
..

..

.

Artificial intelligence to diagnose

paroxysmal supraventricular tachycardia

using electrocardiography during normal

sinus rhythm

Yong-Yeon Jo 1†, Joon-Myoung Kwon 1,2,3,4,*†, Ki-Hyun Jeon 2,5,*†,

Yong-Hyeon Cho3, Jae-Hyun Shin3, Yoon-Ji Lee3, Min-Seung Jung3,

Jang-Hyeon Ban4, Kyung-Hee Kim 2,5, Soo Youn Lee2,5, Jinsik Park5, and

Byung-Hee Oh5

1Department of Medical Research, Medical AI, 163, Yangjaecheon-ro, Gangnam-gu, Seoul, 06302, Republic of Korea; 2Department of artificial intelligence and big data research,
Sejong Medical Research Institute, 28, Hohyeon-ro 489beon-gil, Bucheon-si, Gyeonggi-do, 14754, Republic of Korea; 3Department of Critical Care and Emergency Medicine,
Mediplex Sejong Hospital, 20, Gyeyangmunhwa-ro, Gyeyang-gu, Incheon, 21080, Republic of Korea; 4Department of Medical R&D, Body friend, 163, Yangjaecheon-ro, Gangnam-
gu, Seoul, 06302, Republic of Korea; and 5Department of Internal Medicine, Division of Cardiology Cardiovascular Center, Mediplex Sejong Hospital, 20, Gyeyangmunhwa-ro,
Gyeyang-gu, Incheon, 21080, Republic of South Korea

Received 2 January 2021; revisied 23 January 2021; accepted 5 February 2021; online publish-ahead-of-print 9 February 2021

Aims Paroxysmal supraventricular tachycardia (PSVT) is not detected owing to its paroxysmal nature, but it is associated
with the risk of cardiovascular disease and worsens the patient quality of life. A deep learning model (DLM) was
developed and validated to identify patients with PSVT during normal sinus rhythm in this multicentre retrospective
study.

...................................................................................................................................................................................................
Methods
and results

This study included 12 955 patients with normal sinus rhythm, confirmed by a cardiologist. A DLM was developed
using 31 147 electrocardiograms (ECGs) of 9069 patients from one hospital. We conducted an accuracy test with
13 753 ECGs of 3886 patients from another hospital. The DLM was developed based on residual neural network.
Digitally stored ECG were used as predictor variables and the outcome of the study was ability of the DLM to
identify patients with PSVT using an ECG during sinus rhythm. We employed a sensitivity map method to identify
an ECG region that had a significant effect on developing PSVT. During accuracy test, the area under the receiver
operating characteristic curve of a DLM using a 12-lead ECG for identifying PSVT patients during sinus rhythm was
0.966 (0.948–0.984). The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of
DLM were 0.970, 0.868, 0.972, 0.255, and 0.998, respectively. The DLM showed delta wave and QT interval were
important to identify the PSVT.

...................................................................................................................................................................................................
Conclusion The proposed DLM demonstrated a high performance in identifying PSVT during normal sinus rhythm. Thus, it can

be used as a rapid, inexpensive, point-of-care means of identifying PSVT in patients.
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Introduction

Paroxysmal supraventricular tachycardia (PSVT) has an adverse effect
on patient quality of life and worsens healthcare burden worldwide.1

Approximately 89 000 cases of PSVT are detected annually in the
USA, and approximately 25% of all emergency department visits for
PSVT result in hospitalization.2,3 As PSVT is a sporadic, sudden, and
recurring event, it may restrict the activities of patients and disrupt
their quality of life. Although PSVT is not a fatal arrhythmia, it
increases the risk of cardiovascular diseases, such as ischaemic stroke,
tachycardia-induced cardiomyopathy, and heart failure.4–6

Although PSVT can be resolved by ablation intervention, it is diffi-
cult to diagnose because of its paroxysmal nature. The PSVT is often
delayed in diagnosis, and could be misdiagnosed as psychiatric disor-
ders, such as panic attacks.7 As PSVT can only be detected during an
on-going episode, existing screening methods using ambulatory elec-
trocardiography (ECG) devices have limitations, such as high cost
and low detection rate.8 If the PSVT can be screened during normal
sinus rhythm, it will be very useful for PSVT diagnosis. However, it is
impossible with current knowledge of ECG.

A low-cost, widely available, and non-invasive test for identifying
patients likely to have PSVT can be very useful as diagnostic and
therapeutic implications in real-world practice. Recently, deep

learning has demonstrated high accuracy and applicability in com-
puter vision, speech recognition, and signal processing tasks.
Particularly, in the medical domain, deep learning has been applied to
the diagnosis of heart failure, myocardial infarction, arrhythmia, valvu-
lar heart disease, coronary artery calcium score, and anaemia using
ECG.9–15 Attia et al.16 showed that an artificial intelligence-enabled
ECG acquired during normal sinus rhythm allows detection at the
point-of-care of individuals with atrial fibrillation. Previous studies
have shown that the structural and electrophysiological features of
PSVT could be reflected by autonomic conditions effecting ECG.17

Thus, we hypothesized that we could develop artificial intelligence
based on deep learning model (DLM), to identify patients with PSVT
during normal sinus rhythm using these features. In this study, we
developed and validated the DLM using a multicentre cohort of
patients.

Methods

Study design and population
We conducted a multicentre retrospective diagnostic study in which a
DLM was developed using ECGs and then externally validated. Data from
the Mediplex Sejong Hospital (MSH) were used for the development. In
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.MSH, we identified patients who underwent at least one standard digital,
10 s, 12-lead ECGs examination administered by cardiologists that con-
firmed normal sinus rhythm during the study period (1 March 2017 to 31
March 2019). The individuals who visited the general health checkup, out-
patient, and emergency departments of MSH were included as study
population for the development datasets. In the development process,
we split the MSH data into training data (90%) and validation data (10%).
The training data were used in the regression of each coefficient of DLM,
and the validation data were used to confirm the loss in each epoch. Data
from the Sejong General Hospital (SGH) were used for the external val-
idation. We identified patients who were admitted to SGH during the
study period (1 April 2019 to 31 October 2019) and who underwent at
least one ECG examination administered by cardiologists that confirmed
normal sinus rhythm during admission period (Figure 1). We excluded
individuals with missing clinical data including ECG information.

This study was approved by the institutional review boards of MSH
(2019-083) and SGH (2019-0411). Clinical data, including digitally stored
ECGs, admission note, progression note, and epidemiology data, were
obtained from both the hospitals. Both institutional review boards waived
the need for informed consent because of the retrospective nature of the
study, which used fully anonymized ECG and health data and caused min-
imal harm.

In this study, we defined PSVT as atrioventricular nodal re-entrant
tachycardia (AVNRT) and atrioventricular re-entrant tachycardia
(AVRT). As pathophysiology and clinical management are different, we
did not define atrial fibrillation, atrial flutter, and multifocal atrial tachycar-
dia as PSVT in this study. Three cardiologists confirmed the label blindly.
As the cardiologist used ECGs and all medical records, including electro-
physiology tests and medical records before and after medication, there
were only six disagreement cases in this study population. Three cardiol-
ogists with six disagreement cases decided the final label by a majority
vote. We classified the patients into two groups: patients with PSVT, who
had at least one ECG showing PSVT documented at MSH or SGH, and
patients without PSVT, who had no ECGs showing PSVT and additionally
had no evidence to PSVT in their medical records, such as progression
notes. In the patients with PSVT, we defined the time of the first record-
ing of the ECG showing PSVT as event time and labelled the ECG with

sinus rhythm recorded before the event time as ‘positive ECG’. In other
words, we did not use ECGs following an event time ECG showing PSVT
in this study. We defined the ECG from patients without PSVT as ‘nega-
tive ECG’. We only used ECG confirming normal sinus rhythm by cardiol-
ogists to develop and validate the DLM.

Procedures
ECG data were used as predictor variables. A digitally stored 12-lead
Sejong ECG dataset, consisting of 5000 numbers for each lead, was
recorded over 10 s (500 Hz). We removed segments of length 1 s at the
beginning and end of each ECG signal because these regions had more
artefacts than the others. We also used partial datasets from 12-lead
ECG data, such as limb 6-, precordial 6-, and single-lead (I) ECG data. We
selected these sets of leads because they could easily be recorded by
wearable and life-style devices in contact with hands and legs.
Consequently, datasets of two-dimensional data consisting of 12� 4000,
6� 4000, 6� 4000, and 1� 4000 values, respectively, were used for
developing and validating the DLM using 12-, limb 6-, precordial 6-, and
single-lead ECGs.

This study aimed to identify patients with PSVT by using the proposed
DLM on ECGs with normal sinus rhythm. In other words, the outcome
of this study is the ability to classify positive and negative ECGs.

Figure 2 shows the process of developing a DLM using residual net-
works. The DLM was developed using 8 residual blocks of a neural net-
work.18 In a residual block, convolution layers and batch normalization
layers were repeated. The last layer of the 8th residual block was con-
nected to a flattened layer, which was fully connected to a one-
dimensional (1D) layer composed of neural nodes. The second fully con-
nected 1D layer was connected to the output node, which was com-
posed of two sub-nodes. The value of the output nodes of the DLM
represented the probability of obtaining positive ECG. The output node
of the DLM used a softmax function as an activation function because the
output of the softmax function ranges from 0 and 1.

Figure 1 Study flowchart. ECG, electrocardiography; PSVT, paroxysmal supraventricular tachycardia.
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Statistical analysis
Continuous variables were expressed as mean values (standard devi-
ation) and compared using the unpaired Student’s t-test or Mann–
Whitney U-test. Categorical variables were expressed as frequencies and
percentages and compared using the v2 test.

At each input (ECG) of test data, the DLM calculated the probability of
a positive ECG in the range from 0 (non-PSVT) to 1 (PSVT). To confirm
the DLM performance, we compared the probability calculated by the
DLM with the ground truth for positive and negative ECGs in the test
datasets. For this purpose, we used the area under the receiver operating
characteristic curve (AUC). We applied the cut-off point to the test data-
set to calculate sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), positive likelihood ratio (PLR), negative
likelihood ratio (NLR), and accuracy. The sensitivity, specificity, PPV,
NPV, PLR, NLR, and accuracy were confirmed at the operating point
from Youden’s J statistic in the development dataset.19

We hypothesized that the ECGs with high probability of DLM develop
PSVT early. We carried out Kaplan–Meier method to analyse the PSVT
development over 2 years by risk group. The ECGs of test dataset were
categorized into high-, moderate-, and low-risk group based on the prob-
ability of DLM using cut-off values, which were determined using cut-off
of top 1% and 3% prediction score from development dataset. As the
purpose of DLM was screening, we selected a cut-off of moderated risk
(3%) at the point of 90% sensitivity in the development dataset. We
defined the high-risk group as those with more than half the risk among
PSVT patients, and the cut-off corresponding to 50% of all PSVT patients
in the development dataset correlated with 1% of the total population in
the development dataset.

The confidence intervals for the AUC were determined based on the
Sun and Su optimization of the DeLong method using the pROC package
in R (The R Foundation for Statistical Computing, Vienna, Austria). A sig-
nificant difference in patient characteristics was defined as a two-sided P-
value of <0.001. Statistical analyses were performed using pROC package
of R software, version 3.4.2. In addition, we used PyTorch’s and Scikit-
learn’s open-source software libraries at the backend and Python (ver-
sion 3.6.11) for the analyses.

Visualizing the developed DLM for

interpretation
It is necessary to identify an ECG region having a significant effect on the
decision of the developed DLM and compare with existing medical know-
ledge of PSVT. We employed a sensitivity map based on a saliency
method.20,21 The map was computed using the first-order gradients of
the classifier probabilities with respect to the input signals; if the probabil-
ity of a classifier is sensitive to a specific region of the signal, the region
would be considered significant in the model. We used a gradient class
activation map (Grad-CAM) as a sensitivity map with the gradient back-
propagation method.20,21 Using this method, we could identify the ECG
region used for predicting the development of PSVT and could draw a
comparison with the medical knowledge in previous studies of PSVT. We
verified the variable importance values of ECG and epidemiology features
in deep learning, random forest, and logistic regression using the relative
importance based on Garson’s algorithm, mean decreased Gini, and devi-
ance difference, respectively.22

Results

The eligible population included 9082 and 3891 patients at MSH and
SGH, respectively. We excluded 13 and 5 patients (from MSH and
SGH, respectively) because of missing clinical data including ECG
data (Figure 1). The study included 12 955 patients, of whom 111
experienced a PSVT event. The number of AVNRT and AVRT was
58 and 53, respectively. The DLM was developed using a develop-
ment dataset of 31 147 12-lead ECGs for 9069 patients from MSH.

Figure 2 Architecture of DLM to diagnose PSVT using sinus
rhythm ECG. Conv, convolutional neural network layer; DLM, deep
learning-based model; ECG, electrocardiography; FC, fully con-
nected layer; PSVT, paroxysmal supraventricular tachycardia.
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Then, the performance of the algorithm was confirmed using 13 753
ECGs for 3886 patients in the test dataset from SGH. The character-
istics of the patients and ECGs were also different between patients
with and without PSVT, as shown in Table 1. In patients who had
PSVT episodes, the ECGs during normal sinus rhythm had tachycar-
dia (Table 1). As shown in Table 1, the rate of delta waves and QTc
was 7.2% and 447.61ms in PSVT patients, which was significantly
higher than that in non-PSVT patients.

During the accuracy test, the AUCs of the DLM using 12-, limb 6-,
precordial 6-, and single-lead ECGs for identifying positive ECG were
0.966 (0.948–0.984) 0.948 (0.924–0.973), 0.882 (0.846–0.919), and
0.846 (0.805–0.886), respectively (Figure 3). As shown in Figure 4, high
prediction score of DLM for predicting PSVT was correlated with
early development of PSVT. High risk group of DLM exhibited a sig-
nificantly higher hazard development rate of PSVT than those of the
moderate and low-risk group. For 14 days, development rate of
PSVT in high, moderate, and low-risk group was 43.2%, 4.1%, and
0.1% respectively.

The DLM indicated the ECG region important to predict the de-
velopment of PSVT. In ECG of a patient with Wolff–Parkinson–
White (WPW) syndrome, the DLM focused on the delta wave for
predicting PSVT, as shown in Figure 5. In another patient, the DLM
focused on the QT interval for predicting PSVT, as shown in Figure 5.
As shown in Table 2, the variable importance differed for each predic-
tion model. The logistic regression used heart rate and right bundle
branch block, while the DLM used the QT interval as an importance
predictive variable.

Discussion

In this study, we developed and validated a DLM for identifying
patients with PSVT using 12-, limb 6-, precordial 6-, and single-lead
ECGs, which showed a reasonable performance. In addition, we
showed the ECG region that had a significant effect on the develop-
ment of PSVT using the DLM. To the best of our knowledge, this

study is the first to develop an artificial intelligence algorithm for iden-
tifying patients with PSVT during normal sinus rhythm and to show
the interpretable patterns of decision-making using sensitivity map in
the biosignal domain.

The cornerstone of management of PSVT is diagnosis. Although
PSVT has several treatment options based on its severity, patients
are frequently not treated because they are not diagnosed. The most
important obstacle in the diagnosis of PSVT is its paroxysmal na-
ture.23 When patients with episodic symptoms arrived at the emer-
gency department, the symptoms had disappeared, and the ECG was
normal in several cases. In patients with PSVT, the ECG during sinus
rhythm has little diagnostic value. In cases of AVRT, which is charac-
terized by an extranodal accessory pathway connecting the atrium
and ventricle, we often find delta waves during sinus rhythm if there is
antegrade conduction via the accessory pathway and it could be a
clue to diagnose PSVT. However, other types of PSVT, such as
AVNRT, have no abnormal finding during normal sinus rhythm.
Although an ambulatory ECG test has a chance to diagnose PSVT,
PSVT cannot be detected if it does not occur during the test. In cur-
rent clinical process, the physicians administered the ambulatory
ECG test only to the patients whose symptoms were correlated with
PSVT. However, the patients’ symptoms are subjective, and the abil-
ity of physicians to detect the possibility of PSVT from patient history
varies by their experience. Hence, the current strategy of suspecting
PSVT and administering tests for PSVT based on only history taking
has limitations. Consequently, several PSVT patients are underdiag-
nosed or misdiagnosed with psychiatric disorders, such as panic
attacks.

The purpose of this model is not a confirmative test of PSVT, but
rather a screening of high-risk patients. With robust sensitivity and
NPV, DLM could be used to screen patients who need repeated
Holter tests or 30-day event monitoring owing to their high probabil-
ity of PSVT. DLM could support clinicians in selecting high-risk
patients by the risk score from DLM. As the Holter tests and 30-day
event monitoring are expensive to repeat, this risk stratification of
DLM associated with a high risk for PSVT and selection of patients

....................................................................................................................................................................................................................

Table 1 Baseline characteristics

Characteristics Patients without PSVT (n 5 12 844) Patients with PSVT (n 5 111) P-value

Age (years), mean (SD) 57.90 (17.11) 55.23 (18.77) 0.103

Male, n (%) 6551 (51.0) 53 (47.7) 0.556

Heart rate (b.p.m.), mean (SD) 71.24 (18.32) 82.91 (21.50) <0.001

PR interval (ms), mean (SD) 170.34 (34.15) 168.18 (41.12) 0.510

QRS duration (ms), mean (SD) 101.67 (19.88) 98.31 (18.87) 0.076

QT interval (ms), mean (SD) 409.15 (47.39) 388.16 (44.95) <0.001

QTc (ms), mean (SD) 437.53 (38.49) 447.61 (40.47) 0.006

P-wave axis (�), mean (SD) 43.10 (32.70) 46.09 (35.78) 0.337

R-wave axis (�), mean (SD) 37.36 (42.75) 38.33 (48.60) 0.812

T-wave axis (�), mean (SD) 45.84 (45.11) 38.72 (37.65) 0.099

Left bundle branch block, n (%) 181 (1.4%) 1 (0.9%) 0.962

Right bundle branch block, n (%) 557 (4.3%) 9 (8.1%) 0.089

Delta wave, n (%) 13 (0.1%) 8 (7.2%) <0.001

QT prolongation, n (%) 1889 (14.7) 18 (16.2) 0.755

294 Y.-Y. Jo et al.
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..who require repeated tests can help to increase the diagnostic rate
of PSVT. The DLM could not only identify patients with the risk of
developing PSVT but also predict the time of PSVT onset based on
the prediction score. Using this methodology, a doctor can

administer an ambulatory ECG test at the optimal time. Patients can
assess their risk of developing PSVT by themselves and can modify
the risk factor based on the prediction score, such as by avoiding caf-
feine and exercise.

Figure 3 Performance of DLM to diagnose PSVT using sinus rhythm ECG. ACC, accuracy; AUC, area under the receiver operating characteristic
curve; CI, confidence interval; DLM, deep learning-based model; ECG, electrocardiography; NLR, negative likelihood ratio; NPV, negative predictive
value; PLR, positive likelihood ratio; PPV, positive predictive value; PSVT, paroxysmal supraventricular tachycardia; Sens, sensitivity; Spec, specificity.
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Figure 4 Cumulative hazard of developing PSVT by risk group of DLM. (A) This figure shows the cumulative hazard of developing PSVT by risk
group of DLM in a long-term period of over 2 years. (B) This figure shows the cumulative hazard of developing PSVT by risk group of DLM in a short-
term period of 2 weeks. DLM, deep learning-based model; PSVT, paroxysmal supraventricular tachycardia.

Figure 5 Sensitivity map of DLM for identifying PSVT using sinus rhythm ECG. DLM, deep learning based model; ECG, electrocardiography; PSVT,
paroxysmal supraventricular tachycardia.
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..In this study, we defined the ECG region during normal sinus
rhythm that correlated with PSVT. As shown in Figure 5, the delta
wave of the WPW syndrome was highly correlated with PSVT, which
is consistent with existing medical knowledge. The sensitivity map
showed that QT interval was highly correlated with the development
of PSVT and the value of QT interval were more important than
other variables in DLM. Nigro et al.17 described that AVNRT epi-
sodes are preceded by increase in adrenergic drive. Magnano et al.24

demonstrated that autonomic conditions directly affect the ventricu-
lar myocardium of healthy subjects, causing differences in QT that
are independent of heart rate. Although no study has investigated the
direct correlation between QT interval and PSVT, the conduction
system in patients with PSVT could be delayed or altered due to
changes of autonomic condition. Further investigation is required to
confirm this finding. An important aspect of deep learning is experi-
mentation, not from medical knowledge, but from data themselves.
In most medical studies, the starting point of research is the research-
er’s hypothesis. Consequently, the research subjects are limited by
human ideas and prejudice. However, a deep learning methodology
only uses data and is a better method for extracting findings from
data, compared with human thinking. This methodology could be
helpful for researchers to find their research subjects and gain
intuition.

In recent studies, DLM could diagnose heart failure, valvular heart
disease, electrolyte imbalance, anaemia, myocardial infarction, ar-
rhythmia, left ventricular hypertrophy, and pulmonary hypertension
and could even determine age and sex using ECG.9,10,12,13,25–29

Conventional statistical methods cannot be used with diverse types
of data, such as images and waveforms, and cannot extract features
from non-linear correlation. The most important aspect of deep
learning is its ability to extract features with non-linear correlation
and use various types of data. Owing to the increasing availability of
the computing power required to build and use DLMs in hospitals
and daily life, DLMs can be used in daily life in the near future.

This study has several limitations. First, we validated the proposed
DLM using retrospective data; therefore, we need to validate it with
prospective studies and daily data. Studies related to the clinical sig-
nificance of the new technology are required to be applied in clinical

practice. In our next study, we will verify the performance and signifi-
cance of the proposed model through a prospective study in daily
clinical practice. Second, this study was conducted only in two hospi-
tals in Korea, and it is necessary to validate the proposed model on
patients in other countries. Lastly, normal control group are those
who did not develop PSVT during the study period, but this cannot
completely rule out PSVT. This study showed the correlation be-
tween the prediction score and the time until PSVT onset. However,
this analysis assumes that no episodes of supraventricular tachycardia
occurred other than the event time ECG. Therefore, further studies
are required to confirm this finding using continuous long-term ECG
monitoring.
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