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Abstract: The adenosine A2A receptor (A2AR) is in the center of a neuromodulatory network affecting a wide range of 
neuropsychiatric functions by interacting with and integrating several neurotransmitter systems, especially dopaminergic 
and glutamatergic neurotransmission. These interactions and integrations occur at multiple levels, including (1) direct re-
ceptor-receptor cross-talk at the cell membrane, (2) intracellular second messenger systems, (3) trans-synaptic actions via 
striatal collaterals or interneurons in the striatum, (4) and interactions at the network level of the basal ganglia. Conse-
quently, A2ARs constitute a novel target to modulate various psychiatric conditions. In the present review we will first 
summarize the molecular interaction of adenosine receptors with other neurotransmitter systems and then discuss the po-
tential applications of A2AR agonists and antagonists in physiological and pathophysiological conditions, such as psy-
chostimulant action, drug addiction, anxiety, depression, schizophrenia and learning and memory. 

Key Words: Adenosine, A2A receptor, caffeine, psychostimulant, amphetamine, cocaine, schizophrenia, anxiety, depression, 
dopamine, glutamate. 

INTRODUCTION 

 Behavior, mood and cognition were previously consid-
ered to be mainly controlled by dopaminergic and glutama-
tergic neurotransmission. The ability of the adenosinergic 
system to modify these behaviors and cognitive function has 
attracted a great deal of attention as increasing evidences 
support the tight relationship between adenosine-based 
modulation and the dopaminergic and glutamatergic systems. 
Adenosine is ubiquitously distributed throughout the central 
nervous system (CNS). While early research pointed to the 
role of adenosine as a metabolite of adenosine triphosphate 
(ATP) and cyclic adenosine monophosphate (cAMP), the 
importance of this molecule is now widely recognized as a 
modulator of neurotransmission and complex behaviors. 
Indeed, adenosine fulfills two important roles: (1) as a ho-
meostatic transcellular messenger in all cells; (2) and par-
ticularly as a neuromodulator controlling neurotransmitter 
release and neuronal excitability [31, 63]. 

 Endogenous extracellular adenosine, acting mainly 
through adenosine A1 and A2A receptors (A1Rs and A2ARs) 
in the CNS, controls and integrates a wide range of brain 
functions, most notably regulation of sleep, locomotion, 
anxiety, cognition and memory [47, 63, 64]. Consequently, 
dysfunction of adenosinergic signaling is implicated in pa-
thologies ranging from epilepsy to neurodegenerative disor-
ders to psychiatric conditions [175]. Owning to adenosine’s 
unique role of integrating glutamatergic and dopaminergic 
neurotransmission systems, adenosine-based therapies are 
rapidly evolving in preclinical and clinical studies for the 
treatment of different neurological disorders [62] and the  
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adenosinergic system is increasingly recognized as a poten-
tial target for the development of new therapies for psychiat-
ric disorders [32, 34]. 

 The distribution, molecular structure and function of 
A2ARs in the brain, has extensively been reviewed elsewhere 
[22, 32, 63, 65]. Briefly, the A2AR belongs to the G-protein 
coupled adenosine receptor family and is highly expressed in 
the striatum [61, 182]. A2ARs are also expressed at lower 
levels in other brain areas, including hippocampus, cerebral 
cortex, nucleus tractus solitarius, motor nerve terminals and 
glial cells. Activation of A2ARs enhances the release of sev-
eral neurotransmitters, such as acetylcholine, glutamate and 
dopamine, but inhibits gamma aminobutyric acid (GABA) 
release [24, 36, 47, 109]. A2AR activation also modulates 
neuronal excitability and synaptic plasticity, and affects 
various behaviors including locomotor activity, sleep-wake 
cycle, anxiety, depression and learning and memory. At the 
cellular level, A2ARs are localized predominantly in the soma 
of GABAergic (enkephalin-containing, dopamine D2 recep-
tor-expressing) striato-pallidal projection neurons and to a 
lesser extent in asymmetrical excitatory synapses at the den-
drites of cortico-striatal terminals [7, 61, 163, 182, 203]. At 
the molecular level, the A2AR has been shown to interact 
with other neurotransmitters and neuromodulator receptors 
(possibly through molecular dimerization), including dopa-
mine D2 receptor (D2R), adenosine A1 receptor (A1R), can-
nabinoid CB1 receptor (CB1R), metabotropic glutamate re-
ceptor subtype 5 (mGluR5) and facilitatory nicotinic acetyl-
choline (Ach) receptor. These interactions expand the range 
of possibilities used by adenosine to interfere with neuronal 
function and communication [47, 57, 59, 181]. 

 In the present overview, we mainly recapitulate some 
molecular features of brain A2ARs and the ability of the 
A2AR to integrate several neurotransmission and signaling 
pathways that might be relevant to the potential therapeutic 
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interest of psychopharmacology, particularly in psychosti-
mulation, drug addiction, anxiety, depression, psychiatric 
disorder, e.g. schizophrenia, and in learning and memory 
[185]. 

MOLECULAR BASIS FOR A2AR MODULATION OF 
OTHER NEUROTRANSMITTER SYSTEMS IN THE 
BRAIN  

 A2ARs are highly expressed in the striatum, a pivotal lo-
cus with high levels of neurotransmission and neurotransmit-
ter receptors, thus providing an anatomical basis for the in-
teraction between the A2AR and other, such as dopaminergic 
and glutamatergic, neurotransmitter systems. These interac-
tions occur at multiple levels, including (1) direct receptor-
receptor cross-talk at the cell membrane, (2) intracellular 
second messenger systems, (3) trans-synaptic actions via 
striatal collaterals or interneurons in the striatum, (4) and 
interactions at the network level of the basal ganglia. Com-
pared to other relatively “circumlocutory” interactions, the 
intramembrane receptor-receptor interactions are more direct 
in spacial connection. Agnati and Fuxe first reported experi-
mental observations for the existence of membrane receptor-
receptor interaction [1, 70, 221]. Since then, the concept has 
been further developed to receptor-receptor heteromers and 
the so called “receptor mosaic” with the discovery of aggre-
gates of multiple receptors [67, 71]. The interactions involv-
ing the A2ARs have been described for several G-protein 
coupled receptors, including D2Rs, A1Rs, CB1R and mGluR5 
[54, 181]. The largely antagonistic and occasionally syner-
gistic interactions between the A2AR and other receptors oc-
curring directly between receptor complexes have been 
documented. 

1. Interaction Between Adenosine A2ARs and A1Rs 

 The prevalent neuromodulatory influence of adenosine is 
inhibitory on neuronal activity in the brain [63]. Adenosine 
is known to modulate the release of many neurotransmitters, 
including dopamine, glutamate, GABA, serotonin, noradren-
aline and ACh, though the inhibition of excitatory neuro-
transmitters (e.g. glutamate) is most pronounced [31, 47, 66]. 
Adenosine modulation of neurotransmitter release is medi-
ated through the activation of the A1R and A2AR. Adenosine 
activation of Gi-coupled A1Rs reduces neurotransmitter re-
lease at pre-synaptic nerve terminals and depresses neuronal 
firing at postsynaptic sites [66, 121, 194]. In contrast, adeno-
sine activation of the Gs/olf-coupled A2AR has been demon-
strated to exert an excitatory modulation on the neurotrans-
mitter release of glutamate and ACh in the striatum, and 
ACh in the hippocampus [33, 110]. The A2AR also controls 
GABA release in the striatum [108] as well as in the hippo-
campus [185]. Additionally, the activation A2AR decreases 
the functionality of the A1R in some experimental settings 
[46, 130, 131, 155]. 

 A1Rs and A2ARs may be activated under different condi-
tions; adenosine may preferentially act at A1Rs under basal 
condition, probably due to its relatively high expression level 
and wide-spread distribution in the brain [31, 63]. However, 
the different affinities of adenosine for A1Rs and A2ARs is 
still an open issue [35, 47]. It has been suggested that A1Rs 
largely maintain tonic homoeostatic adenosine functions 

whereas A2ARs mostly exert its fine-tuning modulation under 
some pathophysiological situations [170, 186]. Such receptor 
discrimination may be achieved through the pattern of neu-
ronal firing (i.e. with high neuronal discharge, there may be 
higher levels of ATP and adenosine in the synapse), the dif-
ferent sources of adenosine (i.e. intra- and extracellular for-
mation), the localization of relevant synthetic or metabolic 
enzymes, or the relative position of adenosine release and 
receptor sites (synaptically versus extra-synaptically) [35, 
94, 174, 184]. Furthermore, the partially overlapping distri-
butions of these two adenosine receptors may also permit 
local formation of heteromers to exert their opposite modu-
lating effects directly via a so called "concentration-
dependent switch" mechanism [54]. 

2. Interaction Between Adenosine A2ARs and Dopamine 
D2Rs 

 Striatal A1Rs and A2ARs are major neuromodulator re-
ceptors that exert profound effects on D1Rs- and D2R-
mediated dopamine signalling and function in the striatum. 
Evidence suggests the existence of antagonistic A1R-D1R 
heteromeric receptor complexes in the basal ganglia and pre-
frontal cortex, particularly in the direct striatonigral GABA 
pathways. The antagonistic A1R-D1R interactions at the neu-
rochemical and behavioral levels can be explained in part by 
the existence of such A1R-D1R heteromeric receptor com-
plexes and by antagonistic interactions at the level of the 
second messengers. On the other hand, A2AR-D2R hetero-
mers have been demonstrated as the first example of epitope-
epitope electrostatic interactions underlying receptor hetero-
merization [55]. A large number of studies with different 
techniques, i.e. coimmunoprecipitation, fluorescence reso-
nance energy transfer (FRET), bioluminescence resonance 
energy transfer (BRET), biochemical binding and signaling, 
microdialysis and behavioral pharmacology have indicated 
the existence of A2AR-D2R heterodimers in the striato-
pallidal GABA neurons, where activation of A2ARs reduces 
binding, coupling and signaling of D2Rs [18, 23, 52, 91, 
207]. However, since supporting evidence from in vivo co-
immunoprecipitation studies could be subjected to other in-
terpretations, the evidence of A2AR-D2R dimmers in intact 
brain tissues is still not clear yet. Further studies are needed 
to conclusively demonstrate the functional significance of 
receptor heterodimer in vivo. 

 The antagonistic A2AR-D2R interactions in brain have 
also been demonstrated at the second messenger levels [146, 
183, 199], through which the A2AR strongly modulates the 
excitability in the striato-pallidal GABA neurons probably 
via its ability to counteract D2R signaling to multiple effec-
tors. For example, the activation of the A2AR can counter the 
D2R-induced inhibition of the Ca2+ influx over the L-type 
voltage-dependent Ca2+ channels (CAV 3.1 channels) via the 
activation of phospholipase C and protein phosphatase-2B 
[54, 90]. The counteraction of this cascade by A2ARs may 
involve Go and/or Gq11 protein with release of the βγ subunits, 
and leads to increased phosphorylation of CAV3.1 channels 
and favoring an upstate of the striatal neuronal firing [200]. 
Furthermore, the D2R-induced reduction of firing rates in the 
dopamine-denervated striatum is enhanced by A2AR antago-
nists and attenuated by A2AR agonists [199]. There also ex-
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ists a reciprocal interaction between A2AR-D2R receptors, 
through which the activation of D2Rs can inhibit the A2AR-
induced increase in cAMP accumulation via Gi/o at the level 
of adenylate cyclases [54, 69, 114].  

3. Interaction Between Adenosine A2ARs and Dopamine 
D1Rs 

 Pharmacological studies have revealed functional interac-
tion between A2AR and D1R [144, 145, 162, 163]. At the 
systemic level, pharmacological blockade of A2AR potenti-
ates D1R agonist-induced rotational behavior [145] and c-fos 
expression in dopamine-depleted striatum [162]. The modu-
lation of phosphorylation on neuronal dopamine and cAMP-
regulated phosphoprotein 32 (DARRP-32) by the interaction 
of A2AR and D1R has been investigated in brain slices and 
intact animals [85, 205]. DARPP-32 is expressed in the me-
dium spiny neurons of both the direct and indirect pathways. 
Stimulation of D1Rs and A2ARs or blockade of D2Rs in-
creases DARPP-32 phosphorylation in distinct cell popula-
tions of the striatum [204]. Blockade of A2ARs or stimulation 
of D2Rs not only abolishes D2R antagonist- or A2AR agonist-
induced DARPP-32 phosphorylation, but also antagonizes 
the D1R agonist-induced DARPP-32 phosphorylation in the 
striatum [201]. Furthermore, tetrodotoxin (TTX) blocks this 
A2AR-D1R interaction, suggesting a trans-synaptic (network) 
cross-talk between A2ARs and D1Rs [127]. Importantly, 
DARRP-32 can integrate two distinct pathways, adenosine 
and dopamine signaling, thus providing a possible molecular 
explanation for the long-known behavioral interaction  
between A2ARs and D1Rs [63]. Lindskog et al. (2002)  
suggested that DARPP-32 is required for A2AR inhibition-
induced persistent motor stimulation since caffeine-induced 
motor activity is greatly reduced in DARPP-32 knockout 
mice [128]. At the molecular level, caffeine treatment  
reduces phosphorylation of DARPP-32 at the Thr34 site 
by blocking A2ARs [201]. Conversely, caffeine increases 
phosphorylation of DARPP-32 at the Thr75 site via an  
inhibitory feedback loop of protein kinase A (PKA), which 
leads to further reduction of PKA activity through feedback 
inhibition [14, 128, 152]. Thus, DARPP-32 appears to be  
an important molecular target for integration of adenosine 
and dopamine signaling through phosphorylation at Thr34 
and Thr75 sites. 

 Recently, a genetic study of drug addiction showed that 
D1R-A2AR double knockout mice shared phenotypic similari-
ties of some behavioral components with A2AR knockout 
mice or the mice with sole deficiency of D1Rs in terms of 
preference for ethanol and saccharin; whereas other compo-
nents of behavioral phenotypes in the D1R-A2AR double 
knockouts were likely attributable to the loss of both recep-
tors [191]. These data suggest an interaction of D1Rs and 
A2ARs in the reinforcement processes underlying the intake 
of rewarding substances. In addition, there is limited evi-
dence for the interaction of A2AR and D3R [210]. 

4. Interaction Between A2ARs and Glutamatergic Neuro-
transmission 

 Glutamate is the main excitatory neurotransmission in the 
CNS. Glutamate activates either ionotropic receptors (includ-
ing NMDAR, AMPAR and kainate-type receptor) that are 

mostly localized in the postsynaptic density [12] or G pro-
tein-coupled metabotropic glutamate receptors (mGluRs) 
that are mostly localized extrasynaptically [209]. A2ARs in-
teract with glutamatergic system at several levels in the 
brain. First, ultrastructural findings suggest that extra-striatal 
A2ARs are mostly synaptically-located [171], particularly in 
glutamatergic synapses [173]. These presynaptic A2ARs have 
been demonstrated to control the release of glutamate in the 
striatum, cerebral cortex and hippocampus [24, 130, 134, 
164] and NMDAR activity in the striatum [172]. Second, it 
has been reported that A2ARs may indirectly control the level 
of extracellular glutamate by modulating the activity of glu-
tamate transporter in astrocytes [72, 154]. 

 Third, the receptor heterodimer mechanism is also sug-
gested to underline the interaction of A2AR and the glutama-
tergic system, particularly with mGluR. The immunoreactiv-
ities of A2AR and mGluR5 were found to be colocalized in 
primary cultures of striatal neurons [68] as well as in striatal 
glutamate nerve terminals [177]. Furthermore, coimmuno-
precipitation studies suggest that the existence of possible 
heteromeric receptor complexes containing A2AR and 
mGluR5, where synergism may occur between A2AR and 
mGluR5 [57]. This heteromeric receptor complex is believed 
to underlie the finding that agonists of A2AR and group I 
mGluR could synergistically reduce the affinity of D2R ago-
nist binding sites in striatal membranes [58]. 

 Fourth, concurrent stimulation of A2AR and mGluR5 re-
sults in synergistic interactions at the level of c-fos expres-
sion and phosphorylation of extracellular signal-regulated 
kinases (ERK) and DARPP-32 in the striatum [57, 153]. 
Combined A2AR and mGluR5 activation have also led to 
synergistic cellular effects on GABA release in the ventral 
striato-pallidal GABA neurons [44]. Recently, Coccurello et 
al. (2004) first demonstrated a synergism between A2AR and 
mGluR5 in the control of locomotion [25], which provides a 
direct functional link between A2AR and the glutamatergic 
system and also strengthens the A2AR as potential target to 
modulate psychostimulant effects. In addition, a study from 
Schwarzschild’s group (2005) demonstrated that co-adminis-
tration of the selective mGluR5 antagonist MPEP and selec-
tive A2AR antagonist KW-6002 exerts synergistic locomotor 
stimulation in both normal and Parkinsonian mice [98]. The 
dependence of MPEP-induced motor activity on the A2AR 
and mGlu5R further demonstrates the functional interaction 
between A2AR and mGluR5 at the behavioral level. 

PSYCHIATRIC BEHAVIORAL EFFECTS AND 
THERAPEUTIC POTENTIAL OF A2AR MANIPULA-
TION IN THE BRAIN 

1. Psychostimulant Effects 

 A2ARs in medium spiny neurons have been established to 
be the determinant for the control of motor function, since 
A2AR ligands produce most significant motor effects [63, 64, 
181, 183] that were abolished in mice deficient in A2ARs 
[126]. In fact, A2AR modulation of normal or hyperdopa-
minergic conditions is relevant to psychopharmacology [117, 
118], whereas the A2AR control of the hypodopaminergic 
condition is directly relevant to Parkinson’s disease (PD) 
therapy [38, 180]. In dopamine depleted animals, the main 
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mechanism by which A2AR antagonists improve motor activ-
ity is proposed to be via modulation of GABA release. Thus, 
the systemic administration of A2AR antagonists increase 
motor activity in animals pretreated with D2R antagonists, 
reserpine, 6-OH-dopamine or after genetic inactivation of 
D2R [21, 88, 102, 161, 190, 214] or MPTP-treated monkeys 
[86, 103]. 

 On the other hand, the antagonistic interaction of A2AR-
D2R is considered to be the basis for the potential therapy of 
neuropsychiatric disorders. A2AR agonists inhibit, and A2AR 
antagonists potentiate the motor, discriminative, and reward-
ing effects of psychostimulants [60, 89, 97, 111, 160, 165, 
176, 189]. The non-selective A1R and A2AR antagonist, caf-
feine, also potentiates these effects of psychostimulants [26, 
73, 74, 143, 147]. Intriguingly, genetic inactivation of global 
A2AR or A2AR in forebrain neurons has been shown to at-
tenuate acute psychostimulant effects as well as psy-
chostimulant behavioral sensitization [10, 20, 21]. To pro-
vide an explanation for the well-known discrepancies - 
pharmacological blockade and genetic deletion of A2AR po-
tentiates and attenuates, respectively, psychostimulant effects 
[10, 20, 21, 60], we recently showed that the selective inacti-
vation of striatal A2ARs enhances the psychostimulant effect 
while inactivation of forebrain (including striatal, cortical 
and hippocampal) A2ARs attenuate psychostimulant effects. 
This study suggests that striatal A2AR and extra-striatal A2AR 
offer opposite modulation, possibly through different effects 
of pre- and post-synaptic A2ARs in the striatum [188]. 

 Furthermore, a recent coimmunoprecipitation study dem-
onstrates that A2ARs are able to form receptor complexes 
with CB1R in the rat striatum, where they are colocalized in 
dendritic processes and possibly nerve terminals [19]. Thus, 
the function of CB1R is apparently dependent on A2AR acti-
vation and modulation of A2ARs may affect the rewarding 
behavior of cannabinoid [6, 219]. In fact, the finding of 
A2AR-mediated glutamate release and A2AR-CB1R interac-
tion in the striatum opens up an interesting possibility of 
A2AR-based psychopharmacological therapy. 

2. Drug Addiction 

 Drugs of abuse have varying mechanisms of actions that 
create complex behavioral patterns related to drug consump-
tion, drug-seeking, withdrawal and relapse. The extracellular 
levels of adenosine are elevated upon exposure to drugs of 
abuse [9] and may modify addiction-related behavior [16]. 
By acting at the A2AR in the ventral striatum, modulation of 
A2AR activity may influence the reinforcement processes 
underlying opiate, ethanol and psychostimulant intake [17]. 

 For example, the facilitative role for the A2AR has been 
suggested in opiate reward, reinforcement as well as opiate-
seeking behavior. The A2AR agonist CGS 21680 increases, 
while the A2AR antagonist DMPX reduces, morphine self-
administration in rats [178]. Recently, using A2AR knockout 
mice, Soria et al. (2006) showed that A2AR knockout mice 
display a lower rate of cocaine self-administration, a reduc-
tion in the maximal effort to obtain a cocaine infusion, and a 
vertical shift of the cocaine dose-response curve [196]. This 
indicates that A2ARs seem to be required to develop the ad-
dictive effects of this drug. Furthermore, decreased morphine 

self-administration, breakpoint and conditioned place prefer-
ence were also observed in A2AR knockout mice [17], These 
data support a decrease in motivation of morphine consump-
tion, perhaps reflecting diminished rewarding effects of 
morphine, in A2AR knockout mice. The mechanism underly-
ing attenuated reward behavior of A2AR knockout mice is not 
clear, but these findings are consistent with previous studies 
showing a synergistic rather than an antagonistic D2R-A2AR 
interaction [16]. Furthermore, a dysregulation of glutamater-
gic signaling caused by inactivation of presynaptic A2AR 
could be partially responsible for this phenotype. This is in 
line with the notion that molecular adaptations of the cortico-
accumbens glutamatergic synapses are involved in compul-
sive drug seeking and relapse. 

 However, A2AR inactivation may play a differential role 
in the modulation of psychostimulant effects, depending on 
the involvement of either striatal A2ARs located on the me-
dium spiny neurons themselves, or A2ARs located on the 
cortical glutamatergic afferents that synapse on these striatal 
neurons [188]. On one hand, the activation of A2ARs can 
positively modulate glutamatergic input to the nucleus ac-
cumbens through synergistic interactions with mGluR5, and 
thus maintain a facilitative role in behavior such as psycho-
motor sensitization and addictive behavior as described 
above. Alternatively, through antagonistic interaction with 
D2Rs, activation of A2ARs can attenuate the rewarding ef-
fects of psychostimulant drugs. Indeed, in the study of rein-
statement of cocaine-seeking behavior [215], the A2AR an-
tagonist CGS15943 was found to reinstate cocaine-seeking 
and functions as an intravenous reinforcer, while the A2ARs 
agonist CGS21680 was found to produce a rightward shift in 
the CGS15943 reinstatement dose-effect curve. Thus, it re-
mains to be determined whether A2AR influences reward via 
striatal A2ARs or extra-striatal A2ARs. It is also possible that 
A2ARs may either directly interact with the reward (i.e. do-
pamine or opioid) system or indirectly via interaction with 
other neurotransmitter systems such as glutamate or can-
nabinoids in the brain. 

3. Anxiety 

 Clinical investigations, pharmacological studies and 
models of genetically modified rodents have implicated 
adenosine receptors in the etiology and modulation of vari-
ous types of anxiety. Caffeine and alcohol have been in-
volved in anxiety-related behavior, due to their antagonism 
at adenosine receptors and ability to increase adenosine lev-
els, respectively. The adenosine effects on anxiety have been 
partly attributed to the anxiogenic effects of A1R antago-
nism. However, there are several lines of evidence indicating 
the involvement of the A2AR in anxiety. First, spontaneous 
anxiety-like behavior is enhanced in A2AR knockout mice 
compared to their WT littermates [13, 15, 122], indicating 
that adaptive mechanisms in A2AR knockouts may result in 
increased propensity for anxiety. Second, human genetic 
association studies indicate the association between A2AR 
gene polymorphisms and caffeine-induced anxiety [4, 5, 
211]. Third, pharmacological studies with caffeine suggest 
the involvement of adenosine receptor in anxiety-related 
behavior. It is reported that adenosine has anxiolytic effects, 
which could be reversed by pretreatment with caffeine and 
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theophylline [113]. Similarly, caffeine and theophylline at 
higher doses showed anxiogenic effects, suggesting that 
blockade of adenosine receptors after chronic ingestion of 
caffeine led to increased anxiety-related behavior. However, 
it should be noted that caffeine effects on anxiety are dose 
related: higher doses of caffeine tend to increase [83, 84, 
115, 129, 192, 198] and lower doses of caffeine tend to re-
duce anxiety levels in humans [87, 124, 125]. The dose-
dependent effect of caffeine may due to different effects of 
caffeine on different subtypes of adenosine receptors in 
anxiety. Fourth, El Yacoubi et al. (2000) also showed that 
the short-term anxiety-like effect of caffeine in mice might 
not be related solely to the blockade of A2AR, since it is not 
shared by A2ARs selective antagonists [50]. Therefore, the 
role of A2AR in anxiety remains to be defined [27]. 

4. Depression 

 The effect of the adenosine modulation on depression is 
complex due to the participation of several neurotransmis-
sion systems, such as dopaminergic and serotoninergic sys-
tems as well as the corticotrophin system [34, 75, 96, 179]. 
The involvement of adenosine in depression has also been 
supported by other indirect evidence showing that classical 
tricyclic antidepressants, such as nortriptiline, chlomipramine 
or desipramine, can bind to adenosine receptors and reduce 
the activity of ecto-nucleotidases in cortical nerve terminals 
[41]. Thus, the classical antidepressants also reverse the 
adenosine-induced immobility [112, 113]. However, the 
pharmacological effect of adenosine on depression is not 
clear yet. A series of studies showed that administration of 
adenosine, either peripherally or intra-cerebroventricularly, 
has an antidepressant effect, which involves the recruitment 
of adenosine receptors, the NO-cGMP system, or the opioid 
system [104-106]. However, other studies found that adeno-
sine and its analogues caused depressant-like behavioral ef-
fects by increasing immobilization time in rats submitted to 
inescapable shocks and forced swim tests [93, 141, 142, 
217]. 

 At the receptor level, the blockade of A2ARs relieves the 
early stress-induced loss of synaptophysin, a synaptic marker, 
in the hippocampus of rats subjected to sub-chronic restraint 
stress [30]. A2AR antagonists prolong escape-directed behav-
ior in the tail suspension and forced swim tests [49]. Addi-
tionally, A2AR knockout mice displayed an attenuated ‘be-
havioral despair’ in these two screening tests [48]. The same 
research group furthermore demonstrated that haloperidol (a 
D2R antagonist) prevented the antidepressant effects result-
ing from A2ARs blockade [48, 49]. This evidence suggests a 
potential role of A2AR modulation as novel anti-depressant 
target. 

 However, mechanisms by which the A2AR exerts its 
modulation of depression are not clear yet, but adenosine 
modulation of the serotoninergic system may in part be re-
sponsible [78]. For example, adenosine receptors have been 
shown to control the release of serotonin [156]. Furthermore, 
caffeine, probably via blockade of A2AR, relieves restraint-
induced stress, which correlates with reduction of serotonin 
levels in the hippocampus [218]. Given the increasingly rec-
ognized role of neurogenesis and neuronal trophic factors in 
the depression-related behavior [136, 137], it is interesting to 

note the novel interaction between A2ARs and Trk-B recep-
tors [95], and neurotrophins, such as brain-derived neurotro-
phic factor (BDNF) [45, 123], which may provide another 
potential mechanism for the involvement of A2ARs in anxiety 
modulation. Thus, beyond interaction with D2Rs, the interac-
tion of the A2AR with other neurotransmitter systems, such as 
glutamatergic, serotoninergic, and corticotrophin system as 
well as trophic factors should be examined. 

5. Schizophrenia 

 Schizophrenia is a complex neuropsychiatric disorder 
characterized by cognitive deficits, and positive and negative 
symptoms [99, 150]. Almost all antipsychotics currently 
used in clinical practice are dopamine D2R antagonists, 
though they produce many side effects. The development of 
novel pharmacological targets for antipsychotics is still very 
limited, primarily due to the heterogeneity, lack of solid ana-
tomical or neurochemical basis of the disorder, and lack of 
an adequate animal model that faithfully mimics the features 
of behavioral changes found in this psychiatric disorder [28, 
51, 100, 101]. To date, many biochemical and neurochemical 
markers as well as a rather broad brain area have been impli-
cated in the pathogenesis of diverse psychiatric disorders 
[11, 133, 149, 195, 197]. On the other hand, the current 
evaluation of the efficacy of novel antipsychotics still largely 
relies on the alleviation of behavioral changes that character-
ize schizophrenia. 

 Recent progress in adenosine neurobiology supports the 
notion of adenosine-based therapy and the A2AR as a novel 
therapeutic target for the treatment of psychiatric disorders. 
The first line of evidence came from pharmacological and 
genetic studies showing that A2AR activity affects schizo-
phrenia-like behaviors in patients. Caffeine exacerbates posi-
tive symptoms [39, 132, 138, 140, 151] of schizophrenia, 
whereas adenosine transport inhibitors (such as dipyrida-
mole) and xanthine oxidase inhibitors (such as allopurinol) 
may be beneficial for schizophrenia [2, 3]. Intriguingly, a 
clinical report suggests that poorly responsive schizophrenic 
patients improved considerably with add-on of allopurinol 
[116]. Early studies found that a single-nucleotide polymor-
phism (SNP) of the A2AR gene was a candidate for a schizo-
phrenia susceptibility gene on chromosome 22q12-13 [42, 
92], but this has not been replicated by others. Furthermore, 
theophylline was shown to mimic deficiency of sensorimotor 
gating [77], as evaluated by a disturbed prepulse inhibition 
or P50 evoked potential found in schizophrenic individuals 
[167]. These observations of clinical genetics warrant further 
investigation. 

 Second, the adenosine-hypofunction hypothesis of schizo-
phrenia is further supported by studies from Yee et al. (2007) 
[220] using a transgenic mouse model with overexpression 
of adenosine kinase, causing decreased adenosine levels in 
forebrain. They demonstrated that subtle changes in adeno-
sine levels in forebrain could lead to the emergence of be-
havioral endophenotypes implicated in schizophrenia and 
abnormal response to psychostimulants, i.e. amphetamine 
and MK-801 [220]. It is also reported that startle habituation 
(a measure of sensorimotor function) was reduced by A2AR 
antagonists [148] and genetic deletion of A2ARs in mice 
[213]. The third line of evidence in supporting a role of 
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A2ARs in the pathophysiology of schizophrenia came from 
observations that treatment with antipsychotic drugs alter the 
adenosinergic system in animals and in humans [4, 135, 148, 
159, 213]. It was also observed that clozapine, an atypical 
antipsychotic, induced c-fos expression that could be blocked 
by A2AR antagonists in rodents [159]. In addition, this clo-
zapine-induced antipsychotic effect also affects the ecto-
nucleotidase pathway, thus consequently modulates adeno-
sine levels and resulting activation of A2ARs [119]. In clini-
cal studies, Martini et al. (2006) demonstrated an upregula-
tion of A2AR in platelets from patients under treatment with 
haloperidol, a typical antipsychotic [135]. This study also 
revealed the co-expression of A2ARs and D2Rs assembled 
into heteromeric complexes in human platelets. Conversely, 
chronic treatment with non-dopamine based atypical antip-
sychotic was not able to induce any significant alterations in 
A2AR equilibrium binding parameters and receptor respon-
siveness. In line with this finding, an upregulation of striatal 
A2ARs has been demonstrated to occur in schizophrenia pa-
tients with antipsychotic treatment [4]. Noticeably, the in-
creased A2AR density correlated with the dose of antipsy-
chotics in chlorpromazine equivalents, which suggests a role 
of A2ARs in the molecular effects of antipsychotic drugs. 

 The fourth line of evidence came from molecular studies 
suggesting a modulatory role of A2ARs as a fine-tuner in re-
balancing an impaired glutamatergic-dopaminergic commu-
nication. Regarding dopaminergic function, the antagonistic 
interaction of A2AR-D2R in the striatum suggested anti-
psychotic behavior in schizophrenia by A2AR agonist to 
function as a dopamine receptor antagonist. The activation of 
A2ARs can reduce D2R affinity and function, which may po-
tentially underlie the antipsychotic-like profile of adenosine 
agonists [56], the hyperdopaminergic effect of caffeine [53, 
56] and the exacerbation of psychotic symptoms by caffeine 
in schizophrenic patients [132]. More data discussed in other 
reviews suggested the relationship between hyperdopa-
minergic transmission and unbalanced adenosinergic modu-
lation in the striatum [82, 120, 187, 202]. These observations 
support the possibility that the manipulation of A2ARs (by 
activation of A2AR) may help restore an adequate dopa-
minergic signaling. Regarding glutamatergic function, A1R 
and A2AR agonists have both been shown to prevent behav-
ioral and EEG effects induced by NMDAR antagonists [166, 
193]. In an NMDAR hypofunction model of schizophrenia 
[157], the function of NMDARs could be modified by both 
A1R and A2AR activities [40, 76, 172, 208, 216]. Further-
more, both A1Rs and A2ARs control the evoked release of 
glutamate in striatum [24, 177]. Conversely, the activation of 
the NMDAR increases the adenosine tone [139], while inhi-
bition of the NMDAR reduced adenosine release [43]. Im-
portantly, the psychostimulant effects of NMDAR antago-
nists are largely abolished by genetic inactivation or pharma-
cological blockade of A2ARs [176, 188]. These studies sug-
gest that modulation of A2ARs may re-balance the hypofunc-
tion of NMDARs in models of schizophrenia. As reviewed 
in the above sections, the existence of heteromeric A2AR-
D3R and A2AR-mGluR5 receptor complexes may also 
strengthen the potential modulation of A2AR on schizophre-
nia therapy [206]. 

 However, the effect of adenosine modulation on psychi-
atric disorders is likely more complex, with involvement of 
different neurotransmitter systems in various brain regions. 
For example, we recently demonstrated that striatal deletion 
of A2ARs enhances the actions of psychostimulants, whereas 
deletion of A2ARs in forebrain (including striatum, cortex 
and hippocampus) attenuates the effect of psychostimulants. 
These data suggest that striatal A2ARs and extra-striatal 
A2ARs exert different effects on psychomotor activity. Thus, 
adenosine-based psychopharmacological therapy may rely 
on the status or degree of dysfunction in other neurotransmit-
ters, or spatial targeting of adenosine agonists/antagonists, or 
drug specificity, selectivity, dosage and paradigm. 

6. Learning and Memory 

 Several recent pharmacological and genetic studies sug-
gest a potential modulatory role of brain A2AR activity on 
learning, memory, and other cognitive process [34, 181]. For 
example, local administration of A2AR agonists into the pos-
terior cingulate cortex impaired memory retrieval in rats 
[158]. Conversely, the A2AR antagonist SCH58261 and caf-
feine have been shown to improve social recognition mem-
ory [169] and improve memory performance in rodents 
through different tasks [206]. Genetic inactivation of the 
A2ARs enhanced spatial recognition memory and novelty 
exploration in Y-maze testing in mice [212]. Recently, two 
studies demonstrated that both pharmacological blockade 
and genetic inactivation of A2ARs attenuated β-amyloid-
induced memory loss [29, 37]. The above results suggest that 
the A2AR activity can modify the spatial memory process in 
rodents.  

 On the other hand, working memory primarily depends 
on the integrity of prefrontal cortical function [80] and is 
critical to human reasoning and judgment, which is at the 
core of pathophysiology for many neuropsychiatric disorders 
such as Alzheimer’s disease [8, 107, 126] and schizophrenia 
[81]. The control of working memory by A2ARs [169] is 
supported by several elegant behavioral studies showing an 
impact of caffeine [168]. Recently, transgenic overexpres-
sion of A2ARs in cortex has been shown to impair spatial 
working memory in radial maze, repeated trials of Morris 
water maze and objective recognition tests [79]. In agree-
ment with this finding, we recently observed (unpublished 
data) that genetic inactivation of A2ARs significantly im-
proved working memory; furthermore, the improved work-
ing memory was selective for this specific short-term mem-
ory whereas the performance of spatial reference memory 
and the memory retention after prolonged training was 
largely indistinguishable between A2AR knockout mice and 
their WT littermates. These results suggest a selective modu-
latory role of A2AR activity in working memory.  

CONCLUDING REMARKS 

 In this review, we have described the role of adenosine 
A2A receptor-driven interactions with other neurotransmitter 
systems, at multiple levels of psychopharmacology, from the 
molecular basis of receptor-receptor cross-talk, to pharma-
cological and genetic manipulations of A2AR activity, and 
the alteration of neuropsychiatric phenotypes in psy-
chostimulant addiction, anxiety and depression, schizophre-
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nia and learning and memory. Based on the literature to date, 
the A2AR is involved in multiple receptor-receptor interac-
tions, multiple neurotransmissions and multiple neuropsy-
chiatric disorders. In particular, it tightly interacts with two 
main neurotransmitter systems, the dopaminergic and gluta-
matergic signaling pathways, with implications for a wide 
range of psychiatric behaviors and several psychiatric disor-
ders. Hence, A2ARs are ideally positioned as a fine-tuner, 
providing integrated effects between glutamatergic and do-
paminergic signaling, and may represent a novel neuropsy-
chopharmacology target. 

 Despite its attractive therapeutic potential, several con-
cerns need to be introduced, when evaluating the putative 
role(s) of A2ARs in psychopharmacology. First, since adeno-
sine system works via neuromodulation, the modulatory abil-
ity of the adenosine system (including the A2AR) may de-
pend on and may intricately be linked with the activity of 
other “potent” neurotransmission systems, i.e. dopaminergic, 
glutamatergic and serotoninergic systems. Second, a primary 
role of the adenosine neuromodulatory system seems to be 
maintenance of homeostasis or promotion of the adaptation 
of multiple neurotransmitter systems in the brain. Thus, 
adenosine, and A2ARs in particular, seem to curtail extremes 
(i.e. over-stimulation or under-stimulation) of these neuro-
transmitter systems in the brain. A2AR-based modulation 
may largely be exerted, once disequilibrium of neurotrans-
mitter systems occurs. Third, extracellular adenosine may act 
at A2ARs and A1Rs with globally opposite functions, or may 
act at the A2AR in different brain regions with its differential 
action to exert modulating effects. The balanced outcome of 
adenosine actions may be in part controlled by neuroadapta-
tion or maladaptation of neurotransmission, by which it ex-
erts its effect and may in part depend on the preferential sites 
of pharmacological reagent activity. 
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