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ABSTRACT

DBASS3 and DBASS5 provide comprehensive
repositories of new exon boundaries that were
induced by pathogenic mutations in human
disease genes. Aberrant 50- and 30-splice sites
were activated either by mutations in the consensus
sequences of natural exon–intron junctions (cryptic
sites) or elsewhere (‘de novo’ sites). DBASS3 and
DBASS5 currently contain approximately 900
records of cryptic and de novo 30- and 50-splice
sites that were produced by over a thousand differ-
ent mutations in approximately 360 genes. DBASS3
and DBASS5 data can be searched by disease
phenotype, gene, mutation, location of aberrant
splice sites in introns and exons and their distance
from authentic counterparts, by bibliographic refer-
ences and by the splice-site strength estimated with
several prediction algorithms. The user can also
retrieve reference sequences of both aberrant and
authentic splice sites with the underlying mutation.
These data will facilitate identification of introns or
exons frequently involved in aberrant splicing,
mutation analysis of human disease genes and
study of germline or somatic mutations that impair
RNA processing. Finally, this resource will be useful
for fine-tuning splice-site prediction algorithms,
better definition of auxiliary splicing signals and
design of new reporter assays. DBASS3 and
DBASS5 are freely available at http://www.dbass
.org.uk/.

INTRODUCTION

Pre-mRNA splicing removes intervening sequences or
introns from eukaryotic precursor messenger RNAs
(pre-mRNAs) to ensure accurate gene expression (1).
Apart from joining consecutive exons together, this

process is capable of selective removal or inclusion of
exonic and intronic segments in mRNA, generating
distinct transcripts from a single gene, often in a cell
type-specific or developmental- or gender-dependent
manner (2–4). Both constitutive and alternative splicing
are controlled by sequence elements in the pre-mRNA
that are recognized by a large ribonucleoprotein
complex termed the spliceosome (1). These conserved
but degenerate signals are located predominantly in
introns and include 50-splice sites (50-ss) and 30-splice
sites (30-ss), with upstream polypyrimidine tracts and the
branch point sequence. Mutations in any of these cis-
elements can dramatically alter splicing efficiency and
result in genetic disease (5–8), but their consequences for
RNA processing have been difficult to predict.

The majority of mutations at the 50-ss or 30-ss consensus
have been reported to cause skipping of one or more exons
and activation of cryptic splice sites (9). Occasionally,
splice-site mutations may also result in full intron reten-
tion or give rise to entirely novel ‘pseudoexons’ or cryptic
exons, often in repetitive sequences, particularly in
short interspersed nuclear elements (SINEs), including
mammalian interspersed repeats and Alus (10–12).
Finally, creation of de novo splice sites in large exons
may remove internal exonic sequences and create
pseudointrons.

Traditional splicing signals contain only a half of the
information necessary for accurate splice site recognition
(13). The remaining information is provided by auxiliary
signals in introns and exons, known as splicing enhancers
and silencers (14,15), that are thought to interact with
trans-acting factors and/or contribute to critical RNA
structural motifs and a ‘splicing code’ (16,17). In
addition, as the splicing and transcription machineries
are tightly linked, splicing outcomes can be influenced
by pre-mRNA processing kinetics and transcription (18).
As a result, a ‘splicing mutation’ may affect not only RNA
processing, but also transcription (19) and downstream
expression pathways, including translation. For example
creating or eliminating exons containing upstream open
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reading frames or altering splicing efficiency and general
intron-mediated translation enhancement can dramatic-
ally influence the abundance of gene products (20,21).
The fraction of gene mutations or variants that influence
splicing and gene expression is thus likely to be larger than
previously thought. Because copy-number or structural
variants exceed single-nucleotides polymorphism by at
least 2-fold (22), the overall contribution of human vari-
ability to differential pre-mRNA processing and down-
stream remodelling of ribonucleoprotein particles could
be even higher.

Better understanding of the complicated interplay of
factors that control splice site choice would clearly benefit
from convenient access to a comprehensive resource that
pools sequences from scattered mutation reports in a
wide-range of biomedical journals. Although rare, these
reports provide valuable information about splice site se-
lection in vivo. Currently, the Human Gene Mutation
Database (HGMD) (23) and other locus-specific
mutation databases (for example HPRT at www.ibiblio
.org/dnam/des_hprt.htm or CFTR at www.genet.sickkids
.on.ca/cftr/app and see www.hgvs.org/rec.html for other
genes) give a list of splicing mutations. However, none of
these databases provide critical and comprehensive infor-
mation needed to understand why aberrant splice sites are
selected. Apart from the initial overview of aberrant
splicing (24,25), a comprehensive, regularly updated and
publicly available tool is missing. Here, we describe
DBASS3 and DBASS5, the databases of aberrant 30-ss
and 50-ss in human disease genes and discuss their utility
and importance for studying splice site selection.

RESULTS AND DISCUSSION

Criteria for data inclusion in DBASS3 and DBASS5

Both databases contain sequences of new exon–intron
boundaries that were generated through naturally
occurring and disease-causing variants or mutations,
both germ-line and somatic. DBASS3 and DBASS5
contain mutation-induced and sequence-verified aberrant
RNAs published in peer-reviewed communications over
the past 30 years (from January 1981 to June 2010).
Briefly, reports of cryptic and de novo splice sites were
identified by searching PubMed (http://www.ncbi.nlm
.nih.gov/entrez/query.fcgi; queries: ‘mutation, splicing,

cryptic’; ‘mutation, splicing, new acceptor’ or ‘mutation,
splicing, new donor’) and home pages of peer-reviewed
journals. A subset of case reports were identified by
searching locus-specific mutation databases (http://
archive.uwcm.ac.uk/uwcm/mg/docs/oth_mut.html). The
search was restricted to human genes with sequence-
verified aberrant RNA products.
Reported sequences were manually checked against ref-

erence sequences available from human genome data-
bases, including GenBank (http://www.ncbi.nlm.nih.gov/
Genbank) (26) and Ensembl (http://www.ensembl.org)
(27). The vast majority of aberrant transcripts were
verified by amplifying reverse-transcribed total RNA ex-
tracted from blood samples taken from affected individ-
uals and/or their family members. Neither database
features exon skipping or full intron retention events in
which no new exon–intron boundaries were generated, nor
do they include polymorphisms that influence utilization
of the NAGNAG type of 30-ss, which was reported
elsewhere (28).

Database design and data set summary

DBASS3 and DBASS5 were designed as retrieval and sub-
mission tools containing mutation-induced aberrant splice
sites that resulted in a recognizable phenotype. The web
application was created using the Microsoft ASP and
ASP.Net server technology and SQL Server database
software. A breakdown of updated DBASS3 and
DBASS5 records by gene, phenotype and location of
aberrant splice sites is shown in Tables 1 and 2,
respectively.
The initial analysis of DBASS3 and DBASS5 records

(29,30) confirmed that cryptic splice sites were, on average,
intrinsically stronger than mutated authentic (natural)
sites but generally weaker than their authentic, wild-type
counterparts (31). Analysis of DBASS3 and DBASS5 se-
quences also showed that the maximum entropy (ME)
algorithm (32) gave the best overall discrimination
between aberrant and authentic sites (29,30), while algo-
rithms based only on the weight matrix, such as the
Shapiro and Senapathy score (33) performed less success-
fully. The density of silencers and enhancers in the
segments between authentic and aberrant sites was inter-
mediate between exons and introns, supporting a gradient
concept of exon and intron definition (34).

Table 1. Summary of aberrant 30-splice sites in DBASS3

Location of cryptic or de novo 30-splice sites Exon Intron Both

Mutation In the 30-ss
consensusa

(cryptic)

Elsewhere
(‘de novo’)

In the 30-ss
consensusa

(cryptic)

Elsewhere
(‘de novo’)

All
mutations

Number of genes 72 30 39 70 170
Number of phenotypes 67 32 37 71 165
Number of cryptic and de novo 30-ss (%) 107 (34.3) 48 (15.4) 49 (15.7) 108 (34.6) 312 (100)
Number of aberrant 30-ss affecting terminal exons 12 5 9 4 28
Median distance (nucleotides) between authentic and aberrant

30-splice sites
13 49 �41 �12 1

aThe 30-ss consensus is YAG/G (Y is a pyrimidine, slash is the intron–exon boundary).
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Analysis of DBASS3 and DBASS5 data also revealed
the underlying mutation pattern of aberrant splice sites
and their location. For example breakdown of DBASS3
alterations showed that AG-creating mutations were
much more common than previously estimated, totalling
to �42% (29), as opposed to the initial estimate of 13%
(24). De novo 50-ss in introns were stronger than their au-
thentic counterparts (30), but this did not apply to exonic
de novo sites, suggesting that their activation in vivo is
more reliant on exonic splicing enhancers or silencers,
rather than on the intrinsic strength of the 50-ss consensus
(30). Finally, DBASS3 and DBASS5 data has been
employed to develop other prediction tools, such
as CRYP-SKIP (http://www.dbass.org.uk/cryp-skip/),
which can distinguish between cryptic splice site activation
and exon skipping upon mutation of 30-ss or 50-ss (35) or
HOT-SKIP (http://www.dbass.org.uk/hot-skip/), which
computes the ESS/ESE profile for all possible point mu-
tations at each exon position and identifies nucleotide sub-
stitutions that are most likely to skip the exon (M. Raponi
et al., submitted for publication). Such free practical
utilities are useful for molecular diagnostics to facilitate
identification of exonic changes that interfere with RNA
processing and prediction of their phenotypic outcome.

User interface

DBASS3 and DBASS5 provide a quick search page where
the user needs to specify a gene symbol (http://www.gene
.ucl.ac.uk/nomenclature/), phenotype or Mendelian
Inheritance in Man (MIM) number (www.ncbi.nlm.nih
.gov/omim/) (36) or nucleotide sequences that match the
input criteria. In an advanced search option, one can select
a combination of several criteria, including phenotype,
gene, mutation, location of aberrant splice sites in
introns and exons, distance from authentic splice sites
and relevant bibliographic references (Figure 1). The
user can choose to browse through the list of all records.
Investigators studying coupled processes of RNA splicing
and end-processing can easily retrieve aberrant splice sites
that were activated in terminal exons or introns. Not in
the least, the user can search for aberrant splice sites (and
their wild-type and mutated authentic counterparts) by
their intrinsic strength. This option permits retrieval of
splice sites according to various splice-site scores and
user-defined cut-off points or desired intervals.

The search results can be expanded by clicking on the
‘View details’ button (Figure 1), leading to full details in
each record (Figure 2), including gene, phenotype, MIM
numbers, mutation (using traditional and official nomen-
clature where available), distance between authentic and
aberrant splice sites, change of the reading frame (0, +1
and+2nt), literature references with PubMed hyperlinks
and nucleotide sequences flanking the authentic and

Figure 1. Screenshot of the DBASS3 search page. DBASS3 and
DBASS5 provide a quick search page where the user needs to specify
a gene symbol, phenotype or nucleotide sequence. In the Advanced
search option, one can select a combination of several criteria,
including phenotype, gene, mutation, location of aberrant splice sites
in introns and exons, distance from authentic (natural) splice sites,
intrinsic strength of splice sites and bibliographic references.

Table 2. Summary of aberrant 50-splice sites in DBASS5

Location of cryptic or de novo 50-splice sites Exon Intron Both

Mutation In the 50-ss
consensusa

(cryptic)

Elsewhere
(‘de novo’)

In the 50-ss
consensusa

(cryptic)

Elsewhere
(‘de novo’)

All
mutations

Number of genes 115 57 113 67 255
Number of phenotypes 122 61 123 68 281
Number of cryptic and de novo 50-ss (%) 203 (33.9) 89 (15.2) 221 (36.9) 90 (14.0) 603 (100)
Number of aberrant 50-ss affecting terminal introns (%) 8 2 6 2 18
Median distance (nucleotides) between authentic and aberrant 50-splice sites �43 �59 43 18 �9

aThe 50-ss consensus is MAG/GURAGU (M is A or C, R is purine and slash is the exon–intron junction).
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aberrant 50-ss. The ex vivo origin of aberrant RNA is
indicated in the Comments fields of DBASS3 and
DBASS5 records, which also contains additional
information.

Finally, both DBASS3 and DBASS5 allow the users to
submit newly published entries for their inclusion in the
databases via a dedicated submission tool and also to
register to obtain regular database updates by Email.

Nomenclature of aberrant splice sites

Although mutations anywhere in intron or exon can
impair pre-mRNA splicing, most mutations that activate
aberrant splice sites are found in or close to natural splice
sites (29–31). If the mutation nomenclature incorporated
the distance (in nucleotides) between mutation and natural

exon–intron junction, this information would help to
identify mutations that activate aberrant splice sites. For
exonic mutations, however, neither traditional (37) nor
official (www.hgvs.org/mutnomen/) mutation nomencla-
ture assimilate these data. For intronic alterations, the
distance can be derived from both the traditional and
the official designation, although the latter does not
provide this information when referring to a genomic
sequence (for example g.234G>T). As most human
mutation reports currently adhere to the official nomen-
clature, exonic mutations that affect splicing are less likely
to be recognized and are probably under-reported. To
allow the investigators immediate access to this critical
information, both DBASS3 and DBASS5 still show
the traditional mutation nomenclature for all records. In
exons, single-nucleotide substitutions are simply preceded

Figure 2. Example of a DBASS3 record. Aberrant splice sites are shown as a slash in a genomic sequence. Disease-causing or–—predisposing
mutations are denoted by a ‘greater than’ sign for nucleotide substitutions, by parentheses for deletions and by brackets for duplications or
insertions. Intronic sequences are shown in blue lower case, exons are shown in green upper case. Cryptic exons are underlined.
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by ‘E’ (for exon), which is followed by an exon number, a
‘plus’ sign and the distance (in nucleotides) between the
last authentic intron–exon junction and the point
mutation. In addition to sequence, DBASS3 and
DBASS5 users can see both the distance between
mutation and authentic splice site and the distance
between authentic and aberrant splice sites. Rather than
relying merely on the nomenclature, this design ultimately
facilitates rapid verification of splicing mutations and aux-
iliary splicing signals, giving the user immediate access to
the sequence of newly intronized or exonized segments
and the underlying DNA change.

Future directions

New releases of DBASS3 and DBASS5 data will reflect
the growing number of studies reporting new aberrant
splice sites. The updates will be facilitated by user-assisted
submissions and proper reporting of disease-associated
aberrant splices in biomedical journals, which should be
endorsed by journal editors. With recent realization that
single nucleotide variability is less extensive than inser-
tion/deletion or copy-number variability (22), it will be
interesting to catalogue structural alterations that influ-
ence pre-mRNA processing and alter the relative expres-
sion of pre-existing, alternatively spliced mRNAs,
particularly in conserved gene families. DBASS5 and
DBASS3 entries are also planned to be linked to
external resources other than OMIM and Ensembl, such
as the SNP databases (http://www.ncbi.nlm.nih.gov/snp/).
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