; Table 1) contain the larger num-

bers of OTUs (S1 Table; S1 Fig) of the two morphospecies investigated in this study. Despite

the relatively high diversity observed, there is a striking similarity in the bacterial assemblage

across the replicates. 93%, 95% and 83% of all sequences in INC25, INC27 and INC28 respec-

tively are of the class Gammaproteobacteria (Fig 1). There are 14 orders within the class Gam-

maproteobacteria, nine of which are represented within the N. incompta specimens

contributing to 131 OTUs in total. Just two of these orders, however, contain the majority of

the Gammaproteobacteria sequences; the Alteromonadales which contribute 73 OTUs and the

Vibrionales which contribute 32 OTUs. The other seven orders each generally contribute less

than 0.5% sequence abundance across 26 OTUs.

Specimens INC25 and INC28 contain more Vibrionales (75% and 73% respectively) compared

to Alteromonadales sequences (17% and 10% respectively). All of the Vibrionales are of the family

Vibrionaceae with sequence abundances of 67% (INC25), 14% (INC27) and 24% (INC28) found

within 15 OTUs classified only to this level. However, four OTUs of the family Vibrionaceae were

assigned to the genus Allivibrio and comprise sequences abundances as high as 40% in INC28

with 2.4% in INC25 and less than 1% in INC27. 12 OTUs assigned to the genus Photobacterium
make up 3% (INC25) 0.1% (INC27) and 4% (INC28) of sequence abundance.

INC27 differs from INC25 and INC28 in that it contains fewer Vibrionales than Alteromo-

nadales sequences; 14% Vibrionales described above, and 80% Altermonadales. The main con-

tributor to the order Alteromonadales bacterial assemblage in INC27 are 32 OTUs of the

family Pseudoalteromonadaceae which together make up 46% of all sequences in this speci-

men. Two further groups identified to the family level are also of import; Colwelliaceae (19%

across 13 OTUs) and Alteromonadaceae (12% across 7 OTUs).

All N. incompta specimens contain negligible chloroplast 16S rRNA gene OTUs, with less

than 0.2% of sequences assigned to 10 OTUs from a range of phyla (Stramenopiles, Cercozoa,

Streptophyta and Haptophyta).

Both neogloboquadrinids also differ from G. bulloides Type IId (Fig 1; [59]). Aside from the

large proportion of Synechococcus currently only observed in this genotype, G. bulloides con-

tains negligible numbers of Alteromonadales and Vibrionales, instead containing a range of

OTUs assigned to the Alphaproteobacteria. G. bulloides also contains few chloroplast OTUs.

Fluorescence and transmission electron microscopy

Targeting a short 253 bp DNA fragment in 16S rRNA gene metabarcoding enables amplifica-

tion of the degraded DNA of prey items [2] but will also amplify the intact DNA of any endo-

bionts/symbionts housed within the foraminiferal cell. To determine whether any of the 16S

rRNA genes, sequenced and taxonomically assigned in the metabarcoding performed in this

study were from endobionts/putative symbionts rather than from prey organisms, microscopy

was used to observe and document the structural relationships of any intact and more broadly

distributed algal/bacterial cells within the host cytoplasm (e.g. [47, 59, 75]).

Fluorescence microscopy of N. dutertrei
Examination of an unstained, fixed N. dutertrei specimen (DUT41; Table 1) by fluorescence

microscopy demonstrates high levels of diffuse autofluorescence across the entire cell. How-

ever, in all DAPI-stained N. dutertrei cells (n = 6; Table 1) a uniform arrangement of large

numbers of nuclei across the cell was observed above background autofluorescence (Fig 2).

These fluorescing structures are of a size (~2 μm) comparable to the algal symbionts found

within the cytoplasm of the spinose planktonic foraminiferal species Globigerinella siphonifera
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Fig 2. Fluorescence micrograph of a DAPI-stained decalcified N. dutertrei cell. (a) Diffuse autofluorescence can be observed throughout the cytoplasm. The observed

~2 μm diameter structures prevalent throughout the cell are consistent with the presence of picoeukaryotic algae. The white arrowhead denotes an example of the bright

spots, 5–10μm in size that may be food vacuoles containing condensed prey items. The white rectangle denotes the area magnified in (b) where the black arrowhead

highlights one of the ~2 μm diameter putative picoeukaryotes.

https://doi.org/10.1371/journal.pone.0191653.g002

Fig 3. Fluorescence micrographs of decalcified N. incompta and G. bulloides cells. (a) High levels of background autofluorescence can be observed throughout the

cytoplasm of the DAPI-stained decalcified N. incompta cell. However, in contrast to N. dutertrei (Fig 2), there are no abundant algal nuclei observable above background

signals. In addition, in contrast to decalcified G. bulloides, where cyanobacterial cells can easily be detected (b) no bacterial cells can be observed in N. incompta.

https://doi.org/10.1371/journal.pone.0191653.g003
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Type II [50] and to those reported in N. dutertrei [49]. This observation agrees with 16S rRNA

gene metabarcoding which assigned 53% (DUT55) and 95% (DUT59) of OTUs to a Strameno-

pile source. DAPI staining also indicates that there are no identifiable bacterial cells within the

N. dutertrei cell. Bacteria would have a fluorescent signature of less than 1 μm, as seen in fluo-

rescence micrographs of G. bulloides cells which contain bacterial endobionts (for example, see

Fig 3; [59]). Again, these data support the findings of 16S rRNA gene metabarcoding which

assigned only 2%–4% of sequences to bacterial OTUs. In addition, in DAPI-stained N. duter-
trei cells some highly fluorescent regions of 5–10 μm diameter can be observed (Fig 2). These

stained structures are similar in size range to food vacuoles (for example, see Fig 4) and there-

fore are likely to be DAPI–DNA complexes in organisms sequestered within food vacuoles.

Fluorescence microscopy of N. incompta
DAPI-stained N. incompta cells express high levels of background autofluorescence (Fig 3A).

In contrast to N. dutertrei (Fig 2), no algal nuclei can be observed. This observation is consis-

tent with 16S rRNA gene metabarcoding, which assigned < 0.2% of sequences to a chloroplast

source in this species. However, despite > 99% of all sequences being assigned to bacterial

OTUs in the 16S rRNA metabarcoding of N. incompta, intact bacterial endobionts are not

observed (Fig 3A), as they were in the G. bulloides cell (Fig 3B; [57]). This suggests that bacteria

are solely prey organisms in N. incompta, and that there are no endobiotic/symbiotic associa-

tions. Some brighter regions of fluorescence within the DAPI-stained N. incompta cells are of a

similar size to those in N. dutertrei (5–10 μm) and hence may also be DAPI–DNA complexes

in organisms sequestered within food vacuoles.

TEM of N. dutertrei
Fluorescence microscopy identified a wealth of picoeukaryotes evenly distributed within

the N. dutertrei cell (Fig 2). TEM was therefore used to observe and document the structural

Fig 4. Transmission electron micrographs of pelagophyte cells inside N. dutertrei. (a) Intact picoeukaryotic algae can be observed (Al) in close proximity to the cell

periphery. The inner organic layer (IOL) is also clearly visible. A probable food vacuole can also be seen (Fv). (b) An individual algal cell with a clearly visible horse-shoe

shaped chloroplast (Chl) with girdle lamella (GL) and discernible nucleus (N). (c) Two intact algal cells with obvious chloroplasts and nuclei can be seen above an algal cell

being digested (DC). The nucleus and chloroplast of this cell are still observable, but the cell membrane appears no longer to be fully intact.

https://doi.org/10.1371/journal.pone.0191653.g004
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relationship between these putative symbionts and the N. dutertrei cell. Numerous algal cells

were observed within the single specimen of N. dutertrei investigated (K129; Table 1), many

of which were found close to the host cell membrane (Fig 4A). The cells have a distinctly coc-

coid appearance and contain a single large horseshoe-shaped chloroplast with a girdle lamella,

characteristic of the Pelagophyceae (Fig 4A; [76]). However, small numbers of algae appeared

to be in a state of digestion within the host cell (Fig 4C). No other cell types were observed

within the foraminiferal cell, which might indicate that the sequences assigned to Cercozoa

via 16S rRNA gene metabarcoding in DUT55 were derived from a food source, although anal-

ysis of further samples is required to confirm this. No bacterial cells were observed in this

specimen.

TEM of N. incompta
TEM imaging was performed on ten N. incompta specimens (Table 1) to investigate whether

bacteria of the orders Vibrionales and Alteromonadales identified via 16S rRNA gene metabar-

coding (83%–95% of sequences; Fig 1) were observable in the foraminiferal cell. Despite the

numerous vesicles of< 1 μm present in the N. incompta micrographs, none were bound by a

cell membrane and hence no bacterial endobionts were observed in the cell (Fig 5A and 5B).

Unlike in G. bulloides (See Fig 6; [59]), there was no bacterial population with consistent mor-

phology, position or abundance in any of the N. incompta individuals examined. Of note is

the presence of a small number of algal cells in all the N. incompta specimens, whose cytoplasm

is undergoing degradation (Fig 5C) unlike those observed in N. dutertrei (Fig 4B). Their

extremely low numbers are indicative of a limited food source rather than of a symbiotic rela-

tionship. This is supported by the 16S rRNA gene metabarcoding data, which documents just

0.2% of sequences corresponding to chloroplasts from the phylum Cercozoa (mixotrophic

protists; INC25), 0.1% of sequences assigned to chloroplasts from Stramenopiles (includes dia-

toms, Chrysophyceae and Pelagophyceae; INC27) and 0.2% of sequences corresponding to

chloroplasts of Streptophyta (includes green algae; INC28).

Discussion

N. dutertrei and N. incompta are non-spinose macro-perforate planktonic foraminifera that

are often, but not exclusively, found within an aggregation of POM (personal observations)

Fig 5. Transmission electron micrographs of N. incompta. (a) Low-magnification region of N. incompta showing the nucleus (N) and a fibrillar body (fb). (b) Higher

magnification image shows a fibrillar body (Fb) and probable food vacuoles (black arrowheads). (c) A very small number of algal cells in early degradation (Al) were

observed in some N. incompta individuals.

https://doi.org/10.1371/journal.pone.0191653.g005
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which, we suggest, is a feeding cyst. Feeding cysts are extremely common in many species of

benthic foraminifera [77, 78]. They have also been reported in association with the non-spi-

nose micro-perforate planktonic foraminifera Globigerinita glutinata [79], where a TEM image

shows the feeding cyst to have a structured cyst wall, suggesting it was not a sampling artefact.

In addition, the geochemical signatures (for Ba, Mn, Cd, Zn) of deeper dwelling non-spinose

planktonic foraminifera provide evidence that they are not calcifying in open seawater [80]. If

this is the case, a POM microhabitat may be an alternative calcifying environment. The current

literature indicates that N. dutertrei and N. incompta are predominantly herbivorous [29], but

our data suggest that these two species have evolved contrasting ecological strategies. N. duter-
trei Type Ic contains significant numbers of intact intracellular algae likely to be symbionts,

and is a predator of protists and not of the bacteria colonising POM. In contrast, our data dem-

onstrate that N. incompta Type II feeds much less frequently on phytoplankton than previously

considered, and that Gammaproteobacteria of the orders Vibrionales and Alteromonadales

make up a significant component of its diet. Below we discuss the evidence for these contrast-

ing ecological strategies, and the value in understanding their trophic interactions for ecologi-

cal and modelling studies.

Trophic interactions of N. dutertrei
Taxonomic classification of putative algal symbionts as Pelagophyceae. From the 16S

rRNA gene metabarcoding, fluorescence microscopy and TEM data, we suggest that the eco-

logical strategy of N. dutertrei Type Ic includes a symbiotic association with a single species of

algae from the phylum Stramenopile. This phylum includes both the diatoms and the class

Chrysophyceae. Previous workers have proposed that the picoeukaryotic putative symbionts

observed in N. dutertrei and a number of other planktonic foraminiferal species are chryso-

phytes, based on their investigations of ultra-structure [49, 50]. However, a GenBank BLAST

search, using the representative sequence for the abundant Stramenopile OTU from our data-

set, returned a 99% match with algae of the class Pelagophyceae [76], rather than the class

Chrysophyceae. The Pelagophyceae are coccoid marine algae identified globally, including in

Fig 6. Transmission electron micrographs of G. bulloides. (a) The black arrowheads depict cyanobacteria of the genus Synechococcus [59] within the G. bulloides
cytoplasm. (b) Higher magnification of a Synechococcus endobiont, with visible characteristic carboxysomes (white arrowhead).

https://doi.org/10.1371/journal.pone.0191653.g006
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the Pacific Ocean and the Southern California Bight [81, 82]. In the Southern California Bight,

N. dutertrei is found predominantly above 100 m throughout the year, with peak population

abundance above 50 m in spring and early summer [83–85], i.e. in the photic zone. This also

coincides well with the depth profile of Pelagophyceae (preference for 0–50 m with a maxi-

mum depth of 90 m; [81]http://www.eol.org/pages/3530/overview). Like species in the class

Chrysophyceae, Pelagophyceae contain a single chloroplast with girdle lamella [76], as can be

seen in Fig 4B. Therefore, based on the 16S rRNA gene metabarcoding, and TEM evidence, we

propose that the putative symbionts of N. dutertrei Type Ic are Pelagophyceae, a class currently

containing 16 species in 13 genera [86], and suggest that this marine class may be found in a

range of other planktonic foraminifera species originally thought to contain Chrysophyceae.

For example, G. siphonifera Type I and II contain two different coccoid symbionts [50]. The

Type I symbionts are genetically characterised as a prymnesiophyte of the haptophyte lineage

[87]. However, Type II symbionts have not yet been genetically characterised and Gast et al.

[87] suggest that these symbionts might be a chrysophyte algae, as was also proposed for N.

dutertrei by Gastrich [49]. Additional DNA sequencing of the 18S rRNA genes of the symbiont

and its foraminiferal hosts will provide further information on both the classification of the

symbiont and the foraminiferal morphospecies and genotypes that contain it.

The host-algae relationship. We consider that the Pelagophyceae in N. dutertrei Type Ic

are highly likely to be symbionts for two reasons. Firstly, fluorescence microscopy examination

(Fig 2) and TEM imaging (Fig 4) demonstrate a well-ordered distribution pattern, with many

cells in close proximity to the foraminiferal cell membrane. This pattern, also observed by

Hemleben et al. [29], would optimise light access for photosynthesis and streaming along the

rhizopodial network (see below). Secondly, such coccoid algae have been identified in a range

of foraminifera and are reported as (facultative) symbionts [29, 49–51, 87–89]. The putative

symbionts of N. dutertrei are amongst those labelled as facultative, because Hemleben et al.

[29] reported that some individual N. dutertrei cells lacked algae, and because he observed

some algae in a state of digestion. All the N. dutertrei, collected during the summer in this

study (n = 11), and all samples (n = 22) observed by Gastrich [49] in the autumn and winter

months from the Atlantic Ocean, contained living algae. Therefore, unlike in Globorotalia
hirsuta, which lacks symbionts in the winter months [49], seasonality is not likely to be the rea-

son for the absence of putative symbionts in N. dutertrei. Observations at varying stages of

ontogeny may be a factor in the presence or absence of algae. For example, juvenile N. dutertrei
are thought to dwell higher in the water column than adults, where the light regime would

benefit a symbiotic association. Adults sink from the surface waters, calcifying at depth prior

to gametogenesis [90]. It is possible that juveniles have an association with these putative sym-

bionts to facilitate their growth and development into adults, and that the algae are then lost,

possibly via digestion, as the adults sink and become gametogenic. This theory is supported by

laboratory observation that symbionts are either expelled from the cell (personal observations

J. Fehrenbacher) or are digested [29, 91] just prior to gametogenesis. Finally, the limited obser-

vations of N. dutertrei lacking putative algal symbionts may be a function of differing strategies

between various genotypes.

The nature of the relationship between N. dutertrei Type Ic and its putative pelagophyte

algal symbiont requires further examination. Evidence that some of these algae are found in a

state of digestion (this study, [29]) does lend some support to a facultative symbiotic associa-

tion. However, in both G. siphonifera Type I with obligate prymnesiophyte symbionts and G.

siphonifera type II with obligate, possible chrysophyte [87] or pelagophyte algal symbionts,

some digestion of symbionts does occur throughout the life time of the host, and therefore this

cannot be considered a trait only of facultative symbiont-host relationships. For example,

although unlikely given our understanding of the dinoflagellate symbiotic system [92, 93], the
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photosynthesising pelagophyte algae may provide carbon to the host only via their digestion,

and therefore may be “farmed” rather than acting as true symbionts. In the laboratory we have

observed the pelagophyte algae of N. dutertrei streaming along the host rhizopodial network,

despite a lack of spines for structural support, as is found for the symbionts of spinose species

[29, 93, 94]. This would allow optimum algal exposure to sunlight for photosynthesis. Our

observations of N. dutertrei forming a feeding cyst around its shell would pose a complication

for these pelagophyte algae. Such a cyst would reduce the light penetration to the algae, even

within the rhizopodial network which may not necessarily extend beyond the cyst, and thus

also reduce rates of photosynthesis. NanoSIMS analysis of experiments incubating N. dutertrei
with NaH13CO3 to follow fixed carbon through the putative symbiont-host cells under varying

conditions (e.g. [95, 96]) would help to resolve the relationship.

Heterotrophic feeding. Previous studies have identified phytoplankton as the main food

source for non-spinose planktonic foraminifera such as N. dutertrei [79, 88] and diatoms in

particular have been observed [29, 97]. A diatom food source would, like the pelagophyte

algae, be taxonomically assigned to Stramenopile chloroplasts in 16S rRNA gene metabarcod-

ing analysis, and in our dataset ten individual OTUs were assigned to this group. However,

99.9% (DUT55) and 99% (DUT59) of all sequences assigned to the Stramenopile chloroplast

group were within a single OTU, and the large numbers of pelagophyte algae, observed in

TEM, are highly likely to be the source of this predominant Stamenopile chloroplast OTU.

The tiny proportion of sequences assigned to other Stramenopile chloroplasts, and indeed

other chloroplast OTUs (< 1%) would suggest that both DUT55 and DUT59 did not contain

significant numbers of other Stramenopiles or phytoplankton at the point of collection. We

can therefore conclude that they had not recently fed on diatoms, but do not exclude diatoms

or other phytoplankton as prey items in this species due to the sporadic nature of feeding, phy-

toplankton patchiness, seasonality, and the observations of their presence made in previous

laboratory studies. Therefore, it remains to be determined whether diatoms and other phyto-

plankton are significant prey in N. dutertrei Type Ic.

In one of the two N. dutertrei individuals (DUT55; Fig 4), 45% of OTUs were of chloroplasts

from a plastidic protist, of the phylum Cercozoa, which are the closest relative of foraminifera

and radiolarians [98]. Since these organisms are known to glide over surfaces such as sedi-

ments and POM rather than be free living in the water column [99], our data suggest that N.

dutertrei does feed within a POM feeding cyst and that Cercozoa are likely to be significant

prey of N. dutertrei Type Ic. The irregular nature of predation would explain the presence of

Cercozoa in one individual but not the other, and hence the differences in relative abundance

of the putative algal symbiont. Analysis of more individuals is needed for confirmation, but

certainly our data suggest that N. dutertrei Type Ic is omnivorous, and that phytoplankton are

not the only component of their diet. A diet including protists has been reported for Globoro-
talia menardii [100]. It has been proposed that protists may be a much more substantial part of

the diet in planktonic foraminifera than TEM data suggests due to the rapid digestion of pro-

tistan cytoplasm [29]. Whilst our 16S rRNA gene metabarcoding data supports this proposal, a

general shortage of available TEM images in the planktonic foraminifera may also be a reason

for low numbers of observations of protistan prey.

We propose that N. dutertrei Type Ic does not feed on bacteria as a primary food source, even

though bacterial OTUs account for 2–4% of the total OTUs. Bacteria are ubiquitous in the open

ocean, and the numbers of bacteria in POM can be up to 108–109 cells ml-1, between 100–10,000-

fold higher than in the surrounding water column [53–55]. Therefore, the role of patchiness in the

availability of bacterial prey is not as significant as for phytoplankton or protistan prey. If N. duter-
trei Type Ic were preying on bacteria, or phagocytosing POM within the feeding cyst, then far

more bacterial OTUs would be expected in the N. dutertrei profile than were observed in this study.
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In our feeding model (Fig 7), we therefore consider N. dutertrei Type Ic to be a mixotrophic

feeder. We hypothesize that it gains energy for growth via both photosynthetic activity of pela-

gophyte algal symbionts and via heterotrophic feeding on other protists. These include dia-

toms and plastidic protists such as mixotrophic Cercozoa, which are found either in the water

column or within the POM feeding cyst. 18S rRNA gene metabarcoding is needed to elucidate

the full profile of protistan prey of this genotype.

Trophic interactions of N. incompta. In contrast to N. dutertei Type Ic, N. incompta Type

II contains < 0.2% chloroplast OTUs, highlighting the fact that it has evolved an ecological

strategy devoid of photosynthetic assistance, and that in the specimens investigated, phyto-

plankton were not in the recent diet. The OTU profile of N. incompta Type II is made up

almost exclusively of bacterial OTUs, of which 83 to 95% are sequences from the Vibrionales

and Alteromonadales orders of class Gammaproteobacteria. A positive amplification bias

towards Gammaproteobacteria has been reported in this primer set [67]. However, in a range

of surface ocean water samples amplified with these primers, Gammaproteobacteria average

around 15% of the assemblage [65], significantly lower than the>83% observed proportion in

N. incompta. Gammaproteobacteria are prevalent in POM [55, 101]. However, the N. incompta

Fig 7. Proposed trophic interactions of N. dutertrei and N. incompta. The illustrated trophic interactions are based on 16S rRNA gene metabarcoding performed in this

study and laboratory observations reported in the literature. Black arrows indicate direction of heterotrophic carbon flow. We propose that N. dutertrei Type Ic is a

mixotrophic feeder. Pelagophyte algae provide energy for growth through photosynthesis, either via direct consumption of the algae and/or by cross-membrane transport

of photosynthates. In addition, N. dutertrei feeds on other protists and phytoplankton, either from the water column or from inside the POM feeding cyst. For example,

within the feeding cyst N. dutertrei consumes Cercozoa that graze on the POM associated bacteria. In contrast, we propose that N. incompta Type II is a heterotrophic

feeder. As zooplankton moult their chitin carapaces or die, their chitin becomes incorporated into the POM. Here chitinoclastic bacteria (eg. orders Vibrionales and

Alteromonadales) break down the chitin to utilise the C and N source. N. incompta feeds on these orders of bacteria within its POM feeding cyst. N. incompta also feeds

minimally on phytoplankton, but whether from the water column and/or from the feeding cyst is unknown (dashed black arrow).

https://doi.org/10.1371/journal.pone.0191653.g007

16S rRNA gene metabarcoding reveals ecological strategies within the genus Neogloboquadrina

PLOS ONE | https://doi.org/10.1371/journal.pone.0191653 January 29, 2018 16 / 26

https://doi.org/10.1371/journal.pone.0191653.g007
https://doi.org/10.1371/journal.pone.0191653


assemblage is significantly different from the POM-associated assemblages investigated from

the Bodega Head area [102] where they were collected. It is also significantly different from the

POM assemblages further south in the California Current [101], the Santa Barbara Channel

[103] and elsewhere [55, 104]. In addition, the N. incompta bacterial assemblage is also highly

divergent from known surface water microbial populations [11, 13, 65, 105, 106]. This high

degree of divergence strongly suggests either that the Vibrionales and Alteromonadales are

specific prey targeted by N. incompta, or it simply reflects the nature of the POM available at a

specific point in time [107, 108]. For example, Alteromonadales and Vibrionales are significant

chitinoclastic orders within the Proteobacteria (they are able to break down chitin, e.g. zoo-

plankton carapaces) [109–111] and hence it is likely that the feeding cyst of each individual

foraminifera was made up of chitin-rich POM. This doesn’t exclude the possibility that Altero-

monadales and Vibrionales are specific prey, but, if the profile within N. incompta were a mere

reflection of the POM constituents, the 16S rRNA gene profile of N. incompta should poten-

tially include further chitinoclastic groups. However, it has been demonstrated that Alteromo-

nadales and Vibrionales are prolific producers of substances inhibitory to other bacteria and

are the most resilient to such substances [101], suggesting that the presence of these orders

within a POM particle may result in a decrease in bacterial diversity. Nevertheless, our data

clearly show that N. incompta does feed on these specific orders of chitinoclastic Gammapro-

teobacteria, which contribute to the recycling and transfer of C and N from insoluble chitin

back into the food web. Recycling of chitin is of huge importance since without it, billions of

tonnes of zooplankton carapaces would become buried at the seafloor each year, generating a

significant sink for both C and N and changing the dynamics of the global C and N cycles,

[112, 113].

There are no reports in the literature pertaining to the preferred diet of N. incompta specifi-

cally. Based on observations of field-collected specimens and laboratory cultures, non-spinose

foraminifera are thought to be adapted to a more herbivorous diet than their spinose counter-

parts [29, 52]. Throughout the northeast Pacific, N. incompta is reported to prefer a stratified

water column and to sit below the thermocline and chlorophyll maximum (generally below 30

m, averaging between 50 and 100 metres), slightly deeper in the water column than N. dutertrei
[83, 85]. This preferred depth agrees with data from the subtropical northeast Atlantic, where

the average depth of N. incompta was also situated below the chlorophyll maximum, at about

80 m [114]. At such a position in the water column, phytoplankton would still be an available

food source, as would bacteria and POM-associated organisms sinking from the productive

waters above. It is perhaps surprising therefore that so few chloroplast OTUs (< 0.2%) were

observed in N. incompta. However, our TEM observations indicate that N. incompta Type II

probably does graze on phytoplankton (Fig 5C), albeit to a limited extent, but this may depend

on seasonality and phytoplankton availability. Certainly, the preferred depth of N. incompta
during the summer months appears to shoal a little to the base of the chlorophyll maximum,

but at lower abundance [85]. In our feeding model, we hypothesize that N. incompta Type II is

a heterotrophic feeder, grazing predominantly on bacteria and to a more limited extent on

phytoplankton (Fig 7). The metabarcoding data reveal that N. incompta can graze principally

on chitinoclastic bacteria in the POM, thereby contributing to the recycling of C and N from

insoluble chitin. As for N. dutertrei, 18S rRNA gene metabarcoding is needed to elucidate

more fully the eukaryotic prey, if any, of this genotype.

Ecological data enhancement of planktonic foraminiferal global distribution and abun-

dance models. Oceanic investigations and both laboratory and modelling studies have dem-

onstrated that in stratified oligotrophic open-ocean waters, mixotrophs [115–117] dominate

the protist assemblages. Here they can outcompete purely photo- or heterotrophic organisms,

and sustain the functioning of these ecosystems [7, 118–120]. Stratified water masses are
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currently expanding [121] and are likely to become more common with climate change [122].

Many tropical/subtropical symbiont-bearing foraminifera therefore, would experience an

increase in their potential habitat and abundance as these oligotrophic regions expand, and the

results of a study using an ecophysiological model, FORAMCLIM, confirm this [31, 32]. This

is in stark contrast to a decline in habitat and abundance predicted for the more transitional

and higher latitude species modelled; N. dutertrei, G. bulloides, N. incompta and N. pachyderma
[32]. Within the context of FORAMCLIM, all four of these species are considered symbiont-

barren, and hence, unlike those species projected to succeed, are not mixotrophic. This indi-

cates that mixotrophy might play an important role in enabling planktonic foraminifera to sur-

vive under a changing climate.

Our ecological data now begin to question the scope of the ecophysiological data used for

modelling the more transitional species such as N. dutertrei and G. bulloides. Given that in the

literature N. dutertrei is referred to as having facultative algal symbionts [29, 49, 51], we now

build on that knowledge by demonstrating that N. dutertrei Type Ic consistently contains large

numbers of putative algal symbionts. In addition, we have previously shown that G. bulloides
Type IId, considered symbiont barren, [123, 124] contains large numbers of endobiotic cyano-

bacteria, whose role is yet to be established [59]. The metabolic contribution to the host fora-

minifera by these endobiotic algae and cyanobacteria needs to be assessed for all genotypes,

and physiological rates of photosynthesis and respiration added to the ecophysiological param-

eters of the FORAMCLIM model. Adding such data will increase the accuracy of the projec-

tions of future distribution and abundance of foraminiferal morphospecies and genotypes,

and their likely contribution to calcite export to the deep ocean and the C-cycle.

In contrast, our data demonstrate that the assumed symbiont-barren status of N. incompta
in the FORAMCLIM model is accurate. The model’s projected decrease in abundance in N.

incompta is due primarily to increased temperatures at the higher latitudes, but in the high lati-

tude species, food supply is an additional, secondary factor [32]. This result may reflect a lack

of mixotrophy in the species found in these regions, or at least reflect the presumed lack of

mixotrophy applied in the model. It is yet to be fully investigated whether the high latitude

morphospecies and genotypes, particularly of N. pachyderma contain symbiotic organisms

beyond those ordinarily looked for. It is important therefore, given that mixotrophy appears to

bring such advantages, to determine comprehensively the trophic status of each morphospe-

cies and genotype of planktonic foraminifera, if we are to accurately predict their decline or

success in their changing environment.

Conclusions

This is the first report providing evidence for distinctly different microbiota in two species of

planktonic foraminifera from the same genus, Neogloboquadrina. Both species have the similar

feeding strategy of forming a feeding cyst of POM in the water column, and yet their trophic

interactions are significantly different. N. dutertrei Type Ic has evolved a probable symbiotic life-

style and we report the first genetic information regarding the coccoid putative algal symbionts

which we tentatively assign taxonomically to the Pelagophyceae and not the Chrysophyceae as

previously reported [29, 49]. Additional 18S rRNA gene sequencing of these algae is required for

full confirmation of this taxonomic assignment. In addition, our data show that N. dutertrei
Type Ic feeds heterotrophically on other protists within the POM, but not on bacteria as a major

food source. In contrast, N. incompta Type II is symbiont barren and predominantly feeds on

bacteria within the POM. In the light of the recent finding that G. bulloides Type IId houses Syne-
chococcus endobionts [59], we can now conclude that each planktonic foraminiferal morphospe-

cies has most likely evolved specific interactions with bacteria in the water column. Therefore,
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each palaeoceanographically important morphospecies requires investigation, particularly when

more than one genotype exists, to determine whether the trophic interactions of genotypes dif-

fers just as their biogeography does and how this impacts on shell geochemistry [28, 125].

In this study, we have demonstrated that 16S rRNA gene metabarcoding of the intracellular

DNA of planktonic foraminifera together with TEM methodologies have the potential to pro-

vide new insights into the biological associations and seasonal shifts in feeding preferences of

ecologically distinct genotypes of planktonic foraminifera. The primers used in this study have

subsequently been improved to avoid known PCR biases [65–67] and hence the new improved

primers should be utilised in future studies. With the addition of 18S rRNA gene metabarcod-

ing to target prey or symbiotic heterotrophic protists, next-generation DNA sequencing tech-

nologies could transform the usefulness and accuracy of planktonic foraminiferal global

distribution and seasonality models, and also increase the accuracy of palaeoproxies by provid-

ing essential ecological information currently unavailable [31, 32, 57, 125].
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75. Bé AWH, Spero HJ, Anderson OR. Effects of symbiont elimination and reinfection on the life pro-

cesses of the planktonic foraminifer Globigerinoides sacculifer. Mar Biol. 1982; 70: 73–86. https://doi.

org/10.1007/BF00397298

76. Andersen RA, Saunders GW, Paskind MP, Sexton JP. Ultrastructure and 18S rRNA gene sequence

for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the Pelagophy-

ceae classis nov. J Phycol. 1993; 29(5):701–715. https://doi.org/10.1111/j.0022-3646.1993.00701.x

77. Heinz P, Sommer S, Pfannkuche O, Hemleben C. Living benthic foraminifera in sediments influenced

by gas hydrates at the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser. 2005; 304:77–89.

https://doi.org/10.3354/meps304077

78. Murray J. Ecology and Applications of Benthic Foraminifera. 1st ed. Cambridge: Cambridge Univer-

sity Press; 2006.

79. Spindler M, Hemleben C, Salomons JB, Smit LP. Feeding behavior of some planktonic foraminifers in

laboratory cultures. J. Foraminiferal Res. 1984; 14(4):237–249. https://doi.org/10.2113/gsjfr.14.4.237

80. Hathorne E, James R, Lampitt R (2009) Environmental versus biomineralization controls on the intrat-

est variation in the trace element composition of the planktonic foraminifera G. inflata and G. scitula.

Paleoceanography. 2009; 24(4):PA4204. https://doi.org/10.1029/2009pa001742

81. OBIS. Distribution and environmental data records of Pelagophyceae, available at the Ocean Biogeo-

graphic Information System; http://www.iobis.org/explore/#/taxon/755166. Accessed: 2017-06-30.

16S rRNA gene metabarcoding reveals ecological strategies within the genus Neogloboquadrina

PLOS ONE | https://doi.org/10.1371/journal.pone.0191653 January 29, 2018 23 / 26

https://doi.org/10.1002/2015GL063306/full
https://doi.org/10.2113/gsjfr.26.3.264
https://doi.org/10.1186/1471-2148-12-54
http://www.ncbi.nlm.nih.gov/pubmed/22507289
https://doi.org/10.1038/ismej.2012.8
http://www.ncbi.nlm.nih.gov/pubmed/22402401
https://doi.org/10.3354/ame01753
https://doi.org/10.1128/mSystems.00009-15
https://doi.org/10.1128/mSystems.00009-15
http://www.ncbi.nlm.nih.gov/pubmed/27822518
https://doi.org/10.1111/1462-2920.13023
http://www.ncbi.nlm.nih.gov/pubmed/26271760
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
http://www.ncbi.nlm.nih.gov/pubmed/21700674
https://doi.org/10.1128/AEM.03006-05
http://www.ncbi.nlm.nih.gov/pubmed/16820507
https://doi.org/10.1038/nbt.2676
http://www.ncbi.nlm.nih.gov/pubmed/23975157
https://doi.org/10.1371/journal.pone.0097876
https://doi.org/10.1371/journal.pone.0097876
http://www.ncbi.nlm.nih.gov/pubmed/24837716
https://doi.org/10.1007/bf00644972
https://doi.org/10.1007/BF00397298
https://doi.org/10.1007/BF00397298
https://doi.org/10.1111/j.0022-3646.1993.00701.x
https://doi.org/10.3354/meps304077
https://doi.org/10.2113/gsjfr.14.4.237
https://doi.org/10.1029/2009pa001742
http://www.iobis.org/explore/#/taxon/755166
https://doi.org/10.1371/journal.pone.0191653


82. Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: a reference database

of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour.

2015; 15:1435–1445. https://doi.org/10.1111/1755-0998.12401 PMID: 25740460

83. Sautter LR, Thunell RC. Seasonal variability in the δ18O and δ13C of planktonic foraminifera from an

upwelling environment: sediment trap results from the San Pedro Basin, Southern California Bight.

Paleoceanography. 1991; 6(3):307–334. https://doi.org/10.1029/91PA00385/full

84. Sautter LR, Thunell RC. Planktonic foraminiferal response to upwelling and seasonal hydrographic

conditions; sediment trap results from San Pedro Basin, Southern California Bight. J. Foraminiferal

Res. 1991; 21(4):347–363. https://doi.org/10.2113/gsjfr.21.4.347

85. Field DB. Variability in vertical distributions of planktonic foraminifera in the California Current: Rela-

tionships to vertical ocean structure. Paleoceanography. 2004; 19:PA2014. https://doi.org/10.1029/

2003pa000970

86. "Pelagophyceae". World Register of Marine Species. Retrieved 2017-11-10.

87. Gast RJ, McDonnell TA, Caron DA. srDna-based taxonomic affinities of algal symbionts from a plank-

tonic foraminifer and a solitary radiolarian. J Phycol. 2000; 36:172–177. https://doi.org/10.1046/j.

1529-8817.2000.99133.x

88. Anderson OR, Lee JJ. Biology of Foraminifera. 1st ed. London: Academic Press; 1991.

89. Lombard F, Erez J, Michel E, Labeyrie L. Temperature effect on respiration and photosynthesis of the

symbiont-bearing planktonic foraminifera Globigerinoides ruber, Orbulina universa, and Globigerina

ssiphonifera. Limnol Oceanogr. 2009; 54(1):210–218. https://doi.org/10.4319/lo.2009.54.1.0210

90. Kroon D, Darling KF. Size and upwelling control of the stable isotope composition of Neogloboqua-

drina dutertrei (d’Orbigny), Globigerinoides ruber (d’Orbigny) and Globigerina bulloides d’Orbigny;

examples from the Panama Basin and Arabian Sea. J. Foraminiferal Res. 1995; 25(1):39–52. https://

doi.org/10.2113/gsjfr.25.1.39
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