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Abstract

Quadruplex structures have been identified in a plethora of organisms where they play

important functions in the regulation of molecular processes, and hence have been pro-

posed as therapeutic targets for many diseases. In this paper we report the extensive bioin-

formatic analysis of the SARS-CoV-2 genome and related viruses using an upgraded

version of the open-source algorithm G4-iM Grinder. This version improves the functionality

of the software, including an easy way to determine the potential biological features affected

by the candidates found. The quadruplex definitions of the algorithm were optimized for

SARS-CoV-2. Using a lax quadruplex definition ruleset, which accepts amongst other

parameters two residue G- and C-tracks, 512 potential quadruplex candidates were discov-

ered. These sequences were evaluated by their in vitro formation probability, their position

in the viral RNA, their uniqueness and their conservation rates (calculated in over seventeen

thousand different COVID-19 clinical cases and sequenced at different times and locations

during the ongoing pandemic). These results were then compared subsequently to other

Coronaviridae members, other Group IV (+)ssRNA viruses and the entire viral realm.

Sequences found in common with other viral species were further analyzed and character-

ized. Sequences with high scores unique to the SARS-CoV-2 were studied to investigate

the variations amongst similar species. Quadruplex formation of the best candidates were

then confirmed experimentally. Using NMR and CD spectroscopy, we found several highly

stable RNA quadruplexes that may be suitable therapeutic targets for the SARS-CoV-2.

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-

stranded RNA virus from the Betacoronavirus genus, within the Coronaviridae family of the

Nidovirales order. Although it is believed to have originated from a bat-borne coronavirus [1–

5], the SARS-CoV-2 can spread between humans with no need of other vectors or reservoirs

for its transmission. The virus is responsible for the ongoing COVID-19 pandemic that has

caused hundreds of thousands of deaths, millions of infected and a disastrous strain on the

economy of most countries and citizens worldwide.

The origin of the virus has been traced back to the Chinese city of Wuhan, where the first

cases of infected individuals were reported amongst the workers of the Huanan Seafood
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Market [6, 7]. This wet exotic animal market, where wild animals including bats and pangolins

are sold and prepared for consumption, offers ample opportunities for pathogenic bacteria

and viruses to adapt and thrive [8, 9]. Such circumstances led Cheng and colleagues to predict

the current pandemic back in 2007 [10]. In their own words: “the presence of a large reservoir
of SARS-CoV-like viruses in horseshoe bats, together with the culture of eating exotic mammals
in southern China, is a time bomb. The possibility of the re-emergence of SARS and other novel
viruses from animals or laboratories and therefore the need for preparedness should not be
ignored”.

SARS-CoV-2 has now become a global problem. In this current scenario, the scientific

community is playing a fundamental role in minimizing the number of victims. Their work

includes, to name a few, the development of fast and reliable detection methods, the identifica-

tion of therapeutic targets within the virus, and the development of active drugs and vaccines

to cure and to prevent infections, respectively.

G-Quadruplexes (G4s) and i-Motifs (iMs) have been proposed as therapeutic targets in

many disease aetiologies. G4s are Guanine (G) rich DNA or RNA nucleic acid sequences

where successive Gs stack in a planar fashion via Hoogsteen bonds to form four-stranded

structures, stabilized by monovalent cations [11]. iMs on the contrary, are Cytosine (C)-rich

regions that fold into tetrameric structures of stranded duplexes [12–14]. These are sustained

by hydrogen bonds between the intercalated nucleotide base pairs C�C+ when under acidic

physiological conditions.

The importance of these genomic secondary structures has been abundantly studied during

the last years [15–20]. They have been found to be regulatory elements in the human genome

implicated in key functions such as telomere maintenance and genome transcription regula-

tion, replication and repair [21]. G4 structures have also been identified in fungi [22–25], bac-

teria [26–30] and parasites [31–36]. Their occurrence are known in many viruses that infect

humans as well. These include the HIV-1 [37–39], Epstein-Barr [40, 41], human and manatee

papilloma [42, 43], herpes simplex 1 [44, 45], Hepatitis B [46], Ebola [47] and Zika [48] viruses.

Here they can regulate the viral replication, recombination and virulence [32, 49, 50].

iMs have been less studied in general, especially outside of the human context. With regards

to viruses, Ruggiero et al. recently published the formation of an iM in HIV-1 [51], whilst we

reported the presence of the known cMyb.S [52] iM within the Epstein-Barr virus [53]. Despite

the lack off reports, iMs are interesting potential therapeutic targets for viruses. For example,

the in silico analysis of the rubella virus revealed an extremely dense genome of potential iMs

(density as counts per genomic length) that surpassed its human counterpart by over an order

of magnitude [53]. In the same study, other viruses such as the measles and hepacivirus C pre-

sented potential iMs densities similar to the human genome.

In this work, we wished to contribute to the ongoing research efforts related to the COVID-

19 pandemic by investigating SARS-CoV-2 for the presence of quadruplex structures. With

this aim, we analysed the prevalence, distribution and relationships of Potential G4 Sequences

(PQS) and Potential iM Sequences (PiMS) in its genome. These PQS and PiMS have been eval-

uated according to their potential to form quadruplex structures in vitro and localization

within the genome. The presence of confirmed quadruplex-forming sequences and the candi-

date’s frequency, uniqueness and conservation rates between 17312 different SARS-CoV-2

clinical cases were also analyzed. The study of the SARS-CoV-2 and its quadruplex results

were expanded to integrate the Coronaviridae family, Group IV of the Baltimore classification

and the entire virus realm, as to allow a wider range of interpretation. With all this information

at hand, our final objective was to identify biologically important PQS and PiMS candidates in

the virus. To substantiate our bioinformatic analysis, we analysed experimentally some of

these sequences by CD and NMR spectroscopies. Our in vitro results confirmed the formation
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of stable quadruplexes that can form in the viral genome, suggesting that they may be suitable

targets for new therapeutic or diagnostic agents [50, 54]. Hence, our analysis of the SARS--

CoV-2, and by extension of the entire virus realm, may provide useful insights into using

quadruplex structures as targets in future anti-viral treatments.

Materials and methods

G4-iM Grinder and G4-iM Grinder’ parameter configuration

In this work, we have used an upgraded version of the G4-iM Grinder package (GiG, https://

github.com/EfresBR/G4iMGrinder) for the analysis of all viruses (S1 File, section 1). GiG is an

R-based algorithm that locates, quantifies and qualifies PQS, PiMS and their potential higher-

order versions in RNA and DNA genomes [53]. We retrieved the SARS-CoV-2’s reference

sequence (GCF_009858895.2) from the NCBI database [55]. We also downloaded those of 18

other viruses which can cause mortal illness in humans, including six other pathogenic Coro-

navirus, as comparison (S1 File, section 2).

As a workflow, we applied the functions GiG.Seq.Analysis (to study their G- and C-run

characteristics), G4iMGrinder (to locate quadruplex candidates) and G4.ListAnalysis (to com-

pare quadruplex results between genomes) from the GiG package to all the viruses. The ‘size-

restricted overlapping search and frequency count’ method (Method 2, M2A and M2B) was

used to locate all the candidates. Then, these PQS and PiMS were evaluated by the presence

within of in vitro confirmed G4 or iM sequences, their frequency of appearance in the corre-

sponding genome, and their probability of quadruplex-formation score (as the mean of

G4Hunter [56] and the adaptation of the PQSfinder algorithm [57]). To compare between

virus species, we calculated the density of potential quadruplex sequences per 100000 nucleo-

tides (Density ¼ 100000�
Number of candidates

Genome Length ).

We previously saw that viruses have a wider-range of PQS and PiMS densities than that of

the human, fungi, bacteria and parasite genomes [53]. Some were totally void whilst others

were very rich in candidates. So, we explored different quadruplex definitions to determine the

most useful configurations for the analysis of the viruses at hand. These different definitions

control the characteristics of what the algorithm considers a quadruplex. They include the

acceptable size of G- or C-repetitions to be considered a run, the acceptable amount of bulges

within these runs, the acceptable loop sizes between runs, the acceptable number of runs to

constitute a PQS or PiMS, and the total acceptable length of the sequence (Fig 1A). A flexible

configuration of quadruplex definitions will detect larger amounts of candidates at the expense

of requiring more computing power and accepting sequences that are more ambiguous in

forming quadruplex structures in vitro (as determined by their score; with longer loops,

smaller runs, more bulges and more complementary G/C %, Fig 1B). More constrained defini-

tions result in the opposite. Hence, for the analysis, we chose three different configurations: a

Lax configuration (which accepts run bulges and longer ranges of runs, loops and total sizes),

the Predefined configuration of the package (which restricts sizes but still accepts run bulges),

and the original Folding Rule [58, 59] (which restricts length and does not accept run bulges)

(Fig 1C Left).

Then, we calculated the PQS and PiMS densities of each virus to allow a direct size-inde-

pendent comparison between them all (Fig 1D), and filtered the results by their in vitro proba-

bility of formation score. The |score| filters were set to 20 and 40 to allow us the study of both

the medium (PQS score� 20; PiMS score� -20) and the high probability candidates (PQS

score� 40; PiMS score� -40; Fig 1B) within the results. These score filters are important

because they qualify the sequences and grant specificity to the results of GiG’s extremely
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flexible search engine (which was designed solely for sensitivity), as highlighted by the results

of a recent review [60].

For the viruses analysed, the best configuration to obtain significant number of candidates

was the Lax set-up. This was also relevant for the reference genome of the SARS-CoV-2 (Fig

1C Right). Given the small size of the viral genomes, the increase in computational power was

deemed acceptable and hence, we established this Lax configuration as the default configura-

tion for all posterior searches with GiG. Although some authors have reported the unfeasibility

of forming iMs with tracks of only two C [19], such statement has been rebutted later [61],

allowing the use of this configuration also for potential iMs.

The search was then expanded to 17312 different SARS-CoV-2 genomes sequenced during

the pandemic (from December-2019 to January-2021, by different laboratories worldwide and

downloaded from the GISAID database [62]), other Coronaviridae family members and the

entire virus realm (6678 other viruses) using the methodologies described previously and in

the S1 File, section 1. To validate the in silico findings, the most interesting candidates were

selected and confirmed by NMR and CD spectroscopy.

in silico methodology

To analyse these genomes, we employed the workflow described in the G4-iM Grinder’ parameter

configuration section of the manuscript using the Lax parameter configuration. We investigated

the biological features potentially affected by candidates using the function GiG.df.GenomicFeatures
of the GiG package. The conservation of each PQS and PiMS found in the reference genome was

calculated as {Conservation (%) = 100×∑Ng+/∑Ng} where Ng is the number of genomes, and Ng+ is

the number of genomes with the PQS or PiMS candidate. The genomic pairwise alignments, used

to study the similarity between viruses and detect PQS and PiMS variations between species, were

done using the pairwiseAlignment function (global alignment type) from the Biostrings package in

the Bioconductor repository. We calculated the divergence from the reference genome per clade

(or lineage) as, {Divergence ¼ ðjN�Clade=LineagejS:j � 20 � N�ref jS:j � 20jÞ þ N�Lineage VariantsjS:j � 20}

where N�Clade=LineagejS:j � 20 is the clade/lineage’s mean number of PQS or PiMS that |score| at least

20, N�ref jS:j � 20 is the number of PQS or PiMS that |score| at least 20 in the reference genome, and

N�Lineage VariantsjS:j � 20 is the mean number variants of PQS or PiMS that |score| at least 20 per Line-

age. To compare potential quadruplex presence and prevalence between genomic groupings (spe-

cies, families, groups and the entire virus realm), we calculated also the genomic density of several

arguments. These were calculated using the GiGList.Analysis function of the GiG package (density

per 100000 nucleotides). The arguments were the density of results (PQS and PiMS), density of

results with |score| filters (with at least 20 or 40), density of already confirmed sequences that form

G4 or iM within, and uniqueness (as {Uniqueness (%) = 100×∑Nsf = 1/∑Ns} where Ns is the num-

ber of sequences, and Nsf = 1 is the number of sequences with a frequency of appearance of 1 in its

respective genome). For the G- and C-runs density analysis of the viruses, we used the function

GiG.Seq.Analysis from the GiG package. The arguments here were: densities of runs with different

Fig 1. A. Results with G4-iM Grinder depend on the quadruplex definitions introduced to the algorithm. Sizes of G- or C-runs, loops and

the entire sequence, together with an acceptable number of bulges within the runs are part of the definitions. B. The structures found with

GiG under the definitions proposed by the user can be evaluated for their in vitro probability of formation. More positive scores mean that

the sequence is more capable of forming G4s, whilst more negative values mean that it is more capable of forming iMs. C. Left,

Quadruplex definitions used by GiG’s search engine in this work. C. Right, Total results found within the SARS-CoV-2 by configuration

and score criteria. D. PQS and PiMS densities (per 100000 nucleotides) found per different configuration and score criteria for 19 viruses.

The G and C content (as a percentage) is shown under each virus. X scale is in logarithmic scale (base 10). Results are categorized by their |

score|: intense colours (blue for PQS, yellow for PiMS) are the most probable to form in vitro (|score|� 40), lighter bars are the density of

structures with at least a |score|� 20 and grey bars are the densities without the score filter.

https://doi.org/10.1371/journal.pone.0250654.g001
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sizes (two or three to five long G- or C-runs) and with different bulges per run (zero and/or one).

All of these results can be found in the S1 File, section 5.

Candidate selection

PQS and PiMS candidates were selected according to their potential to form quadruplex struc-

tures in vitro, uniqueness, frequency of appearance, conservation between 17312 different

SARS-CoV-2 clinical case genomes, confirmed quadruplex presence and localization within

the genome.

NMR experiments

Oligonucleotides (0.3 mM) for NMR experiments were purchased from IDT, and suspended

in 200 μl of H2O/D2O 9:1 in 25 mM KH2PO4 and 25 mM KCl buffer, pH 7. Samples at acidic

pH were prepared by adding aliquots of concentrated HCl. Spectra were acquired on Bruker

Avance spectrometers operating at 600 MHz, and processed with Topspin software. Experi-

ments were carried out at temperatures ranging from 5.1 to 45˚C and pH from 5 to 7. NOESY

spectra in H2O were acquired with a 150 ms mixing time. Water suppression was achieved by

including a WATERGATE module in the pulse sequence prior to acquisition.

Circular Dichroism (CD)

Circular dichroism (CD) studies were performed on a JASCO J-810 spectropolarimeter using

a 1 mm path length cuvette. Spectra were recorded in a 320–220 nm range at a scan rate of 100

nm min−1 and a response time of 4.0 s with four acquisitions recorded for each spectrum. Data

were smoothed using the means-movement function within the JASCO graphing software.

Melting transitions were recorded by the monitoring the decrease of the CD signal at 264 nm.

Heating rates were 30˚C/h. Transitions were evaluated using a nonlinear least squares fit

assuming a two-state model with sloping pre- and post-transitional baselines. Oligonucleotide

solutions for CD measurements were prepared at the same buffer conditions as the NMR

experiments. Oligonucleotide concentration was of 50 μM.

Results and discussion

A detailed analysis of the results of SARS-CoV-2, Coronaviridae family and the entire virus

realm with G4-iM Grinder can be found in the S1 File, Section 3.

G4-iMGrinder and settings

The genome of the SARS-CoV-2, and that of many other viruses, were analysed with G4-iM

Grinder in search off potential quadruplex (both G4 and iM) therapeutic targets. To do so, we

first expanded G4-iM Grinder’s quadruplex identification and characterization repertoire with

two new functions, GiG.Seq.Analysis and GiG.df.GenomicFeatures. Other functions such as

G4iMGrinder and GiGList.Analysis were upgraded to better analyse and summarise the quad-

ruplex results obtained. Furthermore, over 2800 quadruplex-related sequences were searched

for in the literature and included in G4-iM Grinder’s database to rapidly identify confirmed

G4s and iMs within all results.

An initial study of the SARS-CoV-2 genome and 18 other pathogenic viruses revealed the

special characteristics that need to be considered for quadruplex-related examinations in these

organisms. For most, the original folding rule (which accepts no bulges within the runs and is

very constrained in its quadruplex definitions) and the predefined parameters of G4-iM

Grinder (which allows more liberty by accepting bulges and longer loops) are too strict to find
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associated runs that can give rise to quadruplexes. Although other organisms such as Plasmo-
dium falciparum or Entamoeba histolytica may be poorer in G and C content [53], the size of

these genomes enables finding rich G- or C- tracks that can ultimately form potential quadru-

plexes. In most viruses, however, this does not take place because of the small size of the

genomes (in the range of tens to hundreds thousand nucleotides versus the tens of millions for

the parasites mentioned, and thousands of millions for humans). Furthermore, most of the

G4s found in viruses are complex sequences, with short runs and bulges (for example, HIV-1

[37, 39] and Ebola [47]), which elude detection when following traditional quadruplex defini-

tions. To overcome these problems, we took advantage of the great adaptability of G4-iM

Grinder, and developed, tested and successfully employed a lax quadruplex definition configu-

ration for the analysis. With these settings, the number of candidates found increased greatly

and included the complex sequences expected in viruses, at the expense of needing more

computational power.

SARS-CoV-2

With all these updates and configurations at hand, we focused on the reference SARS-CoV-2

and located 323 PQS and 189 PiMS unique (only occurring once in the genome) sequences

dispersed unevenly in its genome (Fig 2). 20% of these candidates had at least a medium prob-

ability of formation (|score|� 20), and 7 PQS and 10 PiMS had a |score|� 30 (Fig 2D). Candi-

dates with at least a medium probability of formation concentrate in the N, S and especially in

the orf1ab gene (in the nsp 1 and 3 regions for PQSs and in the nsp 3, 4 and 12 regions for

PiMS). The orf3a, orf8 and UTR regions also presented these candidates. Other genes, such as

orb7a and b, and orf10 were found totally void of them.

We calculated the SARS-CoV-2 candidate’s quadruplex conservation rates and quadruplex-

related region variability under three different scopes.

First, attention was focused exclusively on the virus in an intra-species analysis comprising

17312 genomes of the SARS-CoV-2 sequenced at different places and times of the pandemic.

Here, we found that the least conserved candidates were located in the 5’UTR, orf1ab and N

regions with conservation as low as 9.8%. On the other hand, most of the sequences analysed

that |scored|� 20 presented conservation rates of over 99% (46/71 PQS and 21/35). Of these,

only 18 PQSs and 7 PiMSs rates surpassed that of the mean sequence identity percentage

between the 17312 SARS-CoV-2 and the reference genome (99.83%). To further investigate

these differences, we first identified the 5429 new PQSs and 3298 new PiMS variants that |

scored|� 20 amongst all the SARS-CoV-2 genomes and then associated them with the ver-

sions found in the reference genome. In this manner, we identified for one of the highest-scor-

ing PQSs found in the N-gene (entry 7, Fig 2D and entry 1, Fig 3A) a variant with the same

probability of formation (entry 3, Fig 3A), which is exclusive to the lineages within B.1.1/clade

GR and B.1.160/clade G. These have a substitution of a C for a U in the first loop, and together

with several other less frequent variations with similar modifications in the loops, partially

explain its 99.08% conservation rate. Furthermore, a nearby four-membered G-run may influ-

ence this PQS, to the point of potentially being a fifth domain [63, 64] or forming an alterna-

tive G4 (entry 2, Fig 3A). This extra G-run is separated from the PQS by a 19-nucleotide long

loop that has a conservation rate of only 35%. The most frequent variants found for this poorly

conserved area were also the substitution of a C for a U, as seen before (entry 4, Fig 3A). Vari-

ants of lineage A/Clade S displayed a different substitution, where a C mutates to a G and

becomes an additional G-run, which can further influence the PQS (entry 5, Fig 3A). How this

affects the known activity of the PQS and the N gene is yet to be determined [65]. Variants of

specific lineages with heightened quadruplex formation probability were also detected for
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several other high scoring candidates, including a PQS found in the 5’UTR area (entry 1,

Fig 2A and entry 6, Fig 3A) and a PiMS in the orf1ab gene (entry 14, Fig 2A and entry 8,

Fig 3A), both of which are the only results found in SARS-CoV-2 with high a probability of

forming quadruplex (|score|� 40).

We observed significant differences between the SARS-CoV-2 lineages and clades when

considering the overall PQS differences. On the one hand, the GR clade displayed a

reduced number of PQSs, PQSs that |scored| at least 20 and the least number of variants

per genome analysed (Fig 3C). On the other hand, The S clade presented, on average, addi-

tional PQSs in their genome and a higher number of variants per genome analysed. In

either case, both clades differed significantly from the reference genome, as well as amongst

themselves. The rest of the clades presented fewer differences although some specific line-

age aggrupations (B.1.1/Clade O and B.1.1/Clade G) also displayed a lower number of

PQSs overall. For PiMS, the differences between clades were smaller and more homoge-

neous (S1 File, section 3, Fig 2C).

The search was then expanded to the rest of the Coronaviridae family. 53 SARS-CoV-2 PQS

and PiMS candidates were found in common with the SARS-CoV and/or Bat coronavirus

BM48-31/BGR/2008 (Bat-CoV-BM), all of which are suspect of having bats as hosts during

their evolution (S1 File, section 3, Fig 3). These common sequences were located in the 3’UTR,

N and E genes of the SARS-CoV-2, although most were positioned in the orf1ab gene, and

especially in the 5’UTR region. Paradoxically, the candidates found in the 5’UTR site (which

regulates the translation of the RNA transcript) include the least conserved group of candi-

dates of the inter-species analysis (with conservation rates as low as 9%), while also hosting a

very conserved family-wise group of candidates. On the one hand, high conservation in candi-

dates (maintained through natural selection) may be an important factor for the survival of the

virus. This importance may transcend beyond the SARS-CoV-2 and into other familiar species

were PQS and PiMS were found in common. On the other hand, variability in the region may

also play a vital role in the ability of the virus to adapt to new hosts, situations and

environments.

The highest |scoring| candidates found in SARS-CoV-2 were however not common to any

other Coronaviridae member species. So, we investigated the differences between them

through genome alignments and found that most of the sequence versions amongst species (6

out of 8) were still able to form potential quadruplex structures even with modifications.

Therefore, these PQS and PiMS, although different from those in the SARS-CoV-2, maintain

their potential biological role and importance.

Expanding the search for common candidates to the entire virus realm, we matched one

PQS and PiMS from the SARS-CoV-2 with the potential quadruplexes found in four viruses

from Group I belonging to the Herpesviridae, Podoviridae and Siphoviridae families (all

dsDNA) which cannot be explained by the number of sequences analysed.

Fig 2. A. Top. Percentage of conservation of each PQS found along the genome of the SARS-CoV-2. Each point represents one PQS. The PQS score is given

by the fill colour of the points, where lower |scores| are greyer, and bluer points have higher |scores|. Bottom. PQS count density plot related to the genome

position (counts per 200 nucleotides). Grey coloured density plots are all the results found, whilst blue density plots are the results found with at least a |

score|� 20. B. Distribution of the biological features of the SARS-CoV-2 by its genomic position. UTR regions are in red, CDS and genes region are in

green, and nps of the orf1ab gene are in purple. Orange dots are mature protein regions of the CDS. C, Top. PiMS count density plot related to the genome

position (counts per 200 nucleotides). Grey coloured density plots are all the results found, whilst yellow density plots are the results found with at least a |

score|� 20. Bottom. Percentage of conservation of each PiMS found along the genome of the SARS-CoV-2. Each point represents one PiMS. The PiMS

score is given by the fill colour of the points, where lower |scores| are greyer, and higher |scores| are more yellow. D. Top scoring PQS (Score� 30, entry 1 to

7) and PiMS (Score� -30, entry 8 to 17) found in the SARS-CoV-2 ordered by their localization in the genome. G-runs are in blue, C-runs are in yellow,

loops are in red and bulges within the runs are in green. For each entry, the biological feature column lists the genomic landmark that hosts the potential

quadruplex. The percentage of conservation is also given.

https://doi.org/10.1371/journal.pone.0250654.g002
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Fig 3. A. Sequences found in the SARS-CoV-2 reference genome (those with a starting position) and some of the variants identified in specific lineages for four high

scoring candidates. Mutations are underlined. B. Centre, SARS-CoV-2 phylogenetic tree by clade and lineage of the sequences analysed. Lineages with less than 100
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SARS-CoV-2 and the virus realm

We analysed the entire virus realm in a similar fashion to other studies in the literature [68,

69]. However, we employed the lax definition of quadruplexes to detect G- and C- structures

and searched for verified G4 and iM sequences already described in literature. These results

were then matched and compared to SARS-CoV-2.

Whilst the SARS-CoV-2 did not present any of the published quadruplex sequences listed

in the GiG.DB (as of V2.5.0) within its genome, other viruses including a wigeon-afflicting

Coronavirus did. In the entire virus realm, 1725 viruses presented at least one confirmed G4

sequence in their genome, while 195 at least one confirmed iM sequence (the dimensional dis-

crepancies between both results may partially be due to the difference in the number of G4

and iM entries in the database; 2568 and 283 respectively). The sheer volume of species with

confirmed quadruplex structures in all groups of viruses suggests that quadruplexes may be

common and necessary genomic regulatory elements for viruses, as seen in other organisms

such as humans. However, the prevalence is not homogeneous and varies broadly at the group

level although not that much at the family level. For example, some families like Group I’s Her-
pesviridae and Sphaerolipoviridae, Groups IV’s Matonavirirdae and Flaviviridae and Groups

II’s Spiroviridae presented the highest PQS densities; whilst Groups V’s Aspiriviridae and

Fimoviridae, Groups IV Mononiviridae and Mesoniviridae and Group’s I Mimiviridae dis-

played the lowest. PiMS showed a similar tendency with Group I (Sphaerolipoviridae and Her-
pesviridae) and especially IV (Tymoviridae, Matonaviridae and Gammaflexiviridae) families

being the densest in candidates; whilst Groups IV (Monoviridae and Yueviridae), Groups V

(Fimoviridae and Phasmavirirdae) and Groups I families (Mimiviridae) displayed the lowest.

These results indicate that viruses/families (and particularly single-stranded ones) are probably

more oriented to a kind of quadruplex structure in a group/genome-type independent man-

ner, whilst being contingent upon cation concentration and pH of the environment for

formation.

Altogether, the SARS-CoV-2 genome displayed a quadruplex candidate scarcity when com-

pared in a macroscopic perspective to the virus realm. Its PQS and PiMS densities were in the

lower end of results from the Coronaviridae family, which itself was in the lower end of the (+)

ssRNA Group IV (in an approximate ratio of 1:2:4 for PQS and 1:2:8 for PiMS). When put

into the entire virus realm context, the SARS-CoV-2 PQS density was lower than 5813 other

viruses analysed (out of 6680), whilst PiMS density was lower than 6125. Furthermore, when

we compared the SARS-CoV-2 reference genome results with the results of five hundred ran-

domly shuffled genomic sequences of size and composition equal to that of SARS-CoV-2, the

number of candidates found in the SARS-CoV-2 was significantly lower than the mean

expected number of candidates for the genome’s size and composition. Whilst 362 ± 42 PQSs

were expected, only 323 were found in the SARS-CoV-2. Similarly, 97 ± 22 PQSs that score

over 20 and 3.0 ± 2.6 candidates that score over 40 were expected with this genomic size and

composition, whilst 71 and 0 were found in the virus, respectively. For PiMS the total number

of expected candidates for the SARS-CoV-2 size and genome composition was of 250 ± 33,

whilst candidates that score -20 or less and -40 or less was of 60 ± 16 and 1.5 ± 1.6, respectively.

However, SARS-CoV-2 presented only 189, 32 and 0 PiMSs for each of these respective

groups. Although the SARS-CoV-2 genomic organization limits the number of potential

genomes were grouped (suffix x). Inner segment, Lineage: Mean PQS count (A), Mean PQS count with |score|� 20 (B) and PQS divergence from the reference genome

(C). Centre segment, Mean lineage percentage sequence identity with the reference genome (dots) compared to the overall mean found for the 17312 sequences

analysed (black line). Outer segment, Clade: Mean PQS count (A), Mean PQS count with |score|� 20 (B) and PQS divergence from the reference genome (C). R-
packages used: ggtree [66] and circlize [67].

https://doi.org/10.1371/journal.pone.0250654.g003
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quadruplex structures almost to its minimum, other viruses with similar low quadruplex den-

sities were identified here to possess confirmed G4 and iM sequences within, supporting the

potential these structures have for targeting the SARS-CoV-2.

Candidate confirmation in vitro
We, therefore, selected the best candidates to evaluate in vitro. NMR spectra of CoVID-RNA.

G4-1 and CoVID-RNA.G4-2 exhibited imino signals in the 10.5–12.0 region, characteristic of

guanine imino protons involved in G-tetrads (Fig 4A and 4B). In both cases, CD spectra also

showed the characteristic positive band of parallel G-quadruplexes, which together with the

NMR results confirmed the formation of very stable structures. The highly conserved CoV-

ID-RNA.G4-1 located in the N-gene can possibly interact with the viral RNA packaging, tran-

scription and replication functions [70]. In fact, it has been shown in a recent study that a

known G4-ligand can interact with this sequence and reduce the expression of the N protein

[65]. Although CoVID-RNA.G4-2 also formed a stable parallel quadruplex, the signals in the

NMR spectra were broader than for CoVID-RNA.G4-1. This might be due to the formation of

higher order structures through self-association between G-quadruplex units. CoVID-RNA.

G4-2 is located in the nsp3 region of orf1ab very near its SUD domain. This area has been asso-

ciated with the increased pathogenicity of the virus compared to other Coronaviridae that do

not present it [71]. Additionally, it has been suggested that the SUD domain interacts with G-

quadruplexes of the host. These results, however, open the possibility of an intrinsic gene mod-

ulation that may be linked with an increased virulence. Such a hypothesis can be extended to

the SARS-CoV, as another stable PQS candidate was found in its genome in the same location

(S1 File, Section 3, Fig 3B1).

For PiMS, we used NMR to confirm that the DNA version of a candidate located in the

orf1ab gene of the SARS-CoV-2 and with a 99.54% conservation rate formed an iM at almost

neutral pH (Fig 4C and S1 File, Section 3, Fig 5). However, the SARS-CoV version of the iM

(which differs by one nucleotide in the first loop, from TT to TG) was unable to form even at

pH 5.1. As TT base pairs are common capping positions, the substitution of the T might pre-

vent the folding in SARS-CoV. Additionally, the presence of C in G4s lowers overall stability

of the quadruplex as C can base pair with G and ultimately hinder G-quartet formation [72].

Similarly, the pairing of C with G may also impede the formation of the C-based structures.

When we analysed the RNA version of the SARS-CoV-2 iM, it did not form an iM. Despite the

fact that the sequences found in SARS-CoV-2 have an intermediate probability of formation,

RNA iMs are known to be less stable than their DNA-versions [73]. Still, G4-iM Grinder meth-

odology identified several more candidates with the potential to form iMs in the virus.

PQS result comparison

The results of G4-iM Grinder were compared to other recent reports of quadruplex-related

analysis in the single strand of SARS-CoV-2. QGRS mapper [74] was the main tool for the

search because of its browser-based interface, its predefined capability to detect two-sized G-

runs and its design that returns all the PQSs found independently of their score [65, 75–78].

Other search engines such as G4Hunter and PQSfinder automatically filter their results by

their score threshold, which makes criterion optimization fundamental to successfully execute

the analysis. For example, one PQSs was found with a threshold of� 1.2 and none with higher

thresholds when using G4Hunter in the virus (in its scale of -4 to 4) [75]. On the contrary, 25

candidates have been reported using QGRS mapper with very small scores (mean QGRS Score

of 12 ± 5 in QGRS mapper’s scale of� 0 to 100; mean G4Hunter score of 0.6 ± 0.2 in

G4Hunter scale). G4catchall [79], PQSfinder and QGRS mapper methodologies were also

PLOS ONE Potential G-quadruplexes and i-Motifs in the SARS-CoV-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0250654 June 8, 2021 12 / 18

https://doi.org/10.1371/journal.pone.0250654


Fig 4. A. The candidates examined in vitro through biophysical assays. The in vitro column states if the sequence forms a quadruplex (Y for Yes, N for No). B,

NMR spectra of the two RNA-G4s analyzed at different temperatures (pH 7.0). C, NMR spectra of the DNA-iM analyzed at different temperatures (pH 5.3). D,

CD analysis of the two RNA-G4 analyzed.

https://doi.org/10.1371/journal.pone.0250654.g004
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combined to select 15 PQSs, 13 of which were part of the original QGRS mapper results [80].

Except one, all of these sequences reported to date in SARS-CoV-2 have been found with

G4-iM Grinder and are part of the analysis made here. These are (mainly) part of the 71

sequences with a medium probability of forming G4 (scored between 20 and 40 in G4-iM

Grinder’s scale). G4-iM Grinder however, found 47 extra PQSs that have not been previously

reported for the SARS-CoV-2 with the same probability of forming G4s. Additionally, over

5000 different variants of these PQSs were also identified with the same probability, in the

analysis of the 17312 different SARS-CoV-2 genomes.

Overall, these results complement the current knowledge we have regarding quadruplexes

and the SARS-CoV-2. They also broaden the way for targeting viruses in general, and the

SARS-CoV-2 in particular, through the use of these nucleic sequences as therapeutic targets in

future anti-viral treatments. G4-ligands based on small molecules that can stabilize G4s have

recently been proposed to be viable antivirus strategies for viruses such as Ebola, HIV and

HCV (reviewed in [50]). For the SARS-CoV-2, G4-ligands have already been reported to sig-

nificantly reduce protein translation levels in vivo and in vitro [65]. Another report highlighted

the existing evidence indicating that helicase inhibitors may also exert antiviral activity as

another therapeutic approach for SARS-CoV-2 [78].
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plex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as

New Antiparasitic Agents. Journal of Medicinal Chemistry. 2018; 61: 1231–1240. https://doi.org/10.

1021/acs.jmedchem.7b01672 PMID: 29323491

36. Dumetz F, Merrick C. Parasitic Protozoa: Unusual Roles for G-Quaduplerxes in Early-Diverging

Eukaryotes. Molecules. 2019; 24: 1339. https://doi.org/10.3390/molecules24071339 PMID: 30959737

37. Perrone R, Nadai M, Frasson I, Poe JA, Butovskaya E, Smithgall TE, et al. A Dynamic G-Quadruplex

Region Regulates the HIV-1 Long Terminal Repeat Promoter. J Med Chem. 2013; 56: 6521–6530.

https://doi.org/10.1021/jm400914r PMID: 23865750

38. Perrone R, Nadai M, Poe JA, Frasson I, Palumbo M, Palù G, et al. Formation of a Unique Cluster of G-
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