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Abstract: Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus
Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and
debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has
the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN)
system is a critical antiviral response that limits replication and pathogenesis of many different RNA
viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction
phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during
MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2)
was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed
RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which
are host proteins required for RNA polymerase II-mediated transcription. Levels of these host
proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses,
suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how
some alphaviruses block IFN induction. The findings from this study may prove useful in design of
vaccines and antivirals, which are currently not available for protection against MAYV and infection
by other alphaviruses.
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1. Introduction

Mosquito-transmitted viruses within the genus Alphavirus infect hundreds of thou-
sands of people and animals each year, causing enormous morbidity and mortality [1,2].
Mayaro virus (MAYV) is an emerging alphavirus that is currently circulating in South
America and the Caribbean and is maintained primarily via the sylvatic cycle [3]. Acute
MAYV infection manifests with flu-like symptoms, but a significant proportion of patients
develop chronic arthritis that can persist for years [4]. MAYV belongs to the Semliki
Forest virus complex, which comprises other arthritogenic alphaviruses [5] including the
chikungunya virus (CHIKV), which because it can spread via an urban cycle, has caused
multiple large outbreaks across the globe [6,7]. There are justified concerns regarding large
MAYV outbreaks because the virus can be transmitted by Aedes sp. and Anopheles sp. of
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mosquitoes, which are prevalent in urban settings across a wide geographical range [8–10].
Imported cases of MAYV infection have already been reported in Europe and North Amer-
ica and are expected to increase in the future [11–13]. While therapeutics and vaccine
candidates against MAYV are being investigated [14–18], currently there are no specific
antiviral measures that could be used in the case of a MAYV outbreak. As such, further
understanding of how this virus affects vital host cell pathways may facilitate development
of effective antivirals.

The interferon (IFN) response is a critical first line of defense against viral infec-
tions [19–21]. During the induction phase, viral RNAs are detected by cytoplasmic RNA
helicases such as RIG-I (retinoic acid-inducible gene) and MDA5 (melanoma differentiation-
associated protein 5), leading to activation of MAVS (mitochondrial antiviral signaling
protein) followed by recruitment of TBK1 (TANK-binding kinase 1)/IKKε (IκB kinase ε)
or IKKα/IKKβ. These kinases then, respectively, activate the transcription factors IRF3
or NFκB, leading to induction of IFNs [22]. In the signaling phase of the IFN response,
secreted IFNs bind to cognate receptors on the cell surface, which then activate JAK
(Janus kinase)-STAT (signal transducer and activator of transcription factor) signaling and
ultimately expression of interferon-stimulated genes (ISGs). ISG expression creates an
anti-viral state, as evidenced by the fact that replication of alphaviruses is dramatically
inhibited in cells pre-treated with IFNs [23–25]. The fact that many viruses have evolved
strategies to inhibit both IFN induction and signaling further illustrates the importance of
this antiviral response [26].

While alphavirus RNA can be sensed by both RIG-I and MDA-5 during infection [27],
secretion of IFNs is almost completely abrogated during infection of fibroblasts by multiple
alphaviruses [28–30]. Several studies have revealed mechanisms used by alphaviruses to
suppress IFN signaling (reviewed in [31]). For example, non-structural protein 2 (nsP2)
proteins of CHIKV and Semliki Forest virus (SFV) dampen the IFN response by inducing
degradation of Rbp1, a component of the RNA polymerase II (pol II) complex [32–36]. In
addition, CHIKV nsP2 stimulates nuclear export of STAT1, which in turn blocks IFN signal-
ing [37]. However, very little is known regarding how alphaviruses block IFN induction.

In this study, we investigated how MAYV infection affects the IFN induction pathway.
Similar to what has been reported for other alphaviruses [28,29,38], MAYV infection effi-
ciently suppressed induction and secretion of IFN. Mapping studies indicated that nsP2 of
MAYV blocks a step in the IFN induction pathway that is downstream of IRF3 phosphory-
lation. Interactome analysis revealed that nsP2 interacts with and causes depletion of the
host protein TFIIE2, which is required for pol II-mediated transcription [39]. Loss of TFIIE2
was observed in cells infected with other alphaviruses within the Semliki Forest complex,
suggesting that targeting this host protein is a common strategy used by these viruses to
inhibit the IFN response.

2. Materials and Methods
2.1. Cell Culture and Virus Infection

Vero, A549, and HEK 293T cells from the American Type Culture Collection (Manassas,
VA, USA) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco; Waltham,
MA, USA) supplemented with 100 U/mL penicillin and streptomycin, 1 mM HEPES
(Gibco), 2 mM glutamine (Gibco), and 10% heat-inactivated fetal bovine serum (FBS) at
37 ◦C in 5% CO2. C6/36 cells were kindly provided by Dr. Sonja Best, NIH Rocky Mountain
laboratories (Hamilton, MT, USA) and was cultured in Minimal Essential Medium (MEM;
Gibco) supplemented with 100 U/mL penicillin and streptomycin, 2 mM glutamine (Gibco),
10% heat-inactivated fetal bovine serum (FBS; Gibco), and 1× non-essential amino acids
(Gibco) at 32 ◦C in 5% CO2. The Mayaro virus (MAYV) serotype D (strain 07-18066-99)
was kindly gifted by Brandy Russell at Centre for Disease Control and Prevention (Fort
Collins, CO, USA). Plasmid encoding Semliki Forest virus (strain SFV6.1) was a kind gift
from Dr. Andres Merit at University of Tartu (Tartu, Estonia). Sindbis virus (SINV; Toto
1101) was kindly gifted by Dr. Charles Rice at Washington University School of Medicine
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(St. Louis, MO, USA). All MAYV, SFV, and SINV manipulation was performed according
to level-2 containment procedures at University of Alberta. Virus stocks were generated
in C6/36 cells and titrated using Vero cells. Sendai virus (Cantell Strain #10100774) was
purchased from Charles River Laboratories (Wilmington, MA, USA).

2.2. Plasmids and Transfection

MAYV protein expression plasmids were generated from cDNA templates prepared
by reverse transcription and polymerase chain reaction (RT-PCR) using RNA isolated from
MAYV infected Vero cells. Viral gene-specific cDNAs including C-terminal 3×FLAG tag
cassettes were cloned between NheI and FseI restriction sites in pcDNA 3.1(−) 3×FLAG
plasmid [40]. Due to the auto-protease activity of capsid protein, which cleaved off the
C-terminal 3×FLAG tag, a 3×FLAG sequence was added in frame to the N-terminal region
of the protein. The primers used for the cloning are listed in Table S1. The sequence
integrity of all constructs was confirmed by Sanger sequencing.

For indirect immunofluorescence analysis, transfection of the appropriate expression
plasmids into A549 cells was performed using TransIT-LT1 from Mirus Bio (Madison, WI,
USA). For luciferase reporter assays in A549 or HEK 293T cells, plasmid transfection was
performed using Lipofectamine 2000 from Invitrogen (Waltham, MA, USA).

2.3. Antibodies and Compounds

Rabbit anti-CHIKV-capsid and rabbit anti-SFV-capsid were kindly provided by Dr.
Andres Merit, University of Tartu (Tartu, Estonia). Mouse anti-CHIKV-E2 hybridoma was
a gift from Dr. Michael Diamond from Washington University School of Medicine (St.
Louis, MO, USA). Commercially available antibodies were purchased from the following
sources: mouse anti-β-actin (A3853) and mouse anti-FLAG (F3165) from Sigma-Aldrich
(St. Louis, MO, USA); rabbit anti-IRF-3 (#11904) from Cell Signaling (Danvers, MA, USA);
mouse anti-Rpb1 (GT9010) from GeneTex (Irvine, CA, USA); rabbit anti-GTF2E2 (ab187143)
from Abcam (Cambridge, United Kingdom); poly(I:C) HMW (tlrl-pic) from InvivoGen
(San Diego, CA, USA).

2.4. Immunoblotting

HEK293T cells (5.0 × 105) or A549 cells (1.5 × 105) seeded into 12-well plates were
infected the next day with MAYV, SFV, or SINV, or transfected with protein expression
plasmids. At experimental endpoints, cells were washed twice with phosphate-buffered
saline (PBS) and lysed using 2× SDS sample buffer (62.5 mM Tris-HCl (pH 6.8), 50% (v/v)
glycerol, 2% (w/v) SDS, 0.01% (w/v) Bromophenol blue) with 100 mM dithiothreitol (DTT).
Cell lysates were incubated at 98 ◦C for 10 min to ensure denaturation of proteins. Samples
were separated by molecular weight using SDS-PAGE and transferred to polyvinylidene
difluoride (PVDF) membranes. The membranes were incubated in blocking buffer (PBS
with 5% bovine serum albumin (BSA; Sigma Aldrich) and 0.05% Tween 20) for 30 min, after
which they were incubated with primary antibodies diluted in blocking buffer for 60 min.
Following three 10 min washes with PBS-0.05% Tween 20, the membranes were incubated
with secondary antibodies, diluted in blocking buffer for 60 min, and protected from the
light. The membranes were then subjected to three washes with PBS-0.05% Tween 20 and
once with PBS. Protein bands were imaged using an Odyssey Infrared Imaging system.
Quantification of proteins was performed using Odyssey Image Studio Lite Software
Version 5.2.
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2.5. Immunoprecipitation

HEK293T cells (3.6 × 105) in T25 were transfected with 6 µg of indicated plasmids
using Lipofectamine 2000 (Life Technologies; Carlsbad, CA, USA), according to the man-
ufacturer’s protocol. Twenty-four hours later, cells were harvested and resuspended in
ice-cold IP buffer (150 mM NaCl, 50 mM Tris (pH 7.5), 1% Triton X-100, 1 mM NaF, 1 mM
DTT, and protease inhibitor cocktail (Roche; Basel, Switzerland)). After 30 min, lysates
were clarified by centrifugation at 16,000× g for 15 min and then incubated with 10 µL
of anti-FLAG M2 magnetic beads (Millipore; Burlington, MA, USA) at 4 ◦C for 2 h. After
washes with IP buffer, bound proteins were analyzed by mass spectrometry (LC–MS/MS)
or SDS sample buffer was added to the beads, which were then incubated 98 ◦C for 10 min
to denature proteins, followed by SDS-PAGE.

2.6. Mass Spectrometry and Mass Spectrometry Interaction Statistics (MiST)

Trypsin digestions of proteins immunoprecipitated using anti-FLAG magnetic resins
were performed on a KingFisher Duo Prime (Thermo Scientific; Waltham, MA, USA).
Briefly, the samples were reduced (10 mM DTT in 50 mM ammonium bicarbonate) and
alkylated (50 mM iodoacetamide in 50 mM ammonium bicarbonate) before digestion for
5 h at 37 ◦C using sequencing grade modified trypsin (Promega; Madison, WI, USA). The
tryptic peptides were separated using an Easy-nLC 1000 liquid chromatograph (Thermo
Scientific) and an EASY-Spray capillary column (ES900, Thermo Scientific). Mass spectrom-
etry was performed on a Q Exactive Orbitrap mass spectrometer (Thermo Scientific). The
mass spectrometer was operated in data-dependent acquisition mode with a resolution
of 35,000 and m/z range of 300–1700. The 12 most intense multiply charged ions were se-
quentially fragmented by HCD dissociation, and spectra of their fragments were recorded
in the orbitrap at a resolution of 17,500, followed by a 30 s dynamic exclusion. Data were
processed using Proteome Discoverer 1.4 (Thermo Scientific), and databases were searched
using SEQUEST (Thermo Scientific). Search parameters included a strict false discovery
rate (FDR) of 0.01, a relaxed FDR of 0.05, a precursor mass tolerance of 10 ppm, and a frag-
ment mass tolerance of 0.01 Da. Peptides were searched with carbamidomethyl cysteine as
a static modification and oxidized methionine, and deamidated glutamine and asparagine
as dynamic modifications.

The results from mass spectrometry were analyzed for protein–protein interaction
scoring with MiST (mass spectrometry interaction statistics) pipeline to generate the interac-
tome map of each viral protein. Protein names, functions, and putative cellular localizations
were extracted from the Uniprot database [41].

2.7. Biological Process Enrichment Analysis

Biological process enrichment analysis and generation of resulting heatmaps were
performed using Metascape (http://metascape.org, accessed on 30 June 2021]) [42]. Host
proteins found to interact with MAYV nsP2 with a MiST score of ≥0.80 were analyzed.
The ontology sources GO biological processes, GO cellular components, KEGG structural
complexes, and CORUM were used for the enrichment analysis. Metascape analyses
generated accumulative hypergeometric p-values, q-values using the Benjamini–Hochberg
procedure, and enrichment factors for filtering of the gene list. The following thresholds
were used: p-value < 0.01, enrichment factor > 1.5, and a minimum overlap set at a count
of 3. Statistically significant enriched terms were then hierarchically clustered using Kappa
similarity scoring; a Kappa score > 0.3 was used to define clusters. Within each cluster, the
most significantly enriched term was chosen and displayed in a heatmap.

2.8. Confocal Immunofluorescence (IF) Microscopy

A549 cells on coverslips were fixed with 4% electron microscopy-grade paraformalde-
hyde (Electron Microscopy Sciences; Hatfield, PA, USA) in PBS for 10 min at room temper-
ature and permeabilized with 0.5% Triton X-100 in PBS for 10 min. Coverslips were then
washed three times with PBS, after which they were incubated in blocking buffer for 30 min

http://metascape.org
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at room temperature. Coverslips were then incubated with primary antibodies diluted
in blocking buffer for 45 min at room temperature. Coverslips were washed three times
with PBS, and then they were incubated with secondary antibodies (1:1000; Invitrogen)
and DAPI (4′,6-diamidino-2-phenylindole; 1 µg/mL; Sigma Aldrich) in blocking buffer for
45 min at room temperature. Samples were then washed three times with PBS and once
with de-ionized water; then, they were mounted onto microscope slides with Prolong Gold
anti-fade mounting reagent (Life Technologies). Samples were imaged using an Olympus
IX-81 spinning-disk confocal microscope equipped with a 60× PlanApo N oil objective.
Images were analyzed using Volocity 6.2.1 software (PerkinElmer; Waltham, MA, USA).

2.9. Quantitative Real Time PCR (qRT-PCR)

Intracellular RNA was extracted from cells using the RNA NucleoSpin Kit (Macherey
Nagel; Duren, Germany) and reverse transcribed into cDNAs by incubating the isolated
RNA with random primers (Invitrogen) and Improm-II reverse transcriptase (Promega) at
42 ◦C for 1.5 h. The cDNAs were diluted 1:5 with pure water, and 5% of the volume was
mixed with the appropriate primers (Integrated DNA Technologies; Coralville, IA, USA)
and the PerfecTa SYBR green SuperMix with Low ROX (Quanta Biosciences; Gaithersburg,
MD, USA) and amplified for 40 cycles (30 s at 94 ◦C, 40 s at 55 ◦C, and 20 s at 68 ◦C) in a
Biorad CFX96 qRT-PCR machine. The target genes and primer sequences used are listed in
Table S2. The CT values were normalized with Actb mRNA as the internal control or by cell
count (∆CT). The ∆CT values were further normalized to ∆CT values of control samples
(∆∆CT). The relative mRNA levels were calculated using the formulas 2(−∆∆CT).

2.10. Luciferase Reporter Assay

HEK293T cells (4.5× 105) seeded in 12-well plates were transfected with the following
promoter reporter (Firefly luciferase) constructs IFN-β: p125-luc and IRF3: p55-CIB-Luc
(provided by T. Taniguchi, University of Tokyo, Japan), NFκB: or pNF-kB-Luc (Stratagene),
together with the Renilla luciferase: pRL-TK (Promega) as a transfection control. At experi-
mental endpoints, cells were washed once with PBS and then lysed with 250 µL Luciferase
Lysis buffer (0.1% (v/v) Triton X-100, 25 mM glycylglycine (pH 7.8), 15 mM MgSO4, 4 mM
EGTA, and 1 mM DTT), after which the samples were analyzed immediately or stored at
−80 ◦C until further use. For luciferase assays, 50 µL of samples were aliquoted into white
96-well microplates (Greiner bio-one) in duplicates for both Firefly and Renilla luciferase
activity measurements. The Firefly luciferase substrate D-luciferin (Gold Biotechnology;
St. Louis, MO, USA) was prepared at a final concentration of 70 µM in luciferase assay
buffer (25 mM glycylglycine (pH 7.8), 15 mM K2PO4 (pH 7.8), 15 mM MgSO4, 4 mM
EGTA, 1 mM DTT, and 2 mM ATP), and 100 µL was added to each well; then, they were
incubated for 5 min before the luciferase activity was measured using a Synergy HTX plate
reader (Biotek; Winooski, VT, USA). For Renilla luciferase, the substrate coelenterazine
(Gold Biotechnology USA) was diluted to a final concentration of 1.4 µM in luciferase
assay buffer (25 mM glycylglycine (pH 7.8), 15 mM K2PO4 (pH 7.8), 15 mM MgSO4, and
4 mM EGTA). One-hundred microliters were added to each well, and luciferase activity
was measured immediately using a Synergy HTX plate reader (Biotek).

2.11. Enzyme-Linked Immunosorbent Assay (ELISA)

Levels of human IFN-β in the cell culture supernatant were measured using Quantikine®

Human IFN-β Immunoassay kit (R&D Systems, Inc.; Minneapolis, MN, USA), as per the
manufacturer’s instructions. The total fluorescence was measured using a Synergy HTX
plate reader (Biotek).
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2.12. Statistical Analyses

All statistical analyses were performed using Microsoft Excel. Two-tailed paired
Student’s t-test was performed for pair-wise statistical comparison. One-way ANOVA
followed by two-tailed paired Student’s t-test was used for comparison of multiple samples.
The individual data points from each independent experiment and mean ± standard error
of the mean are shown in the bar and line graphs.

3. Results
3.1. MAYV Suppressed Production of Type I and III IFNs Downstream of IRF3 Nuclear Translocation

To determine if/how IFN induction is affected during MAYV infection, we quantitated
type I IFN (Ifnb) and viral genomic RNAs by qRT-PCR at 4, 8, 12, and 24 h after A549
cells were infected with MAYV or Sendai virus (SeV). Despite robust virus replication,
induction of Ifnb mRNA in MAYV-infected cells was delayed and dramatically suppressed
compared to cells infected with SeV (Figure 1A,B), a potent inducer of IFN production [43].
However, treatment of cells with type I IFN prior to infection significantly inhibited MAYV
in a dose-dependent manner (Figure 1C), indicating that the virus is sensitive to IFN.

Next, we assessed whether the relatively low levels of Ifnb mRNA in MAYV-infected
cells were due to active suppression of IFN induction pathways. MAYV-infected cells
were transfected with poly(I:C), a dsRNA analog that induces IFN following detection
by RIG-I-like receptors [44]. Transcripts encoding type I (Ifnb) and type III (Ifnl2) IFNs
were then quantified by qRT-PCR. Poly(I:C) transfection robustly induced Ifnb and Ifnl2,
but levels of these transcripts were ≈50-fold lower in MAYV-infected cells compared to
mock-infected cells (Figure 1D,E). MAYV infection alone resulted in a relatively modest
increase (≈100-fold) in Ifnb and Ifnl2, which were further increased ≈10-fold by poly(I:C)
challenge. In comparison, SeV infection resulted in ≈10,000-fold increased levels of Ifnb,
but this effect was dampened in cells that were first infected with MAYV (Figure 1F). IFN-β
was not detected in the media of MAYV-infected cells, regardless of whether they were
challenged with SeV or not (Figure 1G). The observation that levels of SeV genomic RNA
were higher in MAYV-infected cells suggests that impaired IFN induction during MAYV
infection was not due to poor replication of SeV in those cells (Figure 1H).

Next, we examined whether nuclear translocation of the antiviral transcription factor
IRF3, which is required for production of IFN-βmRNA, was affected by MAYV infection. In
contrast to SeV infection, which induced translocation of IRF3 into nuclei, IRF3 remained in
the cytoplasm of MAYV-infected cells (Figure 1I). However, when MAYV-infected cells were
subsequently infected with SeV, IRF3 localized to the nucleus (Figure 1I). This indicates that
the IFN induction pathway is intact in MAYV infected cells up to and including the IRF3
nuclear translocation step. Taken together, these data are compatible with a scenario where
MAYV efficiently avoids detection by RIG-I-like receptors, and/or partially blocks a step
upstream of IRF3 nuclear transport to prevent IFN production. Because SeV-induced IRF3
nuclear translocation is unaffected in MAYV-infected cells (Figure 1I), but production of
IFN mRNA and secretion of the cytokines are blocked (Figure 1D–G), the virus likely targets
additional steps in the IFN induction pathway downstream of IRF3 nuclear translocation.

3.2. MAYV nsP2 Abrogated Interferon Induction Downstream of IRF3 Activation

To identify the viral protein(s) responsible for suppression of the IFN induction
pathway during MAYV infection, we generated expression plasmids encoding individual
epitope-tagged MAYV proteins. With the exception of the capsid protein, which was
tagged on the N-terminus, all MAYV proteins were constructed with a 3×FLAG epitope
at their C-termini. It was not feasible to tag the C-terminus of MAYV capsid because, like
other alphavirus capsid proteins, it has auto-protease activity that cleaves the hydrophobic
signal peptide at its C-terminus [45]. Expression of the tagged viral proteins in transfected
HEK293T cells was authenticated by immunoblotting (Figure 2A).
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Figure 1. MAYV suppressed production of type I and III interferons. (A,B) A549 cells were infected
with either MAYV (MOI = 3) or SeV (50 HAU/mL). Total RNA was collected at 4 h intervals for
up to 24 h post-infection (hpi). Viral RNA (A) and Ifnb mRNA (B) were quantitated by qRT-PCR
and expressed as fold mock infected cells normalized to Actb mRNA levels. Data shown are the
mean ± SEM from three independent experiments. (C) A549 cells were treated with IFN-α (0, 10, 100,
and 100 U/mL) for 6 h and infected with MAYV (MOI = 1). At 24 hpi, relative levels of MAYV RNA in
total cellular RNA samples were quantitated by qRT-PCR (normalized to Actb) and expressed as folds
of replication to cells not treated with IFN. Data represent the mean ± SEM from three independent
experiments and were analyzed by Student’s t-test. *** p < 0.001, **** p < 0.0001. (D,E) A549 cells
were infected with MAYV (MOI = 3) for 24 h, then treated with 2 µg/mL of poly(I:C). After 16 h, total
RNA was collected, and Ifnb (D) and Ifnl2 (E) mRNA were measured by qRT-PCR and normalized
to Actb mRNA level and expressed as folds to mock infected cells. Data represent the mean ± SEM
from three independent experiments and were analyzed by one-way ANOVA and Student’s t-test.
** p < 0.01, *** p < 0.001, **** p < 0.0001. (F,G) A549 cells were infected with MAYV (MOI = 3) for
24 h, then challenged with (SeV) (50 HAU/mL) for 16 h. Ifnb transcripts in cells and IFN-β in
cell culture supernatants was measured by qRT-PCR (F) and enzyme-linked immunosorbent assay
(G), respectively. Data represent the mean ± SEM from three independent experiments and were
analyzed by one-way ANOVA and Student’s t-test. *** p < 0.001, **** p < 0.0001. (H) A549 cells were
infected with MAYV (MOI = 3) for 24 h, then infected with SeV (50 HAU/mL) for 16 h. Total RNA
was collected, and SeV viral RNA level was measured by real-time qRT-PCR and normalized to Actb
mRNA level and expressed as folds of mock infected cells. Data are represented as mean ± SEM
from three independent experiments. (I) A549 cells were infected with MAYV (MOI = 1) for 24 h and
then infected with 50 HAU/mL of SeV for 8 h. The subcellular localization of IRF3 in MAYV-infected
cells was visualized with a confocal microscope using 60× oil objective after staining with antibodies
against IRF3 and MAYV E2 protein. Scale bar = 12 µm.
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Figure 2. MAYV nsP2 abrogated interferon induction downstream of IRF3 activation. (A) HEK293T
cells were transfected with pcDNA 3.1 (−) plasmids encoding the indicated 3×FLAG-tagged MAYV
proteins. After 24 h, cell lysates were subjected to immunoblotting with anti-FLAG antibody. The
positions of the epitope tagged viral proteins are indicated with arrowheads. A non-specific protein
recognized by the anti-FLAG or secondary antibody is indicated by *. (B) HEK293T cells were
co-transfected with plasmids encoding the indicated MAYV proteins, empty vector (pcDNA), or
Influenza A virus NS1, as well as a plasmid encoding IFN-β Firefly luciferase and constitutively
expressed control Renilla luciferase. After 24 h, cells were infected with 50 HAU/mL of SeV, and then
Firefly and Renilla luciferase activities were measured 16 h later. Data represent the mean ± SEM from
three independent experiments and were analyzed by Student’s t-test. *** p < 0.001, **** p < 0.0001.
(C,D) HEK293T cells were co-transfected with plasmids encoding nsP2 or capsid proteins and
Firefly luciferase under the control of IRF3- (C) or NFκB- (D) responsive promotors as well as a
plasmid encoding constitutively expressed Renilla luciferase. After 24 h, cells were challenged with
50 HAU/mL of SeV for 16 h, after which Firefly and Renilla luciferase activities were measured. Data
represent the mean ± SEM from three independent experiments and were analyzed by one-way
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ANOVA and Student’s t-test. ** p < 0.01, **** p < 0.0001. (E) HEK293T cells were co-transfected with
plasmids encoding nsP2, and RIG-I (2xCARD), IKKε, TBK1, IRF3, IRF3-5D, or empty vector, IRF3-
promotor Firefly luciferase and constitutively expressed Renilla luciferase. Samples were harvested
at 24 h post-transfection, after which Firefly and Renilla luciferase activities were measured. Data
represent the mean ± SEM from three independent experiments and were analyzed by Student’s
t-test. *** p < 0.001, **** p < 0.0001. (F,G) A549 cells were transfected with indicated 3×FLAG-tagged
protein-encoding plasmids. After 24 h, cells were challenged with SeV infection (50 HAU/mL) for
8 h, then fixed and stained with antibodies against FLAG and IRF3 and visualized with a confocal
microscope using 60× oil objective. The cytoplasmic and nuclear IRF3 signals were quantified using
Volocity software. Scale bar = 12 µm. Data represent the mean ± SEM from three independent
experiments (n = 20) and were analyzed by one-way ANOVA and Student’s t-test. *** p < 0.001, NS
= not significant. (H) Schematic of 3 × FLAG-tagged wild type nsP2, NTPase mutant nsP2K197N,
protease-dead nsP2C478A, helicase only nsP2∆protease, and protease only nsP2∆helicase. (I) HEK293T
cells were transfected with the indicated viral nsP2 constructs, IFN-β Firefly luciferase reporter, and
a control Renilla reporter. After 24 h, cells were infected with 50 HAU/mL of SeV for 16 h, after
which relative Firefly and Renilla luciferase activities were measured. Data represent the mean ± SEM
from three independent experiments and were analyzed by one-way ANOVA and Student’s t-test.
*** p < 0.001, **** p < 0.0001.

Next, the effect of MAYV protein expression on IFN induction in response to SeV
infection was evaluated using an IFN-β-promoter-based luciferase reporter assay. The
only MAYV protein whose expression significantly blocked IFN-β promoter activity was
nsP2 (Figure 2B). Despite its relatively low expression compared to the other FLAG-tagged
MAYV proteins (Figure 1A), nsP2 suppressed IFN-β promoter activity almost as efficiently
as the NS1 protein of influenza A virus, a known suppressor of the IFN induction [46] and
the positive control for these experiments. Because activation of IRF3 and NFκB is critical
for induction of Ifnb [21], we assessed whether nsP2 abrogates the activities of these two
transcription factors using IRF3 and NFκB promoter-based luciferase reporters. Compared
to the vector control and MAYV capsid protein, nsP2 reduced IRF3- and NFκB-dependent
luciferase expression by as much as 10-fold (Figure 2C,D). To determine the step in the
IFN induction pathway targeted by nsP2, we assessed how overexpressing individual
components in the pathway (RIG-I (2xCARD), TBK1, IKKε, IRF3, and constitutively active
IRF3 (IRF3-5D)) affected nsP2-dependent inhibition. None of these components rescued the
nsP2 blockade of the IFN induction pathway (Figure 2E), suggesting that this viral protein
acts downstream of the IRF3 phosphorylation step. Interestingly, IRF3 nuclear translocation
in response to SeV infection was not affected by nsP2 expression (Figure 2F,G). These data
are consistent with those shown in Figure 1 in which MAYV infection was able to block
IFN induction downstream of IRF3 nuclear translocation.

Alphavirus nsP2 proteins contain a helicase domain at the N-terminus with RNA-
dependent NTPase activity [47,48], a papain-like cysteine protease domain [49], and a
C-terminal methyltransferase domain [50] (Figure 2H). To determine which domain(s)
of nsP2 were important for blocking IFN induction, we generated expression constructs
encoding nsP2 lacking NTPase (nsP2K197N) [48], protease activity (nsP2C478A) [49], helicase
domain (nsP2∆helicase), or protease domain (nsP2∆protease) (Figure 2H). Both nsP2K197N

and nsP2C478A reduced IFN induction in response to SeV infection, similar to wildtype
nsP2 and influenza A virus NS1 protein (Figure 2I), indicating that NTPase and protease
activities are not required to block IFN induction. However, constructs lacking the protease
(nsP2∆protease) or helicase (nsP2∆helicase) domains were unable to block IFN induction in
response to SeV infection (Figure 2I).
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3.3. The Effect of nsP2 on Interferon Induction Was Found to Be Partially Mediated by
Transcriptional Shutoff

Previous studies have shown that other alphavirus nsP2 proteins translocate to the
nucleus and abrogate host transcription by depleting Rbp1, a component of the RNA
polymerase II complex [33,51]. To determine if these processes were important for the ability
of MAYV nsP2 to antagonize IFN induction, we used site-directed mutagenesis to generate
nuclear localization signal (NLS)-deficient (nsP2RK653AA) [36] and transcriptional shutoff-
deficient (nsP2P722S) [51] mutants of nsP2 (Figure 3A). Confocal microscopy analyses
confirmed that nsP2RK653AA was not able to translocate into the nucleus, whereas wildtype
and nsP2P722S were detected in nuclei and the cytoplasm (Figure 3B). However, while
both nsP2RK653AA and nsP2P722S significantly blocked IFN induction, nsP2P722S was around
fourfold less effective than wildtype nsP2 (Figure 3C). Furthermore, in cells over-expressing
a constitutively active form of IRF3 (IRF3-5D) and nsP2RK653AA or nsP2P722S, levels of
IFN transcripts were higher than in cells expressing wild type nsP2 (Figure 3E). Unlike,
wildtype nsP2 and nsP2RK653AA, however, nsP2P722S did not reduce IRF3-5D expression in
co-transfected cells (Figure 3F,G). While these data suggested that nsP2 suppresses IFN
induction in part by mediating host cell transcriptional shutoff, it also appears to function
through a second mechanism that is independent from its nuclear function or ability to
abrogate transcription.

3.4. nsP2 Interacted with and Downregulated the Levels of Host Transcription Mediators Rpb1
and TFIIE2

To further investigate how MAYV affects the host antiviral response, we used co-
immunoprecipitation (co-IP) followed by tandem mass spectrometry (LC–MS/MS) to
identify host cell proteins that interact with nsP2. Putative nsP2-binding host proteins were
subjected to analyses using Molecular Interaction Search Tool (MiST) (Table S3), and key
cellular processes associated with nsP2 interactors were assessed through Gene Ontology
(GO) enrichment analysis. Surprisingly, we did not detect any protein directly involved in
the IFN induction pathway interacting with nsP2 of MAYV. One of the key enriched GO
terms was “RNA polymerase II holoenzyme complex” (Figure 4A, Table S4), which consists
of proteins involved in transcription by RNA polymerase II. Two members of this complex
were identified in the nsP2 co-IP: specifically, Rpb1 (also known as POLR2A), a component
of RNA polymerase II that was previously shown to interact with other alphavirus nsP2
proteins [33,51], and TFIIE2, an integral factor that functions in transcription initiation [39].
Until this study, TFIIE2 was not known to interact with alphavirus nsP2. Interestingly, the
transcriptional shutoff mutant nsP2P722S formed a stable interaction with Rpb1 but not
TFIIE2 (Figure 4B,C). Confocal microscopy analyses revealed that in cells transfected with
nsP2, expression levels of Rpb1 and TFIIE2 were significantly reduced (Figure 4D–G). The
NLS mutant nsP2RK653AA reduced TFIIE2 but not Rpb1 levels, whereas the transcriptional
shutoff mutant nsP2P722S did not affect levels of either protein (Figure 4D–G). Accord-
ingly, nuclear localization of nsP2 appears to be important for depleting Rpb1 but not for
suppressing TFIIE2 expression.

3.5. Some but Not All Alphaviruses Induced Loss of TFIIE2

Quantitative confocal analyses confirmed that MAYV infection resulted in significant
loss of Rpb1 and TFIIE2 proteins at 24 hpi (Figure 5A–D). To elucidate how this occurs, we
treated MAYV-infected cells with inhibitors of proteasomal- (epoxomicin) and lysosomal-
(bafilomycin A1) dependent degradation followed by immunoblot analyses. Loss of Rpb1
protein during MAYV infection was significantly inhibited by epoxomicin (Figure 5E,F),
which is consistent with previous findings that old world alphavirus nsP2-dependent deple-
tion of Rpb1 involves the proteasome [51]. Conversely, neither epoxomicin nor bafilomycin
blocked degradation of TFIIE2 protein during infection with MAYV (Figure 5E–G). Next,
we examined the levels of Rpb1 and TFIIE2 proteins in SFV- and Sindbis virus (SINV)-
infected cells. Similar to what was observed during MAYV infection, Rpb1 and TFIIE2
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protein levels were both reduced at 24 hpi in SFV-infected cells (Figure 5H–J). However, in
cells infected with SINV, Rpb1 but not TFIIE2 levels were lower (Figure 5H–J).
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Figure 3. Inhibition of interferon induction by nsP2 was found to be partially mediated by transcriptional shutoff.
(A) Schematic of 3×FLAG-tagged wildtype nsP2, NLS-deficient nsP2RK653AA, and host transcription shutoff deficient
nsP2P722S. (B) A549 cells were transfected with indicated MAYV nsP2 constructs. After 24 h, cells were fixed and stained
using α-FLAG antibody and imaged visualized with a confocal microscope using 60× oil objective. Nuclei are stained with
DAPI. Scale bar = 12 µm. (C) HEK293T cells were transfected with the indicated viral nsP2 constructs, IFN-β Firefly luciferase
reporter, and a control Renilla reporter. After 24 h, cells were infected with 50 HAU/mL of SeV for 16 h, after which relative
Firefly and Renilla luciferase activities were measured. Data represent the mean ± SEM from three independent experiments
and were analyzed by one-way ANOVA and Student’s t-test. ** p < 0.01, *** p < 0.001, **** p < 0.0001. ((D–F) HEK293T
cells were transfected with indicated viral nsP2 constructs, FLAG-IRF3-5D, IRF3-promotor Firefly luciferase reporter, and a
control Renilla reporter. After 24 h, Firefly and Renilla luciferase activities were measured (D). Cell whole lysate were also
analyzed by immunoblotting using antibodies against FLAG and actin (E,F). Data represent the mean ± SEM from three
independent experiments and were analyzed by one-way ANOVA and Student’s t-test. * p < 0.05, ** p < 0.01, **** p < 0.0001,
NS = not significant.
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Figure 4. nsP2 interacted with key transcription mediators, Rpb1 and TFIIE2, and downregulated their expression.
(A) Heatmap of GO term enrichment analysis. HEK293T cells were transfected with pcDNA empty vector or nsP2 for 24 h,
after which whole cell lysates were immunoprecipitated using magnetic beads coated with anti-FLAG. nsP2-interacting
proteins were identified by liquid chromatography–tandem mass spectrometry, and the protein–protein interactions from
three independent experiments were scored by MiST analysis. nsP2-interacting host proteins with MiST score of ≥0.8 were
selected to perform the GO enrichment analysis using the Metascape software. (B,C) HEK293T cells were transfected with
the indicated viral protein constructs, and 24 h later, whole cell lysates were immunoprecipitated with magnetic beads
coated with anti-FLAG and then subjected to immunoblot analysis using antibodies against FLAG, Rpb1, and actin (B),
or FLAG, TFIIE2, and actin (C). Representative blots from three independent experiments are shown. (D,E) WT MAYV
nsP2 downregulated Rpb1. A549 cells were transfected with nsP2 WT or nsP2RK653AA (NLS-deficient), or nsP2P722S (host
transcription shutoff deficient) constructs. After 24 h, cells were fixed and stained using α-FLAG and α-Rpb1 antibodies and
imaged using a confocal microscope using 60× oil objective. The total Rpb1 fluorescent intensities were quantified using
Volocity software. Scale bar = 12 µm. Data represent the mean ± SEM from three independent experiments (n = 11) and
were analyzed by one-way ANOVA and Student’s t-test. ** p < 0.01, NS = not significant. (F,G) A549 cells were transfected
with indicated nsP2 constructs. After 24 h, cells were fixed, stained using antibodies to FLAG and TFIIE2, and visualized
with a confocal microscope using 60× oil objective. The total TFIIE2 fluorescent intensities were quantified using Volocity
software. Scale bar = 12 µm. Data represent the mean ± SEM from three independent experiments (n = 11) and were
analyzed by one-way ANOVA and Student’s t-test. ** p < 0.01, NS = not significant.
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Figure 5. Reduction of RNA polymerase II complex factors during alphavirus infection. (A–D) A549 cells were infected with
MAYV (MOI = 1) for 24 h and then fixed, stained with antibodies to CHIKV-capsid and Rpb1 (A,B) or TFIIE2 (C,D), and
then images were acquired using confocal microscope equipped with 60× oil lens. The total Rpb1 and TFIIE2 fluorescent
intensities were quantified using Volocity software. Scale bar = 12 µm. Data represent the mean ± SEM from three
independent experiments (n = 20) and were analyzed by Student’s t-test. **** p < 0.0001. (E–G) A549 cells were infected with
MAYV (MOI = 3) for 8 h, then treated with epoxomicin or bafilomycin (100 µM) for 24 h. Cell lysates were then subjected to
immunoblotting using antibodies to Rpb1, TFIIE2, actin, CHIKV-capsid, and SFV-capsid proteins. The intensities of the
protein bands were quantified using Image Studio software and then normalized to actin levels and expressed as folds of
mock infected control. Data represent the mean ± SEM from three independent experiments and were analyzed by one-way
ANOVA and Student’s t-test. * p < 0.05, NS = not significant. (H–J) A549 cells were infected with either MAYV, SFV, or
SINV (MOI = 1) for 24 h, after which cell lysates were processed for immunoblotting using antibodies against Rpb1, TFIIE2,
actin, CHIKV-capsid, and SFV-capsid proteins. The intensities of the protein bands were quantified using Image Studio
software and then normalized to actin levels and expressed as folds of mock infected control. Data presented represent the
mean ± SEM from three independent experiments and were analyzed by Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Finally, as a first step toward understanding how MAYV infection affects host cell
transcription, we assessed global levels of RNA as well as transcripts of housekeeping
genes following infection. As expected, total cellular RNA was greatly reduced at 48 hpi
(Figure 6A), while housekeeping gene transcripts were lower at 24 hpi (Figure 6B–D). One
possibility to explain the lack of substantial decrease in total RNA level at 24 hpi may be due
to increasing levels of viral RNA during this time period. Indeed, we observed a significant
increase in viral RNA from 8 to 24 hpi (Figure 6E). Together, these results suggested that
MAYV infection abrogates IFN induction in part by blocking global transcription through
nsP2-mediated depletion of transcription factors TFIIE and Rpb1.
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Figure 6. MAYV blocked global transcription during infection. (A–E) A549 cells were infected with MAYV (MOI = 3) for 8,
24, and 48 h, after which total cellular RNA was extracted and quantified using a spectrophotometer (A). Relative levels
of ACTB (B), GAPDH (C), Tuba1a (D), and MAYV RNA (E) were measured by qRT-PCR, normalized by cell count, and
expressed as fold mock infected cells. Data shown represent the mean ± SEM from three independent experiments and
were analyzed by Student’s \-test. * p < 0.05, ** p < 0.01, *** p < 0.001, NS = not significant.

4. Discussion

The IFN response is critical for controlling alphavirus infections, including the emerg-
ing mosquito-transmitted pathogen MAYV [52–55]. While considerable efforts have been
directed at understanding how alphaviruses affect the downstream signaling phase of
the IFN response [24,33,37], relatively little is known regarding how production of IFN
is dampened during infection. Our analyses revealed that compared to SeV infection,
induction of type I IFN (ifnb) transcripts in MAYV-infected cells was dramatically sup-
pressed and significantly delayed. These findings are consistent with earlier studies on
other alphaviruses such as SINV, CHIKV, Ross River virus, Venezuelan Equine Encephalitis
virus, and Eastern Equine Encephalitis virus [28,38]. Similarly, production of type III IFN
transcripts was inhibited, and secretion of IFN-β was completely abrogated by MAYV
infection. These suggest that MAYV suppresses induction of transcripts and may further
impede translation and/or secretion of IFNs. Impaired IFN secretion from alphavirus-
infected epithelial cells has been reported [28–30], but interestingly, this does not appear to
be the case during infection of monocytes with Venezuelan Equine Encephalitis virus [29].
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Accordingly, it will be of interest to study the IFN response during MAYV infection of key
target cells, such as synovial fibroblasts, monocytes, and macrophages in future.

Consistent with earlier studies showing that alphavirus nsP2 proteins are involved
in antagonizing the IFN response [24,32,33,36,37,56], we observed that nsP2 of MAYV
is highly effective at blocking IFN induction. Of note, Bae et al. showed that CHIKV
envelope protein also inhibited IFN induction [56], but in our assays, nsP2 was the only
MAYV protein that blocked this process. This may be due to inherent differences between
MAYV and CHIKV envelope proteins themselves and/or the fact that our study employed
constructs comprised of original viral sequences rather than codon optimized plasmids
as used by Bae et al. [56]. Finally, SINV transframe protein, which is produced when a
frameshift occurs during translation of 6K protein, has been reported to antagonize the IFN
response [57]. However, whether the analogous protein of MAYV or other alphaviruses
functions in a similar manner remains to be determined.

Our analysis showed that MAYV nsP2 suppresses IFN induction downstream of
IRF3 phosphorylation and nuclear translocation, which may indicate that transcription
and/or translation of IFN mRNAs is affected. Transcriptional shutoff by other alphavirus
nsP2 proteins is important for circumventing the IFN response, particularly the signaling
arm of this pathway [32–35]. The fact that the transcriptional shutoff defective mutant of
MAYV nsP2 (nsP2P722S) was less effective at blocking IFN induction is consistent with these
previous studies. While a few studies have indicated that alphavirus nsP2 is responsible
for hindering host translation during infection [34,58], others suggest that the translational
shutoff observed during infection is due to sequestration of translational machinery by
viral RNA [59,60]. Nevertheless, since we observed that MAYV completely blocked the
translation and or/secretion of IFNs, future studies are required to determine whether
nsP2 suppresses translation of IFNs.

Alphavirus nsP2 proteins have been shown to abrogate host transcription in part by
depleting Rpb1, a component of the RNA polymerase II holoenzyme [33,51]. Interactome
analyses showed that MAYV nsP2 binds Rbp1 and TFIIE2, host proteins that are important
for initiation of RNA polymerase II-dependent transcription [39]. Loss of TFIIE2 was
observed in MAYV-infected cells as well as cells expressing nsP2 alone. Interestingly, while
cells infected with SFV also had lower levels of this protein, SINV infection had no such
effect on TFIIE2. Reducing levels of TFIIE2 would be expected to reduce cellular transcrip-
tion during MAYV infection, but it is unclear as to how this occurs, as neither inhibition of
proteasome- nor lysosome-dependent degradation blocked virus-induced turnover of this
host protein. Conversely, we observed that nsP2-dependent loss of Rpb1 is proteasome-
dependent, similar to what has been reported for SFV and SINV infection [33,51]. If TFIIE2
degradation is important for blocking IFN induction during MAYV, it is unlikely that the
protease activity of nsP2 is required for this process since the protease-dead nsP2C478A

mutant suppressed IFN induction just as well as wildtype nsP2. Moreover, TFIIE2 lacks
the consensus cleavage sequence that is normally targeted by alphavirus nsP2 [61]. Thus,
elucidating the mechanism by which nsP2 depletes TFIIE2 requires further investigations.

The observation that MAYV nsP2P722S still inhibited IFN production, albeit not as
well as wild type nsP2, may indicate that other mechanisms are at play. Interestingly,
nsP2P722S was able to form a stable complex with Rpb1, but not TFIIE2. This could mean
that nsP2-TFIIE2 interaction is important for blocking host transcription or IFN induction
by other means. Although expression of MAYV nsP2 resulted in depletion of both Rpb1
and TFIIE2, nuclear translocation of nsP2 was only required to reduce levels of Rpb1 but
not TFIIE2. Prominent loss of TFIIE2 protein was also observed during SFV infection but
not in cells infected with SINV. Additional studies are required to determine the impact of
each Rpb1 and TFIIE2 depletion on host transcription and IFN induction.

In summary, the present study has revealed novel mechanisms by which MAYV
subverts the innate immune response. Given that this emerging alphavirus has the poten-
tial to cause large multicontinental outbreaks similar to CHIKV [8,10,62], it is critical to
understand how it manipulates host pathways during infection. Indeed, there is consider-
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able interest in developing therapeutic and prophylactic therapies against MAYV [14–18].
The findings from the present study may be of use for development and application of
therapeutics against MAYV and other alphaviruses.
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