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Abstract. Prostate cancer is the most common nonskin-related cancer, affecting one in sevenmen in the United
States. Gleason score, a sum of the primary and secondary Gleason patterns, is one of the best predictors of
prostate cancer outcomes. Recently, significant progress has been made in molecular subtyping prostate cancer
through the use of genomic sequencing. It has been established that prostate cancer patients presented with
a Gleason score 7 show heterogeneity in both disease recurrence and survival. We built a unified system using
publicly available whole-slide images and genomic data of histopathology specimens through deep neural
networks to identify a set of computational biomarkers. Using a survival model, the experimental results on
the public prostate dataset showed that the computational biomarkers extracted by our approach had hazard
ratio as 5.73 and C-index as 0.74, which were higher than standard clinical prognostic factors and other
engineered image texture features. Collectively, the results of this study highlight the important role of neural
network analysis of prostate cancer and the potential of such approaches in other precision medicine applica-
tions. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.5.4.047501]
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1 Introduction
Prostate cancer remains the most common noncutaneous malig-
nant tumor in the Western world accounting for approximately
one in five of newly diagnosed tumors in men and resulting in an
estimated 29,430 deaths in 2018.1 In the United States, approx-
imately one in seven men will be diagnosed with this disease.1

Based on Gleason score, prostate specific antigen (PSA) value,
tumor stage, age, and race, patients with prostate cancer are
stratified into low-, intermediate-, and high-risk groups.2,3

A strong predictor of survival among men with prostate
cancer is the Gleason score rendered by a pathologist based
upon a microscopic evaluation of a representative histopathol-
ogy specimen.4 These scores are based solely upon morphology
and structural patterns of the constituent cells and glands.
Patients with Gleason score 6 or lower often undergo active sur-
veillance as there is reduced risk of tumor progression for those
patients compared to patients with score 7 or higher.5,6 Tumors
that are assigned Gleason score 7 can be delineated into a pri-
mary region exhibiting a histopathology pattern graded
as 4 and a secondary region exhibiting a histopathology
pattern graded as 3. Such samples are referred to as Gleason
4þ 3 tumors, whereas the inverse pattern exhibiting a primary
pattern of 3 and a secondary pattern of 4 would constitute a
Gleason 3þ 4 tumors. Patients with Gleason 4þ 3 tumors

have an increased risk of recurrence and progression leading to
an increased risk of prostate cancer-specific mortality when
compared to those afflicted with Gleason 3þ 4 tumors.7–9

The literature clearly shows that predicting disease recurrence in
a man with Gleason score 7 prostate cancer can have a signifi-
cant impact on his disease management and survival.8–10

Phenotypically, tumor regions with Gleason pattern 3 are
composed of single glands with distinct size and shape whereas
ones with Gleason pattern 4 exhibit large irregular cribriform
glands or fused, ill-defined glands with poorly formed
glandular lumina.11–13 In spite of established guidelines,
Gleason grading remains a relatively subjective process that
results in an ∼30% grading discrepancy among the scores
provided by pathologists.11–15 There have been many attempts
to develop computer-aided Gleason grading methods and
systems11,16–21 in order to introduce objective, reproducible cri-
teria into the process of Gleason pattern quantification, and
grading. One previous study has explored an integration of
image features along with protein expression to predict recurrent
prostate cancer.22 However, to date, there has been no study
focused on utilizing patients’ pathology images and genomic
pathway analyses in combination to predict recurrence-free
survival (RFS) for men with prostate cancer.

Microarray-based gene expression signatures have been used
in various studies to identify cancer subtypes, determine the RFS
of disease, and characterize response to specific therapies.23

Multiple investigations have also shown that gene expression
signatures can be used to analyze oncogenic pathways and
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these signatures have been used to identify differences between
specific cancer types and tumor subtypes. Moreover, patterns
of oncogenic pathway activity have been used to identify
differences in underlying molecular mechanisms and have
been shown to correlate with clinical outcomes of patients
afflicted with specific cancers.24–27

In recent years, whole-slide image (WSI) has been more
widely used in histopathology diagnosis. With a fast development
of deep learning, histopathology image analysis approaches have
demonstrated significant advances in cellular segmentation28–31

and tissue classifications30–34 using convolutional neural networks
(CNN). Some research groups reported their studies using histo-
pathology WSI for many applications.35–37 Due to a giga-pixel
size of a WSI’s, it is often impractical to train the CNN using
WSIs directly. Consequently, patch-based algorithms are widely
applied in histopathology image analysis.34,38–43

In this study, we developed a computational biomarker
quantification system by integrating histopathology WSIs and
genomic data into one deep neural network. In order to use
the distribution of Gleason patterns on a WSI, we applied
patches as inputs to the network. The patches were forwarded
through a CNN to get the images features. Then based on the
patches’ spatial relationship, the image features were modeled
using a recurrence neural network (RNN),44 namely long short-
term memory (LSTM).45 The pathway scores calculated from
the genomic data were forwarded to a multilayer perceptron
(MLP) to get the genomic features. And the image and genomic
features were integrated together to get the computational bio-
markers. Moreover, we used RFS (months) since their initial
treatment as the time-to-recurrence variable for a survival model.

We chose a Cox proportional-hazard regression model46,47 since
it is commonly used in medical research for investigating asso-
ciations between the survival time of patients and predictor
variables.

2 Methods
In this section, we introduced our approach on building a unified
system using WSI and genomic data through deep neural
networks to quantify computational biomarkers, which were
fed into a survival model for patients’ recurrence analysis. Our
methods consisted of four steps. First, the pathway activities of
prostate cancer were quantified by pathway scores using RNA
sequences. Second, the histopathology WSIs were preprocessed
to obtain the region-of-interest as the image patches preparation.
Third, the image patches and pathway scores were integrated
into a unified system using the deep learning approach to extract
computational biomarkers. Finally, we used the computational
biomarkers in conjunction with clinical prognostic factors as the
input of the survival model to calculate the disease recurrence
ratios and probabilities. Figure 1 shows the overview of the
pipeline of the whole study.

2.1 Experiment Dataset

In this study, we used publicly available prostate cancer
data downloaded from the data portal of the Genomic Data
Commons (GDC).48 GDC is the largest public available data
portal that includes image data from The Cancer Genome
Atlas (TCGA),49 genomic data, and clinical data. The TCGA
barcode48 is the primary identifier of GDC data acquisition

Fig. 1 An overview of the pipeline of our study using histopathology WSIs and genomic data for prostate
cancer recurrence prediction for patients with Gleason score 7. (a) WSI images and genomic data were
collected from patients with prostate cancer; (b) a prostate WSI exhibits different Gleason patterns.
For example, a region in a green square has the Gleason pattern 3 while regions in blue squares have
the Gleason pattern 4; (c) the pathway scores were quantified using RNA sequences. Patches of region
of interests were automatically selected from WSIs. The image patches and pathway scores were
integrated into deep neural networks to extract computational biomarkers, which were fed into a Cox
regression model in conjunction with clinical prognostic factors for disease recurrence analysis.
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protocol. For this study, in total, there were 43 Gleason 3þ 3,
146 Gleason 3þ 4, 101 Gleason 4þ 3, and 49 Gleason 4þ 4,
which contain 1229, 4753, 2997, and 1597 patches, respec-
tively. For the recurrence study of patients with Gleason 7,
we used all the data from Gleason 6, 7, and 8 to train the net-
works to extract the computational biomarkers. In this way, the
training data contained more images of Gleason patterns 3 and
4 compared to a training data if only use patients’ data with
Gleason 7 (3þ 4 or 4þ 3). For the recurrence study of patients
with Gleason 7, the computational biomarkers of patients with
Gleason 7 were fed into a survival model while the patients with
other Gleason score were withheld.

The patients were randomly divided into the training set,
validation set, and testing test with the ratio of 70%, 10%, and
20%; these groups were utilized for the recurrence analyses. In
addition to the Gleason score, we compared the computational
biomarkers quantified from the unified image and genomic data
system with other clinical factors including patients’ PSA, age,
and tumor stage, which are publicly available from GDC data
portal.

The WSI patches preparation was a two-step cropping-
selection process. First, the image patches within each WSI
were automatically cropped under 40× objective magnification
with a patch size 4096 × 4096. The patches were cropped with
a stride as 4096 to avoid overlapping. We resized all the patches
to the size of 256 × 256 using Lanczos filtering.50 Second, any
specimens with insufficient tissue patches were automatically
eliminated from the experiments due to the heterogeneous qual-
ity of the prostate WSIs. The patches with the tissue accounting
for at least 20% of the whole area were selected.

2.2 Pathway Score Quantification from RNA
Sequencing Data

To quantify pathway scores, we used the gene expression data,
which were RNA (Illumina HiSeq) sequencing data from
patients with Gleason score 7. The data are publicly available
through GDC data portal. We preprocessed the RNA data by
log transformed and median centered. A panel of previously
published 265 experimentally derived gene expression signa-
tures was applied to the entire cohort to identify patterns of
oncogenic signaling in each tumor. To apply a given signature,
the expression data were filtered to contain only those genes
included in the given signature and the mean expression
value of these genes was calculated to provide a score for each
sample.25,26

2.3 Computational Biomarker Extraction

In order to obtain computational biomarkers from the WSIs and
genomic data, we built a unified feature quantification system
using CNN to model WSI histopathology image patches and
genomic data together. Furthermore, we leveraged the RNN
to model the spatial relationship of the cropped patches within
the WSI. The network architecture is shown in Fig. 2.

2.3.1 Modeling histopathology image patches and
genomic data

In order to combine the image information along with the
genomic data, we used the patches and pathway scores as the
input to the network. We forwarded the pathway scores into

Fig. 2 Network architecture for extracting computational biomarkers from the WSI and genomic data.
We used seven LSTM cells in the network. The calculated pathway scores from the genomic data were
forwarded into an MLP that contains three FC layers. The last layer of the MLP was connected with
the features extracted from the image patches to serve as the input for the LSTM after an FC layer.
On top of the LSTM, we utilized an average pooling layer.
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an MLP that includes three fully connected (FC) layers, with
1024, 512, and 256 hidden units, respectively. The genomic
features were the output of the last FC layer. Meanwhile, we
incorporated the AlexNet51 to extract the features from image
patches. We concatenated the genomic features obtained from
the pathway scores with the image features from the second to
the last layer of the AlexNet. The concatenated features served
as the input to an FC layer before LSTM.

Due to the giga-pixel WSI’s, we considered an integrity of
the whole tissue regions on a single WSI instead of using
the individual patches to quantify image features as shown in
previous studies.39,41 The spatial relationship of the adjacent
patches was modeled as an image sequence. We adopted
a type of RNN,44 LSTM,45 to model the features extracted
from the image patches and genomic data given LSTM has
shown its successes among various applications including
speech recognition,52,53 language translation models,54 image
captioning,55 and video classification.56 Compared with the
traditional RNN that has vanishing and exploding gradients
problems, LSTM is more effectively in sequence modeling by
incorporating memory cells with several gates to obtain long-
range dependencies.

More formally, for the input feature sequence (x1; x2; : : : ; xT )
that xi represents the activations from the CNN of the i’th patch,
we used LSTM to compute the output sequence (y1; y2; : : : ; yT ),
where the layer of LSTM was computed recursively from t ¼ 1
to t ¼ T following the equations:

EQ-TARGET;temp:intralink-;e001;63;455it ¼ σðWxixt þWhiht−1 þWcict−1 þ biÞ; (1)

EQ-TARGET;temp:intralink-;e002;63;423ft ¼ σðWxfxt þWhfht−1 þWcfct−1 þ bfÞ; (2)

EQ-TARGET;temp:intralink-;e003;63;396ct ¼ ftct−1 þ it tanhðWxcxt þWhcht−1 þ bcÞ; (3)

EQ-TARGET;temp:intralink-;e004;63;369ot ¼ σðWxoxt þWhoht−1 þWcoct þ boÞ; (4)

EQ-TARGET;temp:intralink-;e005;63;344ht ¼ ot tanhðctÞ; (5)

where ht is the hidden vector, it, ct, ft, and ot represent the
activation vectors of the input gate, memory cell, forget gate,
and output gate, respectively. W terms denote the weight matri-
ces connecting different units, b terms denote the bias vectors,
and σ is the logistic sigmoid function. The memory cell ci has
the inputs of the weighted sum of the current inputs and the pre-
vious memory cell unit ct−1, which could learn when to forget
the old information and when to consider the new information.
The output gate ot controls the propagation of information to the
following step. The visualization of the LSTM cell is shown in
Fig. 3.

Since it is a sequential task to train LSTM, patches from
a WSI were formed by a specific routine. As shown in Fig. 2,
we used center coordinates of patches to remark the location of
each patch. The sequence of patches within a single WSI was
arranged from right up patch down to lower left one, which was
illustrated by the dotted lines with black arrows on an example
of a WSI on Fig. 2. In this way, it allowed us to consider both
unique characteristics of each patch and fine-grained variations
among patches within a single WSI. For each tumor WSI, the
patches and the pathway scores were fed into the network to get
features and then incorporated into the LSTM recursively.
In addition, the average pooling layer was applied on top of

the network to get the computational biomarkers for the WSI
and the genomic data. The number of hidden units for each
LSTM was 1024. During the training process, we applied
the multitasks loss and assigned the primary pattern and the
Gleason score for the WSIs and genomic data.

2.3.2 Multitask loss function

For the TCGA prostate WSIs, the primary Gleason pattern, the
secondary Gleason pattern, and the sum of both patterns (i.e.,
Gleason score) were publicly available from GDC data portal.
To model the variations among Gleason patterns, we utilized the
multitask loss to enable the network to learn as much informa-
tion about the Gleason pattern distributions from the patches of
a WSI as possible. Therefore, we gave the primary pattern and
the sum score as labels for each patch along with the pathway
score and use the following multitask loss function:

EQ-TARGET;temp:intralink-;e006;326;385Lmultitask ¼ −
XN
i¼0

tpi · log t̂pi −
XN
i¼0

tsi · log t̂si ; (6)

where for the i’th input sample within the batch of N samples,
tpi and tsi are the one-hot encoding of the Gleason grading for
the primary pattern and the sum score, respectively, t̂pi and t̂si are
the predicted grading of the model.

2.4 Survival Model

In conjunction with clinical prognostic factors including the
primary and secondary Gleason patterns, PSA, age, and tumor
stage, computational biomarkers were fed into a Cox regression
model46,47 for studying patient’s RFS. In our study, we used
RFS (months) as the time variable for a survival model. For
high dimensional data, only those with Wald test57,58 p-value
<0.05 were selected and used in conjunction with clinical prog-
nostic factors as input variables for the Cox regression model.

One of the most popular regression techniques for survival
analysis is Cox proportional hazards regression, which is used to
relate several risk factors or exposures, considered simultane-
ously, to assess differences in overall survival. In a Cox propor-
tional hazards regression model, the measure of effect is the
hazard ratio, which is the risk of failure (i.e., here is the risk
or probability of the recurrence of the disease), given that the
participant has survived up to a specific time. Given the patients
(ti, li, Xi), where i ¼ 1;2; : : : ; N, we have the ti as the patient’s
recurrence time for individual i; li as the label of the censored

Fig. 3 The visualization of an LSTM cell.
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data that equals 1 if the recurrence occurred at that time and
0 if the patient has been censored; Xi as the vector of covariates
of the selected image features and clinical factors. The hazard
function is the nonparametric part of the Cox proportional
hazards regression function corresponding to

EQ-TARGET;temp:intralink-;e007;63;697HðXi; li; tiÞ ¼ H0ðtÞ exp
Xp
j¼1

xijβi: (7)

Here, xij is the computational biomarkers j for patient i, where
j ¼ 1;2; : : : p and βi is the Cox regression parameter for each
patient. Here, H0 is the baseline hazard function. The hazard

ratio is derived from HRðXiÞ ¼ HðXi;li;tÞ
H0

, representing the rela-
tive risk of instant failure for patients having the predictive
value Xi compared to the ones having the baseline values.
Here, di is weighting parameters for each patient:

EQ-TARGET;temp:intralink-;e008;63;567HRðXiÞ¼
XN
i

di

�
Xiβi−log

�Xp
j

Iðtj−tiÞexpðXiβiÞ
��

: (8)

In the study, we assessed the computational biomarkers in
conjunction with other clinical prognostic factors by their recur-
rence hazard ratios and concordance indices (C-index).59,60 The
hazard ratio and C-index both are global indices for validating
the predictive ability of prognostic features of a given survival
model. Under a given survival model, higher values mean
that prognostic features predict higher risks and probabilities
of survival for higher observed survival times. In our study,
we examined RFS; the higher the hazard ratio and C-index,
the greater the likelihood of disease recurrence.

3 Experiments and Results
In this section, we validated our approach on a publicly available
prostate cancer dataset from the GDC data portal. The experi-
mental results showed that the computational biomarkers dis-
covered by the proposed method were effective for recurrence
correlation for patients with Gleason score 7.

3.1 Implementation Details

The training process of our network included two steps. We first
trained the CNN using minibatch Stochastic gradient descent
with batch size as 32, momentum as 0.9, and weight-decay
as 5 × 10−5. The initial learning rate was 10−3 and annealed
by 0.1 after every 10,000 iterations. We trained the CNN for
total of 50,000 iterations until the loss converge. Then, we uti-
lized the genomic data to train the MLP to extract the genomic
features and used image and genomic features to train LSTM.
We kept the same momentum, weight-decay, and learning rate
except, we annealed the learning rate by 0.1 after every 2000
iterations and trained the network for a total of 5000 iterations.
The implementation was based on Caffe toolbox.61

3.2 Pathway Analysis

Multiple studies have shown that gene expression signatures
reflect the activation status of oncogenic pathways irrespective
of specific mutations driving signaling.24–26 Thus, we examined
genomic-based patterns of oncogenic pathway activity in pros-
tate cancer patients with Gleason score 7 using a panel of
previously published 265 gene expression signatures.

In order to qualitatively assess unique patterns of pathway
activity that define the 4þ 3 and 3þ 4 subset of Gleason
score seven tumors, pathway signatures in each group, using
all tumors across the entire cohort (i.e., training, test, and val-
idation tumors) were assessed by a Student’s two tailed t-test.
Significant pathway scores were clustered using Cluster 3.062

and visualized by Java TreeView.63 Quantitative assessment
of patterns of pathway activity of Gleason score 4þ 3 and
3þ 4 subgroups is shown in Fig. 4, which displayed a heatmap
identifying 27 differentially expressed signatures (p < 0.01).
Of these, we determined that 14 signatures including three
unique proliferation signatures (Wirapati,64 UNC,65 and murine
proliferation65) as well as several proliferation-associated signa-
tures predicative of BMYB,66 RB-LOSS,67 PIK3CA,68 and
HERI69 signaling were significantly higher in patients with
Gleason score 4þ 3. We further determined that 13 signatures
were upregulated in Gleason 3þ 4 patients including immune
systems signatures associated with Th17 cells,70 Tcm,70 NK-
CD56,70 HGF,71 and STAT326 signaling. Consistent with our
findings, many studies report72–74 that Gleason 3þ 4 tumors
have a better prognosis than Gleason 4þ 3 tumors, which
would correlate with relatively higher levels of proliferation
as well as lower levels of immune-related signaling evident in
Gleason 4þ 3 tumors compared to Gleason 3þ 4 samples.

3.3 Integrated Recurrence Analysis in Conjunction
with Clinical Factors

3.3.1 Image data on recurrence analysis

For the integrated recurrence analysis using a survival model,
we first conducted the experiments where only the WSIs of

Fig. 4 Differential patterns of pathway activity in Gleason score 3þ 4
and 4þ 3 prostate tumors. Comparative analysis of Gleason score
4þ 3 (n ¼ 101) and Gleason score 3þ 4 (n ¼ 146) tumors identified
27 significantly altered signaling pathways (t -test, p < 0.01) as
defined by mRNA-based gene expression signature scores. Tumors
with a Gleason score 4þ 3 showed higher proliferation, BMYB,
RB-LOH, and histone modification signature scores while tumors
with a Gleason score 3þ 4 showed higher levels of immune system
related pathway signatures including Th17 cells, Tcm, and STAT3.
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tissue slides were used. Thus, the networks were trained without
integrating the genomic features. This setting of experiment is
denoted as CNN-LSTM. We also considered the setting that
only CNN was applied on the image patches without consider-
ing their spatial relation on a WSI and the image features were
extracted from the second to the last layer of AlexNet. The set-
ting is denoted as CNN-Only. To compare the effectiveness of
the feature extraction from the images, we applied three texture
feature methods including SURF,75 HOG,76 and LBP77 on the
WSIs to obtain image features. The image features were concat-
enated with clinical prognostic factors as multivariate inputs of
the Cox regression model. During each iteration, each image
feature in conjunction with clinical factors was fed into the
Cox regression model to calculate the corresponding hazard
ratios and C-indices. The survival model implementation was
based on an R survival package.78

The maximum hazard ratios of recurrence of image features
in conjunction with clinical factors are shown in Table 1. Within
our study, we used the disease RFS times as the time variable in
the Cox regression model, the higher values of hazard ratio and
C-index of the features indicated that the image features had the
higher correlations with the disease recurrence and progression.
From the result of using texture features, there were no signifi-
cance differences among LBP, HOG, and SURF for recurrence
ratios. CNN-LSTM analysis determined that image features
identified by computational image analysis outperformed other
texture features and CNN-Only with higher hazard ratio and
C-index. When conjunction with CNN-LSMT, the primary
pattern still showed greater hazard ratio and C-index relative to
those identified using other methods.

3.3.2 Image and genomic data on recurrence analysis

Before integrating image features and pathway scores, we first
analyzed the correlation between them. Because the number of
image features and the number of pathway scores were different,
to calculate their correlation coefficients, we randomly chose the
same number of image features paired with the same number of
pathway scores and repeated the process N times until all image
features had been paired. Here, the image features included fea-
tures quantified from texture methods (LBP, HOG, and SURF)
and CNN-LSTM. Using a t-test on correlation coefficients, the
mean and standard deviation of p-values is shown in Table 2.
Because p-value >0.05, there was no significant correlations
between image features and pathway scores. This showed that
the two types of data provided complementary information for

prostate cancer diagnosis and prognosis. It was reasonable
to integrate image and genomic data together for predicting
patients’ recurrence.

Then, we showed the experimental results by combining
image features obtained from WSIs and the genomic features
obtained from the pathway scores. We utilized all 265 gene
expression signatures integrated with image data to identify
the computational biomarkers as shown in Fig. 2. The setting
was denoted as CNN-LSTM + PS. We also considered
the setting where LSTM was deactivated when obtained the
biomarkers from image and genomic data. We denoted the
approach as CNN-Only + PS. The methods using texture
features obtained from WSIs together with pathway scores for
the recurrence analysis were denoted as LBP-PS, HOG-PS,
and SURF-PS. We also considered only using pathway scores
with clinical factors together as the input of the Cox regression
model and denote it as PS. The maximum hazard ratios of the
computational biomarkers from WSIs and pathway scores in
conjunction with clinical factors are shown in Table 3.

Compared with other clinical factors, using pathway scores
alone achieved equivalent hazard ratio. For the texture methods,
the recurrence hazard ratios were equivalent to the ones without
pathway scores. Using CNN-LSTM + PS, the Gleason primary
pattern and computational biomarkers showed the increased
recurrence ratios compared to the ones without pathway scores.
In addition, the Gleason primary pattern and computational
biomarkers showed the highest recurrence ratios compared to
other clinical factors. The result showed that CNN-LSTM-PS
outperformed other methods in prostate cancer recurrence
analysis due to its highest recurrence hazard ratio.

Furthermore, we show the C-index of the clinical factors and
computational features under the Cox regression model for pros-
tate cancer recurrence probability prediction in the last column

Table 1 Recurrence hazard ratios and corresponding C-indices of clinical prognostic factors and different image features from various image
quantification methods. The results are obtained by using image features quantified from theWSIs. LBP, HOG, and SURF are the texture methods.
CNN-LSTM is using the image features obtained from CNN with LSTM while CNN-Only is using the image features obtained from CNN without
considering patches’ spatial relation on a WSI.

Methods Primary pattern Secondary pattern PSA Age Tumor stage Image features C-index

LBP 1.05 0.94 0.85 1.00 1.03 1.05 0.68

HOG 1.04 0.94 0.85 1.00 1.03 1.05 0.64

SURF 1.07 0.97 0.86 1.00 1.03 1.05 0.61

CNN-Only 1.11 1.12 0.80 1.00 1.17 2.44 0.70

CNN-LSTM 1.70 1.06 0.80 0.99 1.26 5.06 0.71

Table 2 Correlation analysis of image features and pathways scores
using a test-test on their correlation coefficients.

Image features Mean of p-value Standard deviation of p-value

LBP 0.50 0.29

HOG 0.49 0.30

SURF 0.43 0.30

CNN-LSTM 0.48 0.29
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of Table 1 and the last row and column of Table 3. As a global
index for validating the predictive ability of a survival model, in
our study, the C-index was equivalent to a rank correlation of the
risk of a recurrence of disease. High values mean that the model
predicts higher probabilities of recurrence for higher observed
recurrence times. From the clinical results, PSA showed higher
C-index values, which were correlated to a higher recurrence
prediction probability compared to other clinical factors.
Interestingly, texture features on WSIs or pathway scores indi-
vidually showed an equivalent recurrence probability.

4 Discussion
From the experimental results, our proposed method achieved
the highest recurrence hazard ratio and the strongest C-index
related to prostate cancer recurrence probability compared to
other clinical prognostic factors and methods. It demonstrated
that the approach was beneficial for recurrence analysis on the
patients with Gleason score 7. The unified WSIs and genomic
data analysis through the proposed networks could be applied
to other prostate cancer risk group such as Gleason 679–81 or
other cancer recurrence analysis, such as breast cancer.82

Pathway analysis, albeit with the caveat of a small sample
size, identified 27 differentially expressed pathway activities
in tumors with Gleason score 3þ 4 and 4þ 3. Thus, these sig-
natures could be utilized to differentiate patients with Gleason
score 7 as two subgroups, which corresponds with a favorable or
unfavorable prognosis.83 The recurrence analysis (Table 3) using
pathway scores alone did not show an advantage over other
clinical prognostic factors. The integration of pathway score
with WSIs achieved the best recurrence prediction on patients
with Gleason score 7. The comparison indicated that using the
pathway scores directly had a limited contribution in recurrence
prediction on patients with Gleason score 7. However, the
embedded genomic features obtained through MLP were more
effective for prostate cancer recurrence analysis.

There are other clinical factors for prostate cancer prognosis
besides those used in the study, such as patients’ race. Because
in the study, <2% men were Asian or African, 30% were
Caucasian, and the rest were unknown, we excluded patients’
race factor in the recurrence analysis. Other clinical factors,
such as American joint committee on cancer metastasis stage,
neoplasm disease stage codes, and so on, were not available
for all the patients in the GDC prostate cancer datasets.

The prostate cancer datasets were acquired from various
institutions and each institution may have different scanners
or WSI scanning protocols. Thus, there was color heterogeneity
among the prostate cancer WSIs. In the study, we did not adopt
color normalization84,85 on the randomly selected testing set
because it was not feasible to determine the reference image
from the training set for color normalization. When we apply
the approach to a new dataset, we could fine-tune the network
based on the training data from that dataset. Given the limited
size of the public prostate dataset, the results achieved from our
experiments were preliminary. In order to further validate the
generalizability of our approach on a wider population of pros-
tate cancer patients, we will collect more prostate images from
local institutions to perform extensive experiments.

5 Conclusion
In this study, we performed recurrence analyses for prostate
cancer patients with Gleason score 7 integrating histopathology
WSIs and genomic data. The image features and genomic
features were obtained using CNN and MLP, respectively.
The combination of the features was modeled using LSTM to
get the computational biomarkers. Experimental results utilizing
on publicly available prostate cancer dataset showed that
the computational biomarkers extracted by our approach were
more closely correlated with patients recurrence risk compared
to standard clinical prognostic factors and engineered image
texture features. The results of our study suggest that these
approaches could be utilized to predict recurrence and progres-
sion for patients with prostate cancer.
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Table 3 Recurrence hazard ratios and corresponding C-indices of clinical prognostic factors and computational biomarkers under a Cox regres-
sion model using different image feature quantification methods along with the genomic data. Given the genomic data, we show the results using
image features with pathway scores (PS). Here, LBP + PS, HOG + PS, SURF + PS, CNN-Only + PS, and CNN-LSTM + PS are image features
quantified from LBP, HOG, SURF, CNN-Only, and CNN-LSTM methods with PS.

Methods Primary pattern Secondary pattern PSA Age Tumor stage Biomarkers C-index for biomarkers

PS 0.95 0.98 0.86 1.00 1.04 1.02 0.65

LBP + PS 1.04 1.00 0.87 1.00 1.02 1.08 0.69

HOG + PS 1.04 1.00 0.87 1.00 1.02 1.08 0.65

SURF + PS 1.07 1.00 0.86 1.00 1.03 1.07 0.62

CNN-Only + PS 1.13 1.11 0.80 1.00 1.17 2.58 0.71

CNN-LSTM + PS 2.56 0.63 0.66 1.01 1.05 5.73 0.74

C-index for clinical factors 0.61 0.59 0.66 0.55 0.53 — —
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