
Sequence analysis

DeepSig: deep learning improves signal peptide

detection in proteins

Castrense Savojardo1, Pier Luigi Martelli1,*, Piero Fariselli2 and

Rita Casadio1

1Biocomputing Group, Department of Pharmacy and Biotechnology - Interdepartmental Centre ‘L. Galvani’ for

Integrated Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, 40126 Bologna, Italy

and 2Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on June 22, 2017; revised on November 22, 2017; editorial decision on December 16, 2017; accepted on December 20, 2017

Abstract

Motivation: The identification of signal peptides in protein sequences is an important step toward

protein localization and function characterization.

Results: Here, we present DeepSig, an improved approach for signal peptide detection and

cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on

an updated independent dataset of proteins show that DeepSig is the current best performing

method, scoring better than other available state-of-the-art approaches on both signal peptide

detection and precise cleavage-site identification.

Availability and implementation: DeepSig is available as both standalone program and web server

at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same

website.

Contact: pierluigi.martelli@unibo.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein sorting and compartmentalization are complex biological

mechanisms, often guided by specific sequence signals present in the

nascent protein. Signal peptides are short sequence segments located at

the N-termini of newly synthesized proteins that are sorted toward the

secretory pathway (von Heijne, 1990). Proteins endowed with a signal

peptide include proteins resident in endoplasmic reticulum and Golgi

apparatus, secreted proteins and proteins inserted in the plasma mem-

brane. Identifying signal peptides in the protein sequence is a prerequi-

site to unveil protein destination and function.

Several computational methods have been trained on available

experimental data to detect the signal sequence in the N-terminus of

a query protein. The most successful methods are based on machine

learning models. Artificial Neural Networks and Support Vector

Machines learn directly from the available experimental data the

signal sequence features (Nugent and Jones, 2009; Petersen et al.,

2011). Other methods (Bagos et al., 2010; Käll et al., 2005;

Reynolds et al., 2008; Tsirigos et al., 2015; Viklund et al., 2008)

adopt Hidden Markov Models to define regular grammars. They

explicitly model the modular architecture of the signal sequence,

consisting of three regions: the positively charged N-region, the cen-

tral hydrophobic H-region and the polar uncharged C-region con-

taining the cleavage site (Martoglio and Dobberstein, 1998).

A major challenge in signal peptide prediction is discriminating

between true signal sequences and other hydrophobic regions, and, in

particular, N-terminal transmembrane helices. The accurate predic-

tion of the cleavage site is also challenging, mainly due to the high var-

iability of the signal sequence length and the absence of sequence

motifs that unambiguously mark the position of the cutting site.

In this paper, we present DeepSig, a new method that takes

advantage of Deep Learning advancement and improves the state-of-

the-art performance. DeepSig is designed for both detecting signal

peptides and finding their cleavage sites in protein sequences. The pre-

dictor consists of two consecutive building blocks: a deep neural
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network architecture and a probabilistic method that incorporates the

current biological knowledge of the signal peptide structure.

In the first stage, the N-terminus of a query protein sequence is

analysed to assess the presence of a signal peptide. For this pur-

pose, we designed a Deep Convolutional Neural Network

(DCNN) (LeCun et al., 2015) architecture (Fig. 1), specifically

tuned to recognize signal peptide sequences. DCNNs are very

powerful deep learning architectures that achieve very high per-

formance in several applications (Alipanahai et al., 2015;

Krizhevsky et al., 2012; Zhou and Troyanskaya, 2015). Here, we

devise a DCNN comprising three cascading convolution-pooling

stages that process the N-terminus of the query protein, sorting

out three classes: signal peptides, transmembrane regions and

‘anything else.’

If a signal peptide is detected, the protein is passed to the next

prediction stage where the precise position of the cleavage site is

identified (Fig. 2). This task is tackled in DeepSig as a sequence

labelling problem, where each residue is labelled as signal-peptide

(S) or not (N). In particular, we adopted a probabilistic sequence

labelling model (Fariselli et al., 2009) similar to the regular gram-

mars adopted by other HMM-based approaches (Käll et al.,

2004).

For improving cleavage site detection, we also applied the Deep

Taylor Decomposition (Montavon et al., 2017) to compute how rel-

evant each residue at the N-terminus is for the recognition of the sig-

nal sequence. This score is used as additional feature for the

sequence labelling model to improve cleavage-site prediction.

We trained the DeepSig predictor on the dataset of proteins adopted

by SignalP, one of the best performing methods developed so far

(Petersen et al., 2011). It comprises 10303 non-redundant proteins

extracted from UniprotKB and belonging to three different organism

classes: Eukaryotes, Gram-positive and Gram-negative bacteria.

Comparative benchmarks were performed on a new independent

validation dataset comprising 1707 sequences with experimental

annotations in UniprotKB and not included in the training set. In all

experiments, DeepSig outperforms other state-of-the-art approaches

in both signal peptide detection and cleavage site prediction.

Interestingly, when restricting the negative dataset to the most chal-

lenging cases (N-terminal transmembrane regions), DeepSig outper-

forms state-of-the-art predictors, specifically in the case of

Eukaryotic proteins.

2 Materials and methods

2.1 Datasets
2.1.1 The SignalP4.0 dataset

The first dataset used in this work was generated to train and test

the well-known SignalP method (Petersen et al., 2011). Data were

extracted from UniProtKB/SwissProt release 2010_05 including pro-

teins from Eukaryotes, Gram-positive and Gram-negative bacteria.

Only proteins with experimentally annotated signal peptide cleavage

sites were retained. Negative sets (i.e. proteins lacking a signal

peptide) were chosen from two different subsets: (i) proteins experi-

mentally annotated as cytosolic and/or nuclear (ii) proteins experi-

mentally annotated as single- or multi-pass membrane proteins,

with a transmembrane segment annotated in the first 70 positions.

All data were homology-reduced in order to obtain non-redundant

datasets for each of the three organism classes. Two eukaryotic pro-

teins were considered as similar if a local alignment between them

included more than 17 identical residues out of 70 N-terminal resi-

dues. A threshold of 21 residues was instead used for bacterial pro-

teins. See Table 1 for a summary of the SignalP4.0 dataset.

2.1.2 The SPDS17 blind dataset

We generated a new benchmark dataset to compare different

approaches on signal peptide detection and cleavage-site prediction.

We selected proteins from UniprotKB (rel. 04_2017) released after

June 2015. This allowed to exclude any protein already included in

the SignalP dataset used for training.

Positive data were separately collected for Eukaryotes, Gram-

negative and Gram-positive (in constructing this set we considered

only proteins from Actinobacteria and Firmicutes phyla) by extract-

ing proteins endowed with an experimentally annotated cleavage

site for the signal peptide.

Next, analogously to the SignalP4.0 dataset, for each organism

class, two negative sets were generated: (i) proteins with a

membrane-spanning segment in the first 70 residues and (ii) proteins

localized into the nucleus and/or the cytoplasm. To generate these

sets, we retained only proteins with experimental or manually cura-

ted annotation (corresponding to the UniProtKB evidence codes

ECO: 0000269 and ECO: 0000305, respectively).

The set redundancy was reduced to 25% sequence identity by

running the blastclust algorithm and retaining a representative

Fig. 1. The architecture of the DCNN processing an input protein sequence to detect signal peptides. Feature extraction involves the application of three convolu-

tion-pooling (conv-pool) stages. The final classification is performed by a standard fully-connected neural network
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sequence from each cluster. Furthermore, we excluded all proteins

sharing more than 25% sequence identity with any protein in the

SignalP dataset. The blastp program with e-value threshold set to

1e-3 was adopted to search for similar proteins. Table 1 contains a

summary of the SPDS17 dataset.

2.1.3 The Escherichia coli proteome

We assessed DeepSig proteome-wide performance using the entire

proteome of Escherichia coli (strain K12). From release 11_2017

UniprotKB we downloaded all the 5972 reviewed entries. The

sequences endowed with signal peptide are 573; 1024 have a trans-

membrane segment annotated in the first 70 residues.

2.2 Deep convolutional neural networks for signal

peptide prediction
Deep Convolutional Neural Networks (DCNNs) (LeCun et al.,

2015) are powerful deep learning models devised to process multi-

channel input data. Several data types fall in this category. The main

application domain of DCNN is image processing (e.g. image object

recognition or segmentation), where each pixel of a 2-Dimensional

image is encoded by a vector of three intensity channels.

Here, we apply DCNNs to protein sequence analysis. In this

case, the input domain is a 1-dimensional signal, where each posi-

tion in a sequence is represented by a multi-channel (i.e. multi-

dimensional) vector encoding the residue type at each position of a

protein, one channel for each residue type.

Signal-peptide prediction is a special task of protein classification

where the goal is to detect the presence/absence of the signal

sequence in the N-terminus of the protein. Figure 1 summarizes the

architecture of the DCNN defined in this paper for signal peptide

prediction, comprising two basic modules: the feature extraction

and the classification.

2.2.1 Feature extraction module

The feature extraction module consists of several hierarchical convolu-

tion (conv) and pooling (pool) layers which collectively compute a fea-

ture representation of the input protein sequence. Convolutional layers

can be seen as sequence motif detectors used to scan the input sequence.

A convolutional layer is mainly characterized by the number of motifs

(or filters) it applies and by the motif length. Each motif detector slides

along the input sequence, and computes the positional score for the

motif at any sequence position. The scores are stored in the convolution

neurons. Motif parameters are learnt during training and, routinely,

parameter sharing is enforced (i.e. the same motif weights are applied to

all positions during sequence scanning). After convolution, pooling

layers are applied to aggregate neighbour convolution neurons into a

single output neuron, with a consequent reduction of dimensionality.

Typical pooling operations include max or average functions, computed

over short non-overlapping slices of convolution neurons. The main

parameter of a pooling layer is the width of the slice adopted. Iterative

applications of convolution-pooling (conv-pool) operations are per-

formed to extract a complex feature representation of the input

sequence. In fact, a hierarchical feature extraction protocol is adopted

where low-level motifs are progressively aggregated to model higher

level inter-motif interactions. Adding conv-pool layers to the network

allows extracting complex patterns of interaction through motifs,

though increasing the complexity of the network.

More formally, an input protein sequence is defined as a l � 20

matrix X where l is the sequence length and 20 is the number of dif-

ferent residue types. Here, protein sequences are shortened to the

96 N-terminal residues, hence l ¼ 96.

A motif detector of odd-sized width w in the first convolution

layer is defined as a weight matrix F of dimension w� 20. If f differ-

ent motif detectors are applied, the output of the convolution layer

is a l � f matrix C, where the element Ci;j is computed as:

Ci;j ¼ max 0;
Xðw�1Þ=2

d¼�ðw�1Þ=2

X20

c¼1

Xiþd;cF
j
dþðw�1Þ=2;c

0
@

1
A; (1)

where Fjis j-th motif weight matrix and max 0; xð Þ is the rectified lin-

ear unit (ReLU) activation function. Using ReLUs instead of other

Fig. 2. The signal-peptide GRHCRF model capturing the modular structure of the signal peptide. States labeled with N, H, and C represents the positively charged

N-region, the hydrophobic H-region and the cleavage C-region, respectively (see Section 2.4 for further details)

Table 1. Statistics of the three datasets adopted in this study

Dataset Organism SP T N/C Total

SignalP4.0 Eukaryotes 1640 987 5133 7760

Gram-positive 208 117 360 685

Gram-negative 423 523 912 1858

SPDS17 Eukaryotes 46 323 689 1058

Gram-positive 9 189 240 438

Gram-negative 23 89 99 211

E.coli – 573 1024 4375 5972

Note: SP, signal-peptide proteins; T, transmembrane proteins (with a single

alpha helix in the N-terminal region); N/C, Nuclear and/or Cytosolic proteins

(proteins without signal peptide); Total, total sum.
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activation functions (such as tanh or sigmoid) speeds up the training

process, particularly in networks with many layers (LeCun et al.,

2015).

The role of the pooling layer with pool size equal to s, applied to

each motif of matrix C, is to reduce its dimensionality by merging

together s neighbour convolutional neurons into one. Although

other schemes are possible, here average pooling is applied to adja-

cent pairs of convolution neurons, leading to dimensionality reduc-

tion from l to m ¼ l=2. The pooling layer computes a m� f matrix

P defined as follows:

Pi;j ¼
1

2
C2� i�1;j þ C2� i;j

� �
: (2)

where i ranges between 1 and m¼l/2. Overall, a single conv-

pool application transforms an input sequence of dimension l

�20 to a non-linear feature representation of dimension l=2� f .

Hence, a series of r conv-pool stages, stacked together, extracts

a non-linear feature space representation of dimension l=2r � fr,

with fr being the number of motif detectors in the last conv

layer.

In our final network, we apply three cascading conv-pool stages.

Different architectures were tried and selected through cross-

validation, varying the number of motif detectors and motif width

on each conv layer.

2.2.2 Classification module

The output classification is performed by means of a module imple-

menting a conventional fully connected feed-forward neural net-

work, comprising a single hidden-layer with h neurons. The number

of neurons in the hidden layer was varied and optimized through

cross-validation, separately for each organism class. Firstly, the

computed feature representation is flattened into a column vector v

that encodes the input of the feed-forward network.

Each neuron hi in the hidden layer computes a non-linear trans-

formation, defined as follows:

hi ¼ max 0; v � ai þ bið Þ; (3)

where ai and bi are, respectively, the weight vector and bias of the

hidden neuron hi (again, the ReLU activation is used).

Finally, the hidden layer output vector h is mapped to the i-th

output neuron as follows:

oi ¼ t h � bi þ qið Þ; (4)

where bi and qi are, respectively, the weight vector and the bias of

the output neuron oi, and the function t is the softmax function,

allowing a probabilistic interpretation of the network output.

The final output of our DCNN comprises three output neurons

accounting for three different output classes: signal peptide (S), trans-

membrane segment (T) or other (N). This three-class schema allows

to reduce the misclassification between transmembrane regions and

signal peptides (Section Results). An input protein sequence is classi-

fied into the class �c with the highest predicted probability, namely:

�c ¼ argmaxioi: (5)

Given a training set h ¼ X 1ð Þ; y 1ð Þ� �
; . . . ; X Nð Þ; y Nð Þ� ��

of N protein

sequences with true output targets, network parameters are opti-

mized by minimizing the average cross-entropy loss function on the

training set, defined as:

L hð Þ ¼ � 1

N

XN
i¼1

X3

j¼1

y
ið Þ

j log o
ið Þ

j

� �
(6)

where o
ið Þ

j is the j-th network output when the i-th sequence is pro-

vided in input.

2.3 Evaluating residue positional relevance with deep

Taylor decomposition
The DCNN described in the previous section is designed to provide

a prediction of the presence/absence of the signal peptide sequence

in the N-terminus of an input protein. In general, when such predic-

tions are performed with DCNN, some of the elements of an input

sequence (i.e. individual residues) may be more determinant than

others in driving the model classification toward one specific class

or another. An important question is then how this piece of informa-

tion can be extracted from the analysis of the internal neuronal

activity of DCNN.

Many methods are available to analyse the complex behaviour

of non-linear classifiers in the attempt of quantifying the importance

of basic elements in the input data with respect to the task at hand

(Bach et al., 2015; Montavon et al., 2017; Simonyan et al., 2013).

For instance, in image classification, one wants to identify a subset

of relevant pixels that are responsible for the recognition of an

object in the image (Bach et al., 2015; Montavon et al., 2017;

Simonyan et al., 2013; Szegedy et al., 2013). In the context of signal

peptide detection, given an input protein sequence in which a signal

peptide has been recognized, we want to identify residue positions

along the sequence that are more relevant for the global recognition

of the signal.

Available methods can be roughly classified into two different

categories: functional approaches look at networks as function

approximators and highlight the most relevant input features by

analysing the prediction function (Simonyan et al., 2013); message

passing approaches exploit the network as a computational graph

and propagate prediction values throughout the different layers

back to input variables (Bach et al., 2015).

Here, we adopt the deep Taylor decomposition (Montavon

et al., 2017), a hybrid functional/message passing approach that has

been recently introduced for the analysis of deep neural networks.

The method focuses on image classification, but it can be easily

extended to other types of prediction scenarios, such as protein

sequence classification. We briefly describe here its main aspects and

refer to the original paper for a comprehensive mathematical

description of the method (Montavon et al., 2017) and to our

Supplementary Material for a description of how this method can be

applied to our signal-peptide DCNN.

Let be x ¼ x1; . . . ; xl½ � an input protein sequence of length l

where each xi 2 R
20 is a 20-channel vector representing a residue in

the sequence. f xð Þ 2 R is the scalar function implemented with a

DCNN and evaluated on the input x. The function f ðxÞ quantifies

the evidence (or score) that a signal peptide is present in the N-termi-

nus of the sequence x. We want to assign to each residue xi a rele-

vance score Rxi
that quantifies the individual contribution of that

residue to the total predicted evidence function f ðxÞ.
Operatively, deep Taylor decomposition proceeds by assigning

to each neuron in a deep network a relevance score which is a meas-

ure of the contribution of the neuron to the total predicted score

f ðxÞ. Neuron relevance scores are computed by establishing local,

connectivity-dependent functional mappings between neuron activa-

tion values and propagated relevance values from upper-layers.

Taylor expansions of these local mappings at neuron-specific root
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points are then computed. Depending on the functional form of the

mappings and on the nature of the input domain, different relevance

propagation rules are defined (for details, see Supplementary

Material).

We apply this procedure to our signal peptide DCNN to evaluate

the contribution of each residue position to the detection of the sig-

nal sequence. The result for a sequence in input of length l ¼ 96 is a

vector:

Rx1
; . . . ;Rxl

� �
; (7)

where the component Rxi
is the relevance of the residue in position i.

2.4 Prediction of the signal peptide cleavage site
When a signal peptide is detected with the DCNN, the protein

sequence passes to the second prediction stage which identifies the

location of the cleavage site. In particular, each residue of a

positively-predicted sequence is assigned to one of two classes: signal

peptide (S) or non-signal region (N).

Here, we adopt a Grammar-Restrained Hidden Conditional

Random Field (GRHCRF) (Fariselli et al., 2009; Indio et al., 2013;

Savojardo et al., 2013; Savojardo et al., 2017). Like HMMs, a

GRHCRF can be represented as a finite state automaton whose state

structure and transitions reflect a regular grammar describing the

problem at hand (Fariselli et al., 2009). Each state of the model is

associated to a label that can be assigned to each element of a

sequence. Model parameters are weights that score the compatibility

between input sequences included in the training set and their true

labelling. Once the model has been trained, sequence labelling is per-

formed by assigning labels corresponding to the most probable state

path in the model. The optimal state path is computed by means of

Posterior-Viterbi decoding (Fariselli et al., 2009).

The GHRCRF model is defined on top of the grammar depicted

in Figure 2 as a finite-state automaton. The model defines different

states organized to capture the modular structure of a typical signal

peptide: 7 states to model the initial positively charged N-region

(states N1–N7), 11 states for the hydrophobic H-region (states H1–

H11) and 13 states for the cleavage C-region (states C1–C13). State

transitions are defined such that minimal and maximal lengths for

each sub-region are enforced. In particular, N-regions can be from

two up to seven residues long. In contrast, the H-region has a mini-

mal length of four residues with no upper bound. Finally, C-regions

comprise between 3 and 13 residues. The remaining mature protein

portion is modelled through a single recursive state (G0). The cleav-

age site corresponds to the position of the residue assigned to state

C13.

Training of the GRHCRF is performed on a training set of pro-

tein sequences endowed with signal peptides. Also in this case,

sequences are reduced to the first 96 N-terminal residues. Each resi-

due is encoded using a 21-dimensional feature vector consisting of:

• 20 positions of the vector correspond to the usual residue encod-

ing described above;
• the relevance score of the residue computed from the DCNN and

deep Taylor decomposition as described in Section 2.3.

2.5 Model optimization and implementation
All the models are trained on the SignalP4.0 dataset using a nested

5-fold cross-validation procedure as done in Petersen et al. (2011).

Three different optimization runs are performed on Eukaryotic,

Gram-positive and Gram-negative, respectively.

Firstly, the entire dataset is randomly split into five subsets con-

taining broadly the same number of proteins. Random splits are

computed so that the balancing between signal-peptide, transmem-

brane and other proteins is maintained on each subset and it is simi-

lar to the one observed in the whole dataset.

Secondly, a nested cross-validation procedure is performed as

follows: one subset is kept out and used for testing while a full inner

4-fold cross-validation is performed on the remaining four subsets.

In each run of this inner procedure, three subsets are used for train-

ing and one for validation. The inner cross-validation is used to opti-

mize the network parameters and architecture. In fact, we retain the

top-performing network as evaluated on the inner validation sets.

The procedure is repeated leaving out each time a different subset

for testing. In summary, 20 different networks are obtained (four

optimal networks that are identical in parameters and architecture

but have been trained on different inner training sets for each one of

the five main subsets). When performance is evaluated on the testing

set, outputs of the four inner networks are averaged to give the final

score. In the final version of our DeepSig predictor, we average the

output of all the 20 optimal networks.

The same procedure and data split was applied to train/test the

cleavage site predictor based on the GRHCRF model.

The DCNN is implemented using the Keras Python package

(https://keras.io) (Chollet et al., 2015) with the Tensorflow (https://

www.tensorflow.org) (Abadi et al., 2015) backend. The categorical

cross-entropy loss minimization is carried-out with the standard

error back-propagation procedure and the stochastic gradient

descent algorithm. Default hyper-parameters were used for training

the networks (Default hyper-parameters for network training were

set to 0.01 for learning rate and to 0 for momentum and weight

decay).

2.6 Scoring measures
Signal-peptide detection is scored using the following measures:

• Matthews Correlation Coefficient (MCC), defined as:

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p ;

(8)

where TP and TN are the correct predictions in the positive and neg-

ative classes, respectively, and FN and FP are the number of under-

and over-predictions in the signal peptide class
• False positive rate computed on transmembrane proteins, defined

as:

FPRT ¼
FPT

NT
; (9)

where FPT is the number of transmembrane proteins misclassified as

having a signal peptide and NT is the total number of transmem-

brane proteins.
• Cleavage-site prediction is scored by the cleavage-site F1 measure

defined as:

F1CS ¼
2� Cs � Cp

Cs þ CP
(10)

namely, the harmonic mean between Cleavage Site Sensitivity,

CS ¼ Ncorr

N and Cleavage Site Precision, CP ¼ Ncorr

NP
, where Ncorr is the

number of correctly identified cleavage sites and N and NP are,

respectively, the true number of signal peptides and the number of

predicted signal peptides.
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3 Results

3.1 Performance on the SignalP4.0 dataset
We firstly evaluate the performance of our DeepSig predictor on

the dataset adopted to train and test SignalP4.0 (Petersen et al.,

2011) with the same nested cross-validation procedure described in

Section 2.5.

This allows a direct and accurate comparison of DeepSig with

SignalP4.0. In particular, three different versions of SignaP are

scored: SignalP-TM, the version of the method optimized to distin-

guish signal peptides from transmembrane regions; SignalP-noTM

which is not optimized and SignalP4.0 which is a combination of

the two methods above.

Our DeepSig predictor is also evaluated in two versions, either

using the relevance profile as feature for cleavage-site prediction

(Section 2.4) or not (‘no relevance’ in Table 2).

Comparative results of both signal peptide detection and cleav-

age site prediction are reported in Table 2. Methods are trained and

scored separately on each organism class: Eukaryotes, Gram-

positive and Gram-negative. Results for SignalP are derived from

the original paper (Petersen et al., 2011).

The first aspect evaluated is the detection of the signal peptide

(with the MCC and FPRT scoring indexes). DeepSig outperforms

SignalP (considering the MCC values on Table 2) on all the three

datasets (Eukaryotes, Gram-positive and Gram-negative proteins).

Specifically, on the Eukaryote dataset our method shows a lower

false positive rate on proteins with a transmembrane segment anno-

tated in the first 70 residues (Table 2, FPRT). It is well known that the

ability to distinguish true signal peptides from N-terminal transmem-

brane regions is one of the main challenges for signal-peptide detection

methods, due the similar physical-chemical profiles (Petersen et al.,

2011). In this respect, DeepSig scores with a false positive rate of

2.6%, lower than that of SignalP-TM (3.3%) and a higher MCC value.

In absolute terms, DeepSig and SignalP-TM produce 20 and 27 false

positive predictions out of 787 transmembrane proteins, respectively.

On the two other datasets (Gram-positive and Gram-negative

bacteria) DeepSig scores on transmembrane proteins with a false

positive rate of 5.9% and 1.5%, respectively. On Gram-positive

bacteria, the DeepSig false positive rate is higher compared to that

reported SignalP-TM (Table 2). It is possible that low number of

transmembrane proteins of Gram-positives hampers the ability of

the DCNN to discriminate true signal sequence from transmem-

brane regions.

The second aspect evaluated is the ability to identify the correct

location of the cleavage site. As described in Section 2.4, our method

is based on a probabilistic sequence labelling approach which makes

use of the relevance profile computed by means of deep Taylor

decomposition. For this reason, we are interested in quantifying the

impact of this additional feature on the cleavage-site prediction per-

formance. As highlighted in Table 2, considering the F1cs values of

all the three protein sets, the inclusion of the relevance profile leads

to a better F1 score in cleavage-site prediction of DeepSig. This dem-

onstrates that the relevance profile, when incorporated into the

probabilistic sequence labelling method, provides additional infor-

mation that, in conjunction with primary sequence, helps in identify-

ing the correct extent of the signal sequence.

Comparing results in Table 2, we can conclude that the cleavage

site position is better predicted by DeepSig than SignalP, with the

exception of Gram positive bacteria. The improvement ranges from

2% to 4%.

3.2 Performance on the SPDS17 independent dataset
Five state-of-the-art predictors are benchmarked toghether with

DeepSig on an independent and blind SPDS17 validation set. The

predictors are: SignalP4.1 (Petersen et al., 2011), TOPCONS2.0

(Tsirigos et al., 2015), SPOCTOPUS (Viklund et al., 2008),

PolyPhobius (Käll et al., 2005), Philius (Reynolds et al., 2008) and

PRED-TAT (Bagos et al., 2010), all based on different and well

established methods. Again, predictions were generated separately

on Eukaryote, Gram-positive and Gram-negative data, either

launching the sequences on the respective web-servers or running in-

house the standalone versions. Three complementary aspects are

compared: the efficiency of the signal peptide detection evaluated

with the Matthews correlation coefficient (MCC), the precision of

the discrimination between signal peptides and N-terminal trans-

membrane regions, and the performance on the prediction of the

cleavage-site, measured with the F1 score.

For all the organism classes and for all the considered aspects,

DeepSig reports the best performances (Table 3). The MCCs of

the signal peptide detection are 2 to 4 percentage points higher

than the state-of-the art SignalP4.1. When restricting the negative

dataset to the most challenging cases (N-terminal transmembrane

regions), DeepSig reports the best false positive rate, outperforming

SignalP4.1 by 1.5% in the case of eukaryotic proteins. Moreover,

DeepSig gives a more exact prediction of the cleavage site in all the

three organisms, as highlighted by the cleavage-site F1 values.

Table 2. Performance of different versions of SignalP and DeepSig

on signal peptide detection and cleavage site prediction in 5-fold

cross-validation on the SignalP4.0 dataset (Petersen et al., 2011)

Method Eukaryotes Gram-positive Gram-negative

MCC FPRT F1cs MCC FPRT F1cs MCC FPRT F1cs

SignalP 4.0a 0.874 6.1 67.1 0.851 2.6 77.8 0.848 1.5 68.0

SignalP-TMa 0.871 3.3 67.2 0.851 2.6 77.8 0.815 1.1 67.7

SignalP-noTMa 0.674 38.1 54.6 0.556 47.9 49.4 0.497 35.8 67.7

DeepSig (no

relevance)

0.910 2.6 71.1 0.878 5.9 69.7 0.900 1.5 83.5

DeepSig 0.910 2.6 73.3 0.878 5.9 72.3 0.900 1.5 86.2

Note: MCC, Matthews Correlation Coefficient; FPRT, False Positive Rate

on transmembrane proteins; F1cs, The harmonic mean between precision and

recall on cleavage-site detection. No relevance ¼ without relevance profile as

feature for cleavage-site prediction (Section 2.4).
aData taken from Petersen et al. (2011).

Table 3. Comparative benchmark of different methods in signal

peptide detection and cleavage site prediction on the SPDS17 inde-

pendent dataset

Method Eukaryotes Gram-positive Gram-negative

MCC FPRT F1cs MCC FPRT F1cs MCC FPRT F1cs

SPOCTOPUS 0.54 16.7 0.20 0.28 20.2 0.37 0.63 14.3 0.12

PRED-TAT 0.55 9.3 0.33 0.26 2.2 0.72 0.82 9.9 0.14

Philius 0.62 6.5 0.46 0.31 3.4 0.72 0.87 7.4 0.22

PolyPhobius 0.73 7.4 0.42 0.44 11.2 0.53 0.80 7.9 0.06

TOPCONS2.0 0.74 5.3 0.27 0.49 4.5 0.60 0.91 2.6 0.08

SignalP4.1 0.82 4.0 0.69 0.50 0.0 0.79 0.93 4.2 0.33

DeepSig 0.86 2.5 0.72 0.54 0.0 0.82 0.95 2.6 0.36

Note: MCC, Matthews Correlation Coefficient; FPRT, False Positive Rate

on transmembrane proteins; F1cs, The harmonic mean between precision and

recall on cleavage-site detection.
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3.3 Proteome-wide scanning and detection of TAT-type

signal peptides
As a final benchmark, we assessed the performance of DeepSig on

the entire proteome of E.coli (strain K12).

DeepSig scores with a MCC value of 0.81, which is in line with

the results obtained on other benchmarks. A very low false positive

rate on transmembrane proteins was also registered: only 4 out of

1024 transmembrane proteins were incorrectly classified as signal

peptides, corresponding to a FPRT of 0.39%. Furthermore, the

method was also able to recover the correct cleavage site for 340 sig-

nal peptides, corresponding to a F1cs value of 69%. Specifically, the

set contains 138 sequences with an experimentally detected signal

peptide: DeepSig correctly identifies 126 sequences and correctly

places cleavage sites of 116.

Interestingly, even if DeepSig has not been trained to explicitly

recognize Twin-Arginine Translocation (TAT-type) signal sequences

(Berks, 2015), the method correctly detects 18 out of 32 Tat-type

signals that were annotated on E.coli sequences (sensitivity is 56%).

To further investigate the performance of DeepSig on detecting

TAT-type signal sequences, we downloaded from UniprotKB/

SwissProt all reviewed sequences carrying this kind of signal. We

ended up with 553 bacterial proteins, 466 of which were from

Gram-negative and 71 from Gram-positive bacteria. Running

DeepSig on these sequences, we were able to recover 330 out of 553

TAT signals, corresponding to a sensitivity of about 60%.

4 Conclusion

In this paper, we present DeepSig, a novel approach to predict signal

peptides in proteins based on deep learning and sequence labelling

methods. The proposed approach was evaluated and compared with

other available predictors, including the top-performing SignalP

(Petersen et al., 2011). In all the benchmarks, DeepSig reported per-

formances that were comparable and even superior to other state-of-

the-art methods.

The method is available as web server and as a standalone program

(https://deepsig.biocomp.unibo.it). The standalone version of the pro-

gram is very fast and easy to install. It takes only 40 min to process the

entire human proteome containing some 70 000 protein sequences (test

executed by running DeepSig in parallel using four CPU cores). All this

suggests that DeepSig is a premier candidate for proteome-scale assess-

ment of protein sub-cellular localization (where high precision is crucial)

as well as for single-protein analyses where one is interested in the accu-

rate identification of the signal sequence and cleavage site.
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References

Abadi,M. et al. (2015) Tensorflow: Large-Scale Machine Learning on

Heterogeneous Systems. Software available online: https://www.tensorflow.

org.

Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and

RN-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.

Bach,S. et al. (2015) On pixel-wise explanations for non-linear classifier deci-

sion by layer-wise relevance propagation. PLoS One, 10, e0130140.

Bagos,P.G. et al. (2010) Combined prediction of Tat and Sec signal peptides

with hidden Markov models. Bioinformatics, 26, 2811–2817.

Berks,B.C. (2015) The twin-arginine protein translocation pathway. Annu.

Rev. Biochem., 84, 843–864.

Chollet,F. et al. (2015) Keras. Software available online: https://keras.io.

Fariselli,P. et al. (2009) Grammatical-restrained hidden conditional random

fields for bioinformatics applications. Algorithms Mol. Biol., 4, 13.

Indio,V. et al. (2013) The prediction of organelle targeting peptides in eukary-

otic proteins with Grammatical Restrained Hidden Conditional Random

Fields. Bioinformatics, 29, 981–988.

Käll,L. et al. (2004) A combined transmembrane topology and signal peptide

prediction method. J. Mol. Biol., 338, 1027–1036.

Käll,L. et al. (2005) An HMM posterior decoder for sequence feature

prediction that includes homology information. Bioinformatics, 21,

i251–i257.

Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional

neural networks. In: Pereira,F. (ed.), Advances in Neural Information

Processing Systems, pp. 1097–1105.

LeCun,Y. et al. (2015) Deep learning. Nature, 521, 436–444.

Martoglio,B. and Dobberstein,B. (1998) Signal sequences: more than just

greasy peptides. Trends Cell Biol., 8, 410–415.

Montavon,G. et al. (2017) Explaining nonlinear classification decisions with

deep Taylor decomposition. Pattern Recogn., 65, 211–222.

Nugent,T. and Jones,D.T. (2009) Transmembrane protein topology prediction

using support vector machines. BMC Bioinformatics, 10, 159.

Petersen,T.N. et al. (2011) SignalP 4.0: discriminating signal peptides from

transmembrane regions. Nat. Methods, 8, 785–786.

Reynolds,S.M. et al. (2008) Transmembrane topology and signal peptide

prediction using dynamic Bayesian networks. PLoS Comput. Biol., 4,

e1000213.

Savojardo,C. et al. (2013) BETAWARE: a machine-learning tool to detect and

predict transmembrane beta-barrel proteins in Prokaryotes. Bioinformatics,

29, 504–505.

Savojardo,C. et al. (2017) ISPRED4: interaction site PREDiction in protein

structures with a refining grammar model. Bioinformatics, 33, 1656–1663.

Simonyan,K. et al. (2013) Deep inside convolutional networks: visualizing

image classification models and saliency maps. Comput. Res. Repository,

1312.6034.

Szegedy,C. et al. (2013) Intriguing properties of neural networks. Comput.

Res. Repository, 1312.6199.

Tsirigos,K.D. et al. (2015) The TOPCONS web server for consensus predic-

tion of membrane protein topology and signal peptides. Nucleic Acids Res.,

43, W401–W407.

Viklund,H. et al. (2008) SPOCTOPUS: a combined predictor of signal pepti-

des and membrane protein topology. Bioinformatics, 24, 2928–2929.

von Heijne,G. (1990) The signal peptide. J. Membr. Biol., 115, 195–201.

Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding var-

iants with deep learning-based sequence model. Nature Methods, 12,

931–934.

1696 C.Savojardo et al.

Deleted Text:  
Deleted Text: , 
Deleted Text: 
https://deepsig.biocomp.unibo.it
Deleted Text: utes
Deleted Text: , 
Deleted Text: Conflict of Interest: none declared.
https://www.tensorflow.org
https://www.tensorflow.org
https://keras.io

	btx818-TF1
	btx818-TF2
	btx818-TF3
	btx818-TF4

