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Abstract: Mobile applications are progressively becoming more sophisticated and complex, increasing
their computational requirements. Traditional offloading approaches that use exclusively the Cloud
infrastructure are now deemed unsuitable due to the inherent associated delay. Edge Computing
can address most of the Cloud limitations at the cost of limited available resources. This bottleneck
necessitates an efficient allocation of offloaded tasks from the mobile devices to the Edge. In this paper,
we consider a task offloading setting with applications of different characteristics and requirements,
and propose an optimal resource allocation framework leveraging the amalgamation of the edge
resources. To balance the trade-off between retaining low total energy consumption, respecting
end-to-end delay requirements and load balancing at the Edge, we additionally introduce a Markov
Random Field based mechanism for the distribution of the excess workload. The proposed approach
investigates a realistic scenario, including different categories of mobile applications, edge devices
with different computational capabilities, and dynamic wireless conditions modeled by the dynamic
behavior and mobility of the users. The framework is complemented with a prediction mechanism
that facilitates the orchestration of the physical resources. The efficiency of the proposed scheme is
evaluated via modeling and simulation and is shown to outperform a well-known task offloading
solution, as well as a more recent one.

Keywords: task offloading; edge computing; energy optimization; resource allocation; Markov
Random Fields

1. Introduction

The proliferation of telecommunications in the last decade has offered a plethora of
new applications and features to the end-users. End-devices with cameras, navigation
systems, and embedded sensors support various augmented capabilities, while the intro-
duction of new communication and network paradigms, such as the Internet of Things
(IoT) and 5G networks, have resulted in an exponential increase of generated traffic volume
and order of end-devices in wireless networks.

Although the evolution of wireless communications is accompanied with computa-
tionally powerful devices, applications still need to fully or partially offload the involved
computational tasks. The reason is that mobile applications are becoming more complex
and more demanding in terms of Quality of Service (QoS) and Quality of Experience
(QoE) [1,2]. An efficient way to enable task-offloading and energy savings is to leverage
the abundant resources available in the Cloud. This mobile-to-Cloud interconnection can
facilitate the execution of computationally-intensive and data-driven processing tasks in a
relatively low-cost and effective manner [3]. However, the use of Cloud Computing (CC)
for task offloading of the end-devices can generate two major issues: high transmission
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latency and capacity-demand mismatch, i.e., resource overprovisioning, which leads to
resource and energy waste [4]. To mitigate this, the Edge Computing (EC) approach, which
pushes computing capabilities at the Edge of the network, is being rapidly adopted and
seems promising in terms of achieving the ambitious millisecond-scale latency required in
various 5G and IoT applications [5].

1.1. Motivation & Challenges

However, despite the numerous possibilities and advantages introduced by EC—in
contrast with the Cloud where large-scale computational and communication infrastruc-
tures are the norm—the resources at the Edge are limited to micro data-centers, consisting
of only few servers [6]. Thus, an efficient resource allocation technique is required for both
users and infrastructure providers. On the user side, task offloading aims to respect the
latency constraints and extend the battery lifetime. The success of task offloading depends
mainly on the user’s mobility and the quality of wireless connection [1]. On the provider
side, the primary goal is the minimization of the energy consumption of the data center,
which is mainly affected by the number of active servers and the amount of their allocated
resources [7,8]. Thus, task offloading and resource allocation are coupled and must be
jointly addressed.

To this end, a synergistic and distributed approach between the end-devices and the
edge infrastructure is necessary to accommodate the dynamic demand of the applications.
The main challenge of such an approach is to estimate the amount of the offloaded tasks
and make appropriate decisions on where the offloaded tasks should be executed. Taking
into consideration the wireless channel conditions, the complexity of this resource alloca-
tion problem increases exponentially. Dynamic physical channel conditions and dynamic
user density, due to users’ mobility in the infrastructure, require a proactive and dynamic
resource allocation technique to select the necessary computational and networking re-
sources at the Edge, in an adaptive manner. This creates the need to investigate appropriate
resource allocation strategies enhanced with user density prediction techniques, to further
ameliorate the delay and energy savings of both end-devices and edge infrastructure.

1.2. Contributions & Outline

In order to satisfy the aforementioned requirements, we propose a novel framework,
referred to as ENERDGE, which jointly tackles task offloading and resource allocation of
multiple edge data centers in a distributed and energy-efficient manner. The framework
has a gradual operation, introducing the following key contributions:

• We propose a performance modeling approach based on Switching Systems Theory,
to define virtual hardware profiles, i.e., flavors, for the edge infrastructure, providing
application QoS guarantees under various operating conditions. The specific QoS
metric investigated in the proposed approach is the application’s response time, but
other relevant metrics could have been used as well. This modeling allows for dynamic
selection and allocation of the appropriate amount of resources for each application
(i.e., switching between the different hardware profiles), based on the anticipated
workload demands. Leveraging the capabilities provided by this switching, we design
a two-stage distributed, energy aware, proactive resource allocation mechanism.

• During the first stage, we extend current literature works that jointly address task
offloading and resource allocation on a single edge site (i.e., [9]), to simultaneously
minimize the total energy consumption of each edge site and provide guaranteed
satisfaction of the QoS requirements of each deployed application. In order to accom-
modate the workload prediction demands at this stage, we utilise an existing user
mobility prediction mechanism, based on the concept of the n-Mobility Markov Chain
location prediction [10], to estimate the movement of the mobile devices between
different sites within the edge infrastructure and subsequently the density of the users
on each point of interest.



Sensors 2022, 22, 660 3 of 29

• During the second stage, we combine this approach with a novel Markov Random
Field (MRF) mechanism that incorporates in its objective function all optimization
criteria; this mechanism aims at redirecting tasks that cannot be executed locally under
the given energy and QoS requirements of the first step, balancing resource utilization
throughout the whole infrastructure. Thus, it achieves a better total energy manage-
ment optimization through an efficient state space search in a distributed fashion,
while taking into consideration any additional network delays incurred. This is the
first approach of such a combination, and it could potentially pave the way for other
similar MRF designs as optimizers in relevant problems. The integration of the above
modeling and resource allocation approaches composes a task offloading and energy-
aware resource allocation mechanism for accommodating dynamic spatiotemporal
workload demands.

• Finally, we provide a detailed evaluation of our approach in terms of energy consump-
tion minimization and QoS satisfaction for both stages of the mechanism. Then, we
compare it with a well-established study [11] and a more recent one [12]. Based on a
realistic application simulation, our solution outperforms both approaches in terms of
adaptation efficiency. In other words, our approach yields less energy consumption for
achieving the same QoS guarantees, or equivalently, it achieves higher QoS guarantees
for the same energy consumption.

The remainder of the paper is organized as follows: Section 2 provides a brief overview
of the related literature. Section 3 provides the system model along with a high-level de-
scription of the introduced collaborative framework. In Section 4, the problem formulation
and proposed solution for the problem at hand are presented in detail. In Section 5, a thor-
ough evaluation of the proposed framework through modeling and simulation is presented.
Finally, Section 6 concludes the paper and describes potential future work.

2. Related Work

The problem of task offloading falls into the knapsack resource allocation category
which is NP-hard in general [13]. Most of the proposed approaches follow a partial or
full offloading technique, according to whether the tasks are separated or not, with the
goal to minimize the overall latency and/or energy [14]. Furthermore, they propose
static resource allocation schemes on the edge infrastructure. In this paper, we follow
the design principles of [15] and propose the ENERDGE framework, a mobility-aware
and full offloading approach in order to minimize the energy consumption of the edge
infrastructure under specific QoS guarantees for the mobile applications hosted. In this
context, there are three interesting and related directions in the literature: (i) mobility
prediction for task offloading, (ii) single-site task offloading and resource allocation, and
(iii) multi-site task offloading and resource allocation.

2.1. Mobility Prediction for Task Offloading

The success of offloading decisions depends heavily on the dynamic nature of task
behavior and user mobility. In particular, the users may move and resource prices for
offloaded task execution may vary over time. This led the authors in [16] to propose an
online algorithm with a logarithmic objective to minimize the resource usage of the edge
infrastructure, while taking into account the impact of mobility in the latency. They also
formulate a VM migration cost for the tasks that need to follow the users’ movement. A
migration policy, however, for containers, is also formulated in [17], where the authors
introduce an architecture in which Fog Computing services constantly move in order to
be always close enough to the served IoT mobile devices. Utilizing neural networks and
Markov chains, Labriji et al. [18] presented a mobility prediction algorithm to proactively
and online migrate computation services (VMs) for vehicular 5G networks.

Since the mobility of the users can significantly impact the latency and increase the
migration cost, the authors in [19] introduced a prediction mechanism to ameliorate the
offloading performance. A similar approach is followed in [20], where the most popular
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services are proactively installed in the Edge servers located in the positions that the users
will most probably visit, thus reducing the network delay during task offloading. Another
approach, denoted as MAGA and introduced in [21], is based on frequent moving patterns
of the users and a genetic algorithm to partially offload tasks to edge servers. However, in
the preceding works, the authors assume static resource allocation at the edge, in terms of
amount of resources utilized.

2.2. Single-Site Offloading & Resource Allocation

In case of task offloading, a single edge site is usually available in close proximity to
the users. The main focus in this type of resource allocation problem lies in the latency
and energy minimization. For example, the authors in [22] investigate the task offloading
of augmented reality applications emphasizing on the computation intensive tasks (i.e.,
object recognition and position tracking). A successive convex approximation approach is
proposed to minimize energy consumption under latency constraints, while emphasizing
on both the available computation and communication resources at the Edge. Another
energy-efficient based approach is presented in [13], following a mixed discrete-continuous
optimization approach along with a low-complexity heuristic based on Johnson’s algorithm.
Elgendy et al. [23] try to minimize the total consumed energy by solving an optimization
problem to compute near-optimal offloading decisions for each mobile IoT user, however,
for a single edge server and without considering the mobility of the users.

Regarding latency, authors in [4] study the admission control and resource allocation
problem of computationally intensive IoT applications at the Edge. A Lyapunov dynamic
stochastic optimization approach is used with the goal to reduce the end-to-end delay,
while improving the overall throughput. Similarly, Ren et al. [24] investigated the mobile-
edge computing offloading problem with the goal to minimize the latency in a multi-user
scenario with joint communication and computational resources. The solution is based on
the Lagrange multiplier method. However, such centralized task offloading approaches
usually fail to apply to realistic scenarios of larger edge infrastructures with multiple,
geographically distributed sites.

2.3. Multi-Site Offloading & Resource Allocation

In case of multiple edge sites in close proximity to the devices, task offloading includes
both the resource allocation of the tasks and the selection of the right administrative domain
(i.e., edge infrastructure). In this context, an edge orchestrator can be used to assign the
tasks to the appropriate domain, with the goal to maximize the number of successfully
assigned task requests [25]. Sonmez et al. [26] proposed a fuzzy workload orchestrator for
multiple Edge and Cloud infrastructures. For each offloaded request, a set of fuzzy rules
determined the destination computational unit within a hierarchical multi-site architecture.
However, the authors empirically defined the fuzzy rule sets, while assuming static resource
provisioning on the edge servers, which might not be applicable to real conditions where
services typically bear different workload characteristics.

Another goal can be the balancing of the load between edge servers, while minimizing
the application response time. In [11], over-utilized edge servers redirect part of their
incoming workflow to resource-rich or under-utilized servers, using a minimum cost max
flow algorithm towards achieving total balance in terms of average application response
time in the whole edge infrastructure. An extension to this work is presented in [27],
where a genetic algorithm is exploited for a distributed load balancing of traffic, yielding a
solution that converges to the minimization of maximum task response time through gene
mutations. A slightly different approach is followed in [12], where the authors developed a
load balancing technique for distributed edge servers, using a game theoretic approach,
and proposed a state-based distributed learning algorithm to obtain the optimal action
at each reachable state. The existence of recurrent state Nash equilibrium was proven by
using the potential game theory.
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The ENERDGE framework simultaneously addresses energy consumption minimiza-
tion and distributed load balancing, while respecting the applications’ QoS requirements.
Initially, we simulate a wireless protocol to extract the instantaneous throughput under
dynamic wireless network conditions, and we predict the density of the users around a
point of interest, with the use of an n-Mobility Markov Chain location prediction method.
Based on this prediction, we leverage pre-computed profiles of virtual machines (VMs) to
enable proactive and dynamic resource allocation at each edge site, ensuring the QoS con-
straints of any deployed application. Containers can also be considered as the virtualization
units without any change in the modeling. Finally, we introduce a novel load balancing
technique based on Markov Random Fields (MRF) and load redirection, to appropriately
redistribute the excess workload among the available edge sites, towards the minimization
of the total energy consumption. To the best of our knowledge, this is the first research
effort that takes into consideration holistically these task offloading objectives in distributed
EC infrastructures.

3. System Model
3.1. Edge Infrastructure & Applications

To facilitate the extensive modeling employed in this work, Table 1 summarizes the
key notation used throughout the article. We model our physical infrastructure as a group
of wireless access points, each directly connected with a cluster of homogeneous servers,
as illustrated in Figure 1. These physical resources altogether form an edge data center,
which hereafter is referred to as site sk, with S = {sk}n

k=1 being the set of sites, for n sites in
total. This set forms a graph, where each site corresponds to a node and the edges to the
interconnections between them through routers, used only for forwarding purposes (i.e.,
backhaul network). Furthermore, we consider that the servers of the edge infrastructure
located in different sites are heterogeneous. This implies differentiation on processing
capabilities and service completion time among sites.

Figure 1. Example of Envisioned Edge Infrastructure.

For the access layer, we assume the existence of various and heterogeneous end-devices
(e.g., IoT, mobile devices) each associated with one of M specific mobile applications (i.e.,
augmented reality and wearables). Each application m ∈ {1, . . . , M} comes with specific
requirements in terms of QoS (e.g., average response time) that will guide the allocation of
the resources.
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Table 1. Summary of the Key Notations.

Symbol Interpretation

sk Site k
S Set of sites, n = |S| sites in total
M Number of applications
θm Acceptable response time for App. m
φm VM flavor of application m
cm Cores requested by VM flavor φm
µm Throughput guaranteed by VM flavor φm

Sercpu Server’s CPU capacity
Pser Server’s power consumption
Pmax Server’s max. power consumption

P(φm) Power consumption of VM flavor φm
zi A feasible VM formation
Zk Set of feasible VM formations at site sk
N Size of zi VM formation

Cser
k Servers’ CPU cores threshold at site sk

PA Edge infrastructure’s power consumption
Pk Power consumption of site sk
fi Number of servers with zi VM formation

Ek Number of available servers in site sk
pi Power consumption of VM formation zi
rm

i Max. workload served by VM formation zi
L̃k = [L̃m

k ] Predicted workload for site sk
Nsk Neighborhood of site sk

wk = [w(k)
m ] Excess workload for App. m at site sk

bk = [b(k)i ] Number of servers of type i at site sk
P(bk) Power consumption of bk

Xk = {Wk, Bk}n
k=1 Random field

V(ω) MRF potential function
C1, C2, C3, ∆1, ∆2 Properly selected MRF constants

L, K, x0 Parameters of reflected sigmoid function
t Visiting epoch of MRF
w MRF sweep index

T(w) MRF temperature at sweep w

3.2. Task Offloading

As depicted in Figure 1, each end-device running an application m offloads its com-
putational intensive processes to the Edge to reap the benefits of the more powerful com-
putational resources. In this work, we assume an IEEE 802.11ac access network to offload
the tasks from the devices. Following the work of [28], we model the access network using
an indoor TGnAC Channel B, suitable for large open space and office environments [29].
Along the same lines, in order to capture the dynamic nature of the wireless channel, the
transmission rate of the devices is adjusted according to an enhanced version of the Minstrel
algorithm [30]. In this manner, the devices are able to change the modulation and coding
scheme (MCS) used, and thus the transmission rate, conforming to the varying channel
conditions and interference from nearby devices (Signal to Interference & Noise Ratio—
SINR). This procedure allows us to create a realistic dataset containing tuples of <number of
users, offloading request rate of each user>, which is publicly available (https://github.com/
maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx, accessed on
30 November 2021), and utilize it to translate the predicted number of users to the antici-
pated request rate, for a specific edge site. Specifically, we assume that each user constantly
offloads at his/her maximum achievable data rate, and, considering a fixed offloaded task
size, we are able to produce the anticipated workload volume for the estimated number
of users.

We assume that each end-device needs to fully offload its requests on edge servers
following a VM/container-based provisioning method. Depending on the user’s location,

https://github.com/maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx
https://github.com/maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx
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the offloaded tasks are initially assigned to the site where the wireless transmission occurs.
Each VM/container of the site’s servers serves the offloaded requests of the application m
that it was assigned to. We note here that, for the sake of simplicity, we focus on scenarios
and settings where the user’s movement is typically limited close to the site of interest
during the whole offloading procedure. Therefore, the offloading procedure for a single task
is assumed to be completed within the same site that it was initiated in and, consequently,
no handover processes and costs are considered. The most important QoS requirement
of the offloaded tasks of an application m is the acceptable response time θm value, which
is application-specific. Under this setting, the end-device accelerates the execution of
computationally intensive tasks and extends its battery lifetime.

3.3. VM Flavor Design

On each edge site, it is essential to facilitate the proactive dynamic resource allocation
due to the varying number of the offloading requests received. We denote the VM (or
container) flavor for every deployed application, which describes the relation among the
application’s response time, the allocated CPU cores, and the number of the offloaded
requests. The computation of these VM flavors is based on switching systems from the
System Theory. The advantage of the VM flavor design is two-fold; firstly, this modeling
approach allows for accurately capturing the dynamic behavior of the application-specific
VMs, under various operating conditions. Secondly, calculating a multitude of VM flavors
allows us to quickly adjust the edge infrastructure to different pairs of workloads and
applications, while providing a level of guarantee for the QoS specifications.

We define the VM (or container) flavor φm ∈ Φ of an application m as a tuple that
includes the QoS specifications of the hosted application, the requested resources for the
VM that will provide the QoS guarantees and the maximum throughput of offloaded
requests, for which the VM will be able to achieve these guarantees, φm : < θm, cm, µm >.
Specifically, parameter θm denotes the average response time that the VM of flavor φm
guarantees to achieve with cm CPU cores allocated to it and for a maximum throughput
of µm offloaded requests per time unit. We assume that the response time consists of
two terms: (a) transmission time and (b) service completion time. The transmission time
includes the time to transmit/upload the application’s request through a wireless link. In
particular, since we have modeled our wireless link through the IEEE 802.11ac protocol, we
are able to calculate this delay by leveraging the information of throughput achieved and
the application’s task size. Regarding, the time to download the response from the server,
since the size of the output is generally much smaller than the input, this delay can be
usually omitted [31]. Service completion time includes the VM/container startup time, as
well as the queuing and processing time of the application tasks at the assigned servers. A
flavor could also define the memory requested by the VM. However, it is omitted from the
problem formulation due to the following reasons: Firstly, memory power consumption is
negligible compared to CPU power consumption [32]. Secondly, following the paradigm
set by well-known edge computing frameworks like MAUI [33] and ThinkAir [34], we
concentrate on the offloading of CPU-intensive tasks.

In principle, the performance of an application hosted on a VM is nonlinear and cannot
be described analytically. However, adopting linear modeling allows for an easier identifi-
cation of the system, without significant loss of accuracy, and enables the implementation
of various optimization and control methodologies. In order to extract the VM flavors for
each application deployed on a site, we modify the modeling approach of [9]; for each
application and for each flavor φm of this applications’ VMs, we identify a scalar, discrete
Linear Time-Invariant (LTI) system. In particular, we mainly differentiate the VM flavors
based on the number of CPU cores they require, which also constitutes the switching
criterion of our mechanism. Thus, during this identification phase, for each application and
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for each different CPU core allocation, the operation of the corresponding VM is described
by a discrete linear system of the following form:

θ(τ + 1) = aθ(τ) + bµ(τ), (1)

where θ(τ) represents the average response time for the deployed application, within a
time period τ and µ(τ) the number of offloaded requests within the specific time period.
The coefficients a ≥ 0 and b ≥ 0 are known scalars which can be estimated by the Recursive
Least Square algorithm [35].

Physically, a VM with cm allocated cores can only serve up to µm offloaded requests of
the deployed application while guaranteeing an average response time of θm for the specific
time period. This constitutes the physical interpretation of a flavor φm and generally, for
each such switching system, a set of feasible VM flavors of this kind can be computed,
according to certain performance criteria and input constraints. In our case, these feasible
VM flavors are computed by solving the following linear programming problem with the
goal to maximize the number of the offloaded requests:

max
θm ,cm

µm (2a)

subject to θm = aθm + bµm (2b)

θmin ≤ θm ≤ θmax (2c)

µmin ≤ µm ≤ µmax (2d)

The first constraint dictates that each flavor must also be an equilibrium point of the
discrete linear system, which will guarantee its stability and confinement in a specific oper-
ating area around it. The second constraint implies that the average response time must
lay between a minimum (θmin) and a maximum value (θmax), set by the application’s QoS
requirements, while the last constraint refers to the offloaded requests varying within
the applications anticipated throughput range. This problem is solved only once, in an
offline manner, using the GLPK solver ([36]), thus its computational complexity is a fixed
factor paid only once, at the very beginning of the operation of our framework. We do
not consider it in the steady state of the framework’s operation, since it can be considered
amortized in the long-run.

By having a set of VM flavors corresponding to different core allocations and maximum
throughput, we provide a better level of accuracy than using a single LTI model for
the whole operation. In such a way, the extracted VM flavors correspond to realistic
operating conditions and constitute the fundamental elements for the ENERDGE resource
allocation mechanism.

3.4. Power Modeling

When fully offloading tasks, the total computational and energy burden is shifted
away from the devices. However, reviewing this shift from a complete network-wide view,
one can easily understand that the problem is simply pushed at the Edge. Thus, in this
work, we also consider the minimization of power consumption at the edge infrastructure.
This includes switching physical devices on and off and optimizing the computational
resource usage during the offloading.

Usually, for the server power dissipation, an almost linear relationship between the
power consumption of a server and its CPU utilization exists. The following model can
accurately predict the servers’ power consumption Pser with an error below 5% [32]:

Pser = γ · Pmax + (1− γ) · Pmax · u, (3)

where Pmax is the maximum power consumed when the server is fully utilized, γ is the
percentage of power consumed by an idle server (usually around 60% [37]), and u is the
current CPU utilization.
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In order to extract the power consumed by a VM of flavor φm (VM for application m)
provisioned in a server, the above equation is transformed as follows:

P(φm) =

γ · Pmax + (1− γ) · Pmax · cm
Sercpu

, if u = 0,

(1− γ) · Pmax · cm
Sercpu

, otherwise,
(4)

where Sercpu is the total amount of the available computational resources in a server, i.e.,
CPU cores. Hence, for the first VM provisioned at a server, the power consumption will
include activating the server and the power consumption added by the particular VM.
For the rest of the VMs, only their power consumption is taken into consideration. It is
worth mentioning that we assume an isolcpus technique [38], where we isolate and pin
the requested CPU resources to the VM. This is a common technique for performance
optimization when virtualizing x86 servers. Thus, each VM will have access only to its
share of CPU resources consuming as well the corresponding power.

3.5. User Density and Workload Prediction

As discussed in the previous subsections, each site hosts a group of IoT/mobile
applications and serves the offloaded requests that are generated by the devices within the
range of its wireless access point. However, in both mobile and IoT applications, dynamic
user density in the coverage area is a key feature and must be considered by the offloading
decision and resource allocation mechanism, as it creates dynamic network conditions.
Towards the optimal resource allocation policy, an accurate prediction of this is necessary.

In order to address this issue, we implement a variation of the n-Mobility Markov
Chains (n-MMC) location prediction method described in [10]. In a nutshell, this method
incorporates the two previous visited sites of a mobile device and a Mobility Markov Chain
in order to probabilistically predict the device’s next location. As a prerequisite, this method
requires a transition matrix available, containing all the feasible transitions of a device
between the sites, associated with their probability of occurring.

In order to create this transition matrix, we used the Melbourne Museum dataset [39],
which comprises 158 complete real visitor pathways, in the form of time-annotated se-
quences of visited exhibit sites. After processing the data, each path was assigned a
probability based on its frequency of occurrence. This resulted in a transition matrix whose
rows represent the three last visited sites and its columns represent the next site to be visited.
In this way, predicting the next location of a visitor is simple. We trace their three most
recently visited sites, search the row in the transition matrix that corresponds to this trace,
and find the column with the maximum probability of transition for this row. The site of
this column is the predicted next location. Finally, having available the collective statistics
regarding the predicted locations of the users for the upcoming time period, we acquire the
predicted offloaded workload, L̃k = [L̃m

k ], for the respective site sk and application m, as
described in Section 3.2.

4. Resource Allocation & Workload Redistribution

Leveraging the Switching System modeling approach introduced in the previous
section, in this section, we propose a 2-stage distributed, energy-aware, proactive resource
allocation mechanism. In the first stage, an initial resource allocation optimization takes
place locally at each site of the edge infrastructure, which balances between energy con-
sumption minimization and QoS satisfaction. In the second stage, a novel distributed
technique is applied to redirect the excess workload to under-utilized sites, thus balancing
the resource utilization and achieving a better energy management.

4.1. Stage 1—Resource Allocation Optimization

In order to accommodate a proactive and dynamic resource allocation, we follow the
work in [9] where time is considered slotted. In this stage, at the beginning of each system
slot, a decision is made on the VM topology to be implemented on each site, which will
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enable it to handle the projected offloaded workload. This topology defines the number of
edge servers to be activated in each site along with the VM formation to be placed in each
edge server, i.e., the number and flavor of the VMs.

Feasible VM formations are the ones where the sum of the CPU cores requested from
the co-hosted VMs’ flavors does not exceed a predefined threshold. For instance, assume
two applications App1 and App2. A VM running App1 and instantiated in a flavor that
requests two CPU cores, along with a VM running App2 and instantiated in a flavor that
requests one allocated CPU core, is a feasible VM formation for a single edge server, as the
cumulative number of allocated CPU cores does not exceed the threshold of three cores
(75% of the server’s total available CPU capacity, Sercpu = 4).

The set of all feasible VM formations for edge servers in site sk is defined as

Zk := {zi =
(

φ
(j)
m , . . . , φ

(N)
m

)
, m ∈ [1, M], j ∈ [1, N] :

N

∑
j=1

c(j)
m ≤ Cser

k }, (5)

where i ∈ [1, |Zk|] is the index of the VM formation, φ
(j)
m is the VM flavor, c(j)

m the number
of cores requested by the flavor of VM j of application m, M is the number of applications
available at site sk, N is the total number of VMs contained in formation zi, and Cser

k is the
CPU cores threshold set for each edge server of sk. Due to the fact that the edge servers
within a single site are considered homogeneous in terms of their resources, Cser

k has the
same value for all of them that are tied to a site sk.

We define the system cost as the power consumption of the edge infrastructure. Since
in this stage of the resource allocation mechanism no exchange of workload takes place
between the sites, minimizing locally the power consumption, Pk, of each individual site, sk,
results in minimizing the total power consumption, PA = ∑n

k=1 Pk, where n stands for the
total number of sites in the infrastructure. This can be achieved by optimizing the amount
of edge resources that will be activated in each slot to serve the total predicted workload.
Consequently, the corresponding optimization problem can be defined as:

min
fi ,pi

{Pk} (6a)

subject to fi ≥ 0, i = 1, . . . , |Zk| (6b)
|Zk |

∑
i=1

fi ≤ Ek (6c)

Pk =
|Zk |

∑
i=1

fi pi (6d)

|Zk |

∑
i=1

firm
i ≥ L̃m

k , ∀m ∈ {1, . . . , M}, (6e)

where the positive integer variables fi denote how many servers need to be activated with
the zi VM formation of set Zk, assuming the total number of formations of edge servers in
site sk is |Zk| and the total number of the available edge servers is Ek. Then, the sum of
the fi variables cannot be greater than Ek (constraint (6c)). Constraint (6d) requires that a
site’s power consumption is equal to the sum of the power consumption of its activated
edge servers.

As discussed in Section 3.4, the power consumption of each VM is proportional to its
flavor size, i.e., the number of allocated CPU cores. As a result, power consumption pi of
one edge server activated with the zi VM formation is calculated as follows:

pi := p(zi) =
N

∑
j=1

P(φ(j)
m ), m ∈ {1, . . . , M}. (7)
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Finally, the last M constraints of (6e) denote that the total predicted workload for each
application at sk, L̃m

k , for the next system slot, is satisfied by the activated edge servers in
each site. Again, as discussed in Section 3.3, the workload guaranteed to be served by one
edge server with the zi VM formation is:

rm
i := rm(zi) =

N

∑
j=1

µ
(j)
m , m ∈ {1, . . . , M}. (8)

Problem (6a) is solved in a distributed fashion, locally in each site and proactively at
the beginning of each system slot, after collecting all the required information (i.e., available
resources and predicted workload). An overview of this process is depicted in Figure 2.
As evidenced by the above, the problem solved here is a combinatorial one, expressed as
a mixed integer linear program (MILP). For treating this MILP, the GLPK solver is used
once again. The problem under consideration is generally NP-hard, and the lower bound
of the computational complexity of the branch-and-cut algorithm used to find a solution
is exponential [40]. However, it should be noted that, following common considerations
in the literature [9], we assume that the total number of available edge servers in a site is
relatively small, thus the overall computation complexity of the optimization process is
kept minimum, allowing the problem to be solved online.

Figure 2. Resource allocation optimization overview (Stage 1).

4.2. Stage 2—Inter-Site Redistribution of Excess Workload

In edge infrastructures, the wireless network traffic, and therefore the offloading
requests, exhibit considerable variation. On the one hand, there may be cases where the
total predicted workload for a site exceeds its total available resources, in which case
the problem in (6a) has no feasible solution. In this situation, all the site’s edge servers
are activated with a fixed zmax formation, where zmax stands for the VM formation that
accommodates the maximum possible number of offloaded requests for each application.
Even so, a portion of the predicted workload will remain unserved (overloaded site). On
the other hand, it is also common that the total predicted workload for a site is lower
than the predefined threshold that dictates whether the energy cost of activating the site’s
edge servers is worth serving it. Again, a portion of the predicted workload will remain
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unserved (underloaded site). We denote the aggregation of the remaining predicted workload
of each of these sites as the excess workload wk of site sk, and we handle this through the
novel approach that follows.

In this second stage, we aim towards better balancing the previous resource manage-
ment decisions, so that excess workload requests of a site are redistributed in neighboring
(or even farther apart) sites. The excess workload is handled in such a way that it does not
allow sites to become operational for a number of requests lower than a threshold of their to-
tal capacity, which will ensure eventually better energy efficiency, as explained in previous
subsections. To achieve this, we employ the theory of Markov Random Fields (MRFs) [41],
mainly due to their agile design and straightforward implementation, which allows simple
distributed decision-making, while achieving results very close to the optimal ones (and
frequently the optimal ones) with very low convergence times. The unfamiliar reader can
refer to the Appendix A for a quick introduction to the MRF concept and basic notation.

In this work, we consider the sites sk ∈ S. A neighborhood system N = {Nsk}sk∈S is
defined on S, while Nsk denotes the neighborhood of site sk and includes the nodes within

single hop distance. Assume wk = [w(k)
m ] is the vector indicating the amount of excess

workload for application m at each site sk and bk = [b(k)i ] the vector indicating the number
of selected servers of type i, to be additionally activated at site sk. Considering ek, the
number of available servers per site sk, which is obtained from the solution of the initial
resource optimization problem (6a), bk is such that

bk =
[
b(k)i , . . . , b(k)|Zk |

]
,
|Zk |

∑
i=1

bi ≤ ek. (9)

Vectors wk, bk are stochastic, since their values depend on the instantaneous system
state and user activity. We define the collection of random variables Xk = {Wk, Bk}n

k=1,
as a collection of random vectors Wk = wk, Bk = bk, ∀ k ∈ [1, n], defining the state of
each site and cumulatively the state of the system with respect to excess workload and
available servers at each site sk. The random field X = {Xk}n

k=1 takes values {Xk = xk}n
k=1

in Λ =W ×B, which is the product space of phase spaces wk ∈ W , bk ∈ B, respectively.
The configuration ω = {xk : xk ∈ Λ, ∀sk ∈ S} corresponds to one of all possible states of
the system state and Λ denotes the configuration space.

Due to the distributed topology of the sites, the above random field X can be consid-
ered an MRF, and based on the Hammersley–Clifford theorem, we consider the potential
function V(ω), which can be decomposed in clique potentials:

V(ω) = ∑
C∈C

VC(ω) = ∑
sk∈S

V(1)
{sk}

(ω) + ∑
sg∈Nsk

V(2)
{sk ,sg}(ω), (10)

where C is the set of all cliques in the formed topology of sites (a clique denotes a subset
of nodes, all of which are connected to each other). Depending on the characteristics of
each topology, cliques of different sizes are formed and the potential function is computed
over such cliques. The potential function is the objective function that we seek to minimize,
and it will be used as a quantitative measure of the success of each system state to fulfil
the optimization criteria, namely the reduction of the total power consumption of the
Edge infrastructure. The lower the potential function, the more desired the corresponding
system state will be. Due to the topology formed by the sites in this specific application (i.e.,
the access points), only one-clique (cliques consisting of one node— corresponding to the
wireless access devices themselves) and two-cliques (cliques consisting of pairs only—pairs
of wireless access devices) exist, so that the potential function is eventually decomposed in
singleton V(1)

{sk}
(ω) and doubleton (pairwise) V(2)

{sk ,sg}(ω) terms, respectively. Each singleton
term is defined as follows:
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V(1)
{sk}

(xk) =



C1 · P(bk)

[
1 + ∑

m
sig(w(k)

m )

]
+ C2 · d · ak, if ∃ bk

∑
|Zk |
i=1 b(k)i rm

i > w(k)
m ,

∀m,

∆1 > 0, otherwise,

(11)

where C1 and C2 are empirically selected constants and ∆1 > 0 is a constant with very
high value. The power consumption of formation bk is P(bk) = ∑

|Zk |
i=1 b(k)i pi. Function

sig(·) = L − L
1+exp−K(x−x0)

is the reflection of the sigmoid function with respect to the

vertical axis through the inflection point x = x0. The parameters of the reflected sigmoid
function are L, the maximum value, K, the gain and x0, the inflection point. By giving the
inflection point a value equal to 0.5 rm

i , the inclusion of this reflected sigmoid function tends
to grow singleton terms that describe states where edge servers are under-utilised (i.e.,
when they serve less than 50% of their nominal workload capacity), close to the maximum
value (undesired system state). The intuition behind this design is that the singleton terms
express the goal of each site individually for lower energy consumption. Each site strives
to reduce its consumption as much as possible, which in turn will drive its singleton term
to lower values. At the same time, the term d · ak tends to drive the system towards a
solution which keeps the total additional delay, induced by the workload redirections, as
low as possible; d stands for the single hop network delay in ms while ak corresponds to the
ingress workload (i.e., how much additional workload the edge site sk will accommodate,
compared to the original).

The doubleton terms are defined as follows:

V(2)
{sk ,sg}(xk, xg) =



C3wk ·wg + C4P(bg)
[
1 + ∑m sig(w(g)

m )
]
, if ∃ bg

∑
|Zk |
i=1 b(g)

i rm
i > w(g)

m ,
∀m

∆2 > 0, otherwise,

(12)

where C3 and C4 are empirically selected constants and ∆2 > 0 is again a constant with
very high value. The intuition behind the design of the doubleton terms is that, as far as the
interactions of the neighboring sites are concerned, ideally we want to drive the system to
states where neighboring sites exchange the remaining workload so that it is concentrated
in specific sites, thus avoiding having to maintain multiple active sites for a small value
of excess workload. It is also important to point out that the MRF activates servers with
the appropriate VM flavors as described in Section 3.3. This way, the excess workload is
served while respecting the QoS requirement of the maximum acceptable response time.
An overview of the MRF-based load redistribution process is depicted in Figure 3.
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Figure 3. MRF inter-site load redistribution overview (Stage 2).

Each site seeks to minimize its contribution to the cumulative potential function by
minimizing its local neighborhood potential function comprised of the sum of its singleton
and doubleton (pairwise) potentials with its one-hop neighbors. The state of each site
depends only on the states and the information of its neighbors. Gibbs sampling [42]
can be applied by each site individually, reaching global optima through local sampling.
Cumulatively, this distributed sampling converges to global optimizers of the system. This
approach has a very low computational overhead, O(n), with n being the number of sites,
while reaching asymptotically the global optimal resource allocation solutions, frequently
yielding the optimal ones. Furthermore, the signaling overhead is rather small, since
each site sk is only required to exchange system state information locally with its one-hop
neighbors only.

The sequential Gibbs sampling method proceeds as follows. Consider a logarithmic
annealing schedule of the form T(w) = c0

ln(1+w)
, where c0 is a constant (equal to 2 in our

experiments) and T(w) is called the “temperature” of the w-th annealing step. In addition,
consider a sequential visiting scheme of all sites, where at each epoch t (mini-slot in a
sweep) within a step w, only one site updates its value (Figure 4 depicts the relations of the
system slots, sweeps and update epochs). Starting with an arbitrary initial configuration
X(w = 0), at epoch t of w, let ω = X(t) and denote by ωxk the configuration that has value
xk at site sk and agrees with ω everywhere else. The update (decision to transition to a new
state) at site sk takes place according to the distribution:

Figure 4. Relation of system slots, sweeps and update epochs.
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P(Xk(t) = xk|Xg(t) = xg, g 6= k) =

exp (− 1
T(w) ∑

C:sk∈C
VC(ω

xi ))

∑
xk∈Λ

exp (− 1
T(w) ∑

C:sk∈C
VC(ωxs))

, (13)

where C is the set of the cliques formed by the sites (here only one-clique and two-cliques
are formed in the graph). With probability determined by (13), a site sk will choose xk as
its state in sweep w + 1. The site states are updated sequentially within a sweep w. The
annealing schedule represents a decreasing rate of system temperature T(w), where w
stands for the index of the w-th sweep (i.e., the system temperature is updated at the end
of each sweep). The w-th annealing step is equivalent to the w-th sweep, and consists of
n visiting epochs (denoted by t in the above), one for each site. Since sampling begins
at high temperatures, where the local characteristics are practically uniform, it permits
transitions to higher-potential function configurations, thus avoiding getting trapped in
local minima. Thus, in each sweep, the configuration (system state determined by the
state of each site) changes. The resulting system states form an inhomogeneous Markov
Chain that converges to the uniform distribution on the set of global potential function
minimizers. This means that the Markov Chain essentially samples uniformly the whole
search space of the problem and thus convergence means that the global optimum has been
found. Of course, convergence to the global optimum is guaranteed in infinite time, i.e.,
the Markov Chain converges in infinite time in the global optimum. In our case, where the
number of sweeps is finite, the obtained optimum is in principle suboptimal, but expected
to be very close to the global optimum. As shown later, the system indeed exhibits good
convergence behavior even for employing a finite number of sweeps.

Figure 5 showcases an example of the effect of the MRF-based excess workload
redistribution, for two applications in an Edge infrastructure of nine sites, by comparing
the starting and final system state (after a finite number of sweeps) where the MRF has
converged. As the starting formation for each site, the set of edge servers with the minimum
number of allocated resources is selected in order to serve the excess workload locally. It
can be observed that, in the final state, the MRF yields a rather desired solution where it
has redistributed all the excess requests, wk, to a single site, thus minimizing the associated
energy consumption of the topology, while serving properly the remaining requests, within
the capacity bounds imposed in each site. Specifically, Table 2 shows the selected VM
formation for the particular site, with three activated servers.

Table 2. VM formations selected by the MRF mechanism.

Server (bk) App1 VMs App2 VMs

1 1 ×medium 1 × small
2 1 ×medium 1 × small
3 1 ×medium -

Site Workload Capacity
(∑
|Zk |
i=1 b(k)i rm

i )
81 82

We observe that this site formation fits to accommodate the workload. The total power
consumption, P(bk), is 5200 W, which is around half of the 10,000 W power consumption
of the initial site formations selected, had the excess workload been executed locally. The
number of available servers per site ek, is also depicted. In addition, local execution would
lead to some requests being rejected, as there is one site that has no available servers to
accommodate its excess workload. Consequently, the MRF based mechanism emerges as
rather effective in increasing the energy efficiency of the whole approach.
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(a)

(b)

Figure 5. Workload redistribution example: starting and final states. (a) starting state; (b) final state.

4.3. ENERDGE Core Algorithm

In this subsection, the core algorithm of a full ENERDGE deployment in an edge
infrastructure, as well as its importance, is summarized. At first, the required datasets are
produced and the VM flavor design procedure is performed offline. Then, as shown in
Algorithm 1, the initial optimization and the distributed resource allocation for each site of
the edge infrastructure take place, as explained in the previous sections.

During this online phase, in Stage 1, the density of users and devices is predicted using
the n-MMC method. The incoming workload at each site of the infrastructure is estimated
for the current system slot. The resource allocation optimization produces an initial solution
subject to QoS and energy constraints for a given predicted workload at each site. Then, in
Stage 2, for each site, the excess predicted workload or workload that cannot be served,
along with the available resources, are computed. The excess workload is redistributed
between the extra servers activated in under-loaded sites, according to the MRF solution,
achieving the minimization of the energy consumption for the edge infrastructure.
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Algorithm 1: ENERDGE core algorithm.
Data: Trajectory Dataset
Result: Optimal VM placement in Edge Infrastructure

begin
// Offline
1: create the Task Offloading Dataset, Section 3.2
2: while τ ≤ identi f icationPhaseDuration do

for m ∈ M do
for c ∈ Cser do

// Identify VM flavors
φm ←− solve Equation (2)

end
end

end
3: create the Transition Matrix, Section 3.5

// Online
4: track last position of users, Section 3.5
5: for sk ∈ S do // Stage 1 - Optimization
Zk ←− calculate VM formations, Equation (5)
for m ∈ M do

L̃m
k ←− predict workload, Section 3.5

end
L̃k = [L̃m

k ]
place VMs by solving, Equation (6)

end
6: for sk ∈ S do // Stage 2 - MRF Redistribution

wk ←− calculate excess workload, Section 4.1
repeat

bk ←− calculate additional servers, Equation (10)
until converges
activate extra servers, Section 4.2

end
wait until next system slot
go to 4

end

Precisely estimating the needed resources for an edge infrastructure can be a great
challenge, as users’ behavior and thus offloaded workload can vary in different conditions.
In this context, the proposed two-stage solution brings significant benefits in the problem at
hand. In particular, the offline analysis helps at creating a throughput (or offloading request
rate) heatmap and a user density heatmap for the infrastructure, based on experienced
network conditions and user density patterns. Then, the first stage, which is based on the
outcome of this analysis, gives a first, rough resource allocation solution. However, the
behavior of the users or the network conditions cannot always be predicted; in this case,
this first-stage planning will fail, which may cause severe impact in the perceived QoS.
Thus, the second stage helps to refine the first solution and to account for the inequalities
between the predicted requirements and the actual needs. This can further guarantee the
QoS requirements of the applications, while also minimizing the energy consumption at
the Edge infrastructure.

5. Performance Evaluation

In this section, the performance of the proposed resource allocation and excess load
redistribution mechanism is presented via modeling and simulation. The results illustrate
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the success of our approach in minimizing the energy consumption while guaranteeing
the stability of the application’s QoS (i.e., response time) within an acceptable margin. We
highlight the optimization of the resource allocation in terms of the power consumption
of the activated edge servers and the VM flavors used to serve the incoming workload.
The benchmarking is conducted using CloudSim Plus [43], a Java-based simulator suitable
for Edge and Cloud environment experimentation. Then, a comparison with one well-
established study in the literature and additionally with a more recent one follows.

5.1. Smart Museum Experiment Setting

To demonstrate the operation of an ENERDGE real-world application, we emulate
the environment of a smart museum. The museum accommodates different categories
of interactive exhibits, and it is equipped with a large number of IoT sensors and edge
devices with heterogeneous computational capabilities. Furthermore, the dynamic network
conditions are modeled by the dynamic behavior and density of the users. In particular, our
physical infrastructure consists of nine interconnected interactive exhibits-sites resembling
to a smart museum floor plan. Each site hosts an edge data center which includes three
edge servers. The applications deployed in the museum are classified in two categories
with different characteristics and requirements:

Interactive Exhibit Apps: On the one hand, we consider the museum leveraging
Augmented Reality (AR) and Virtual Reality (VR) settings to provide rich and detailed
access to artwork and artifacts, bring life to works of art and allow visitors to engage in
adaptable visual guided tours by using their mobile devices. In order to achieve the high
QoS requirements of these types of applications, mobile devices can offload some workload
by sharing video decoding tasks to the more powerful edge devices. User density is highly
dynamic in these applications, as visitors move from one exhibit to the other.

Sensor Monitoring Apps: On the other hand, IoT is making it possible to deploy
low-cost, automated monitoring of collections and museum facilities, e.g., static sensors
for temperature, humidity, counting number of visitors, etc. Such applications exhibit
low delay requirements, i.e., the processing can be performed in a delay tolerable manner,
sending data and information after a completion of an activity. However, they produce
numerous requests to the edge servers.

We assume one application of the Interactive Exhibit type, denoted as App1, and
one of the Sensor Monitoring type, denoted as App2, co-hosted in each site. This means
that VMs of both application types are able to run simultaneously in the edge servers,
receiving offloading requests from their counterparts in the visitors’ mobile devices and
the IoT sensors, respectively. For demonstration purposes, we also assume that both apps
are based on image recognition processes, thus their acceptable response time (QoS) is
set at 3 s, which lies within the margins of a typical image recognition service time [44]
and provides a satisfying Edge Computing AR application experience to the user [45]. As
the design of our framework and modeling of the applications are independent of the
level of the applications QoS requirements, applications that require lower (or higher)
response times are naturally supported. Following the modeling approach explained in
Section 3.3, we identify the VM flavors shown in Table 3, tuned towards achieving the
above QoS requirement. It should be noted here that App1 requests need considerably
heavier computations to achieve this response time than the ones of App2. This limits the
maximum number of requests of the application App1 to one third of those that can be
served by the App2 for equally sized VMs. Sixty visitors are assumed to roam the museum
at each given time, offloading requests for App1, while twenty static sensors are assumed
to be deployed, producing offloading requests for App2 at a much higher rate. The system
slot is arbitrarily set at 30 s and the experiments last for a period of 1 h, or 120 system slots.
The simulation code alongside any related dataset used in this section is publicly available
(https://github.com/maravger/netmode-cloudsim, accessed on 30 November 2021).

https://github.com/maravger/netmode-cloudsim
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Table 3. Identified VM Flavors.

Flavor
Small Medium Large

App1 App2 App1 App2 App1 App2

Cores 1 1 2 2 4 4
QoS (s) 3 3 3 3 3 3
Maximum Requests/Slot 11 38 27 82 59 173

5.2. Resource Allocation Evaluation

In this subsection, we present the evaluation of the resource allocation algorithm.
At first, the impact of the selected user density prediction method is assessed and then
a summary of the core optimization results for Stages 1 and 2 are provided. Finally, a
comparison of the whole mechanism with two works on the field is demonstrated.

5.2.1. User Density Prediction Impact

As described in Section 4.3, predicting the visitors’ positions in the next system slot is
the first step of optimizing the allocation of the edge resources in each site. This provides an
estimation on the projected workload. To quantify the impact of the user density prediction
accuracy, a sensitivity analysis is performed as illustrated in Figure 6; this assesses the
impact of the prediction error on satisfying the required application QoS, both in terms of
the average response time (ART) per request and the percentage of the violations occurred
in respecting the QoS. A logarithmic scale is used to better visualize both impacts in a
combined fashion.

Figure 6. ART & QoS violations sensitivity to prediction error.

We opted for showcasing the impact analysis at the end of both Stages of the resource
allocation mechanism, separately, so as to highlight the significant effect the MRF-based
workload redistribution has on alleviating the disruptions caused by the prediction error.
The results are collected from running the simulation for 10,000 system slots, for various
topologies, and averaging the stats in batches of 10. Thus, the x-axis of Figure 6 represents
the range of the prediction error. The dataset used is again the Melbourne Museum one [39].
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Underestimating the real incoming workload leads to under-provisioning of resources
and subsequently to slight degradation of the response time. In detail, we notice that both
the ART and the violations grow almost linearly with the prediction error. It is also clear
that the application of the MRF-based redistribution in each system slot has a great impact
on respecting the QoS requirements, with the redirection of the excess projected workload
from overutilised sites to underutilised ones. Specifically, when the MRF is applied, the
ART lies around 2 s and the QoS violations do not exceed 10% of the offloaded requests,
when the prediction error is less than 10%. The ART grows to around 3 s, which is still
acceptable for both applications, and the violations to 20%, when the error is less than 20%.
Beyond the point of a 30% prediction error, we notice that our solution’s results converge
to those of the naive one, as the extra unpredicted workload puts excessive strain on the
mechanism. However, this should not be a problem, as selecting an appropriate prediction
mechanism, like the n-MMC used here and in other comparable works, e.g., [46], leads to
an average prediction accuracy of 70–95%.

5.2.2. Stage 1 Evaluation—Response to Dynamic Network Conditions

In this subsection, we closely examine how the resource allocation optimization reacts
to the dynamic workload demands caused by the visitors’ dynamic density on each site,
in terms of edge servers activated and the VMs placed in them. Figure 7 showcases the
scalability of the proposed technique, as a response to the population of the visitors’ devices
and the fluctuations in the sensors’ offloading rate. We present the behavior of a single site,
which is equipped with three servers of four cores each, and this acts as a baseline for the
rest of the evaluation. With regard to power consumption, for demonstration purposes,
we assume that the average maximum power consumption of an edge server is 2000 W, in
accordance with [47].

Figure 7a shows the predicted workload per system slot, as calculated in the previous
step, while Figure 7b–d demonstrate how the resource optimizer adapts to the fluctuations.
In particular, they depict how the optimizer selects the appropriate topology in terms of
number of active edge servers and their allocated cores, in order to meet the demands
for the selected site. For instance, when the predicted requests are high, e.g., at system
slots {3, 46, 86}, with {206, 182, 181} predicted requests respectively for both applications
(red-colored marks), our optimization results in three activated edge servers and seven
cores allocated among them. On the other hand, when the incoming request prediction
is considerably lower, as in system slots {9, 38, 76}, with {84, 83, 84} predicted requests,
respectively (green-colored marks), only one server with three allocated cores is activated.
The results corroborate the total power consumption, as shown in Figure 7d.

Exploring further, we demonstrate an example regarding the specific VM formations
selected for the above activated servers, at system slot 3. The total of 206 predicted requests
consisted of 17 requests for App1 and 189 requests for App2. Table 4 shows the selected VM
formation for the three activated servers for this system slot. We see that this VM formation
fits to accommodate the predicted workload. The site’s power consumption, in this slot, is
5000 W.

Table 4. VM formations in Slot 3.

Server App1 VMs App2 VMs Allocated Cores

1 1 × small 1 ×medium 3
2 1 × small 1 ×medium 3
3 - 1 × small 1

Site Workload
Capacity 22 202
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Figure 7. Dynamic resource allocation: Allocated cores (b), number of activated edge servers (c),
power consumption (d) and ART (e) as a response to the number of predicted requests (a), for a
single site.

While our approach adapts very well against the various predicted incoming work-
loads in terms of allocated resources, satisfying the QoS for these applications is challenging.
This is due to the fact that the VM topology to serve these requests is selected based on the
predicted workload which is potentially fallacious, as explained in the previous subsection,
and this leads to violations in the QoS. For instance, as shown in Figure 7e, in system slots
{42, 63, 68} (yellow-colored marks), the average response time for both applications was
slightly above 4 s, or approximately 35% larger than the reference value, set at 3 s. This is an
indication of under-provisioning due to incoming workload underestimation. Violations
like this took place 17 times in this site, or 14% in a total of 120 system slots. We consider
this to be an acceptable margin of error for the satisfaction of the perceived QoS. Finally, it
should be pointed out that, for this experimentation, the average service completion time
mainly affected the measured response time. The average transmission time is negligible,
due to the use of the IEEE 802.11ac standard, which provides high throughput for requests
of application types used in this experiment.
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5.2.3. Stage 2 Evaluation—MRF-Based Excess Workload Redistribution Analysis

In this subsection, initially we demonstrate the convergence behavior of the MRF
approach for a standard (medium-size) and a larger topology. Figure 8 demonstrates the
variation of the cumulative potential function of the MRF (Equation (10)) for a complete set
of sweeps corresponding to an execution of the MRF in the beginning of a system slot. The
results of this evaluation have been averaged over 100 different topologies, both for a 9-site
(Medium) and a 36-site (Large) Edge infrastructure.

Figure 8. MRF-based workload redistribution convergence.

It is observed that the Gibbs sampler converges rather quickly, and it succeeds in
reducing the variability of the potential value rapidly. This is because the sampler is a
uniform global optimizer of the state space, and it is able to identify the local neighborhood
of desired solutions relatively fast, within the first five sweeps, and then fine-tune the search,
eventually selecting one solution among the global minimizers of the potential function.
As expected, the larger topology exhibits greater variability of the cumulative potential
function in the first sweeps (due to a larger state space), but eventually convergence is
smooth and within the maximum number of designated sweep iterations (here employing
a maximum of 50 sweeps).

To evaluate the efficiency of this second stage of our mechanism, as discussed in
Section 4.2, we identify two cases of excess workload at the end of the first stage. Regarding
the workload coming from overloaded sites, Figure 9 depicts the improvement in the QoS
satisfaction that comes with the application of the MRF-based redistribution (in a logarith-
mic scale). We observe that, while both the ART and the violations metrics grow almost
linearly with the average excess workload (in requests per site), by applying the MRF-based
redistribution, our mechanism achieves to provide better QoS guarantees (i.e., ART ≈ 3 s
and violations ≈ 10%). This comes as a natural result, since the overloaded sites are
alleviated from the excess workload, which is redistributed throughout the infrastructure.
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Figure 9. MRF QoS improvements for various excess workloads in overloaded sites.

On the other hand, regarding the underloaded sites, Figure 10 demonstrates the effect
of the MRF-based excess workload redistribution on the total energy consumption of
the infrastructure, by comparing it to the case where no redistribution of any kind takes
place. During the latter, as the average excess workload increases, the power consumption
increases radically, as underloaded edge servers are activated in each site in order to
accommodate the low volume of excess requests locally. From that point on, power
consumption increases moderately, as larger VMs are provisioned to meet the increasing
workload demands, until the point where all the resources are allocated in each site and the
maximum power consumption of the infrastructure is reached. In contrast, when the MRF-
based redistribution is employed, power consumption adjustment is more fine-grained, as
only the minimum combination of activated servers and installed VMs flavors are deployed
in each case.

Figure 10. MRF energy savings for various excess workloads in underloaded sites.
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Finally, Figure 11 illustrates the impact of the delay minimizing term in the MRF-based
workload redistribution. It is clear that the delay-related term in the MRF-based solution
minimizes the redirection-induced overhead per request (≈10 ms average), when compared
to an MRF-solution without it (≈26 ms average), in a medium sized edge infrastructure. It
should also be noted that the inclusion of this term has an impact on the average additional
delay being far more stable throughout the average excess workload increase.

Figure 11. MRF workload redistribution-induced delay minimizing for various excess workloads.

5.3. Two-Stage Approach Comparison

In the following, we present a comparative evaluation of the overall resource alloca-
tion of ENERDGE with two works, presented in [11,12], respectively. This comparison
highlights the ability of our two-stage approach to minimize energy consumption in the
edge infrastructure, while guaranteeing a certain level of QoS. Similar to our study, Jia et al.
in [11] present a setting of dispersed and interconnected clusters of computers, namely
cloudlets, which form a wireless metropolitan area network. Contrary to ENERDGE, each
cloudlet has a static VM provisioning method to serve offloaded requests. This study
focuses on identifying over-utilized cloudlets and redirecting part of their incoming work-
load to under-utilized ones in order to achieve better resource utilization. On the other
hand, in [12], Zhang et al. present a system of multiple distributed and interconnected
intelligent edge servers (IESs), located in an urban region. Again, in this work, the comput-
ing resources are statically allocated to serve the offloaded requests coming from mobile
devices and the focus is placed on balancing this load between the IESs through work-
load redistribution, using a novel game theoretic perspective together with a state-based
distributed learning algorithm. For both works, instead of having an estimation of the
incoming workload, it is considered known for each cloudlet/IES and for each system slot.
In addition, the offloaded workload served at each cloudlet/IES is bounded by its service
rate capabilities, while the rest of it is rejected and redirected back to the mobile device for
local execution.

In order to highlight the importance of dynamic resource allocation towards simul-
taneously guaranteeing the QoS requirements and minimizing energy consumption, we
compare our method with two differently oriented resource provisioning settings of [11,12],
resulting in two sets of experiments. For the first one (Experiment A), all three works
attempt to minimize energy consumption, while in the second one (Experiment B), the
effort is put on satisfying the QoS constraints. To make the comparison fair, we simulated
the exact same nine-site edge infrastructure, described in Section 5.1, for all three methods.
The generated workload traffic is the same for all methods as well.
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Regarding Experiment A, we chose a frugal static resource allocation for both [11,12],
so that they would approximately match the total energy consumption of ENERDGE
(Figure 12b). QoS violations were calculated for all methods based on the SLA threshold
for the response time of the offloaded requests, set at 3 s, as in Section 5.2.2. In one hour
of experimentation, the ENERDGE sites reported 207 violations, or 9% of the offloaded
requests, compared to the 470 violations or 22% of the requests in [11] and 660 violations
or 29% of the requests in [12], as shown in Figure 12a.

(a) (b)

Figure 12. QoS violations and energy consumption during Experiment A. (a) QoS violations; (b) en-
ergy consumption.

On the contrary, in Experiment B, resource-abundant static allocations were selected
for the other two works, in order to match the QoS satisfaction of ENERDGE (Figure 13a).
In this case, as shown in Figure 13b, energy consumption for one hour in [11] was roughly
41 kWh and in [12] 36 kWh, or more than 54% and 35% bigger, respectively, when com-
pared to the 26.5 kWh of our method. In addition to the previous results, it is clear that
even a static resource provisioning method enhanced with workload redirection mecha-
nisms is incapable of finding a balance between QoS satisfaction and infrastructure energy
consumption minimization, the way ENERDGE does.

(a) (b)
Figure 13. QoS violations and energy consumption during Experiment B. (a) QoS violations;
(b) energy consumption.

Finally, as the work in [12] incorporates a game theoretic solution and a decentralised
learning algorithm, an opportunity arises for comparing the convergence behavior of the
MRF solution with it. In Figure 14, the potential function values for both solutions are
illustrated in a logarithmic scale, with respect to each algorithm’s iterations, after averaging
over 1000 executions of a random 9-site infrastructure and similar offloaded workload for
both. The results reveal that the proposed MRF solution converges rapidly compared to
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the solution proposed in [12], which also has a direct effect on our mean execution times
being significantly lower.

Figure 14. Comparison of the workload redistribution convergence.

6. Conclusions

This article introduced the ENERDGE framework that addresses jointly the full task
offloading and resource allocation problems in a multi-site setting. We proposed a holistic
energy-aware resource optimization approach, based on the design of the VM flavors
complemented with an innovative load redistribution technique based on MRFs, with
the penultimate goal to minimize the total energy consumption without sacrificing the
QoS in terms of latency. To minimize the inverse impact of the dynamic presence of users,
ENERDGE considers the dynamic wireless conditions of the access network and supports
a mobility prediction scheme to better guide the allocation solution during task offloading.
Numerical results showed that the prediction mechanism accurately predicts the mobile
behavior of the users, while the ENERDGE resource optimizer outperforms two well-
established load balancing techniques in terms of both latency and energy consumption.
Finally, we have shown that the MRF scheme converges rapidly to minimum energy
solutions, thus allowing further energy optimizations in an efficient manner.

Our future work will concentrate on the interplay between the Edge and Cloud. As
IoT and cellular device volumes continue to increase, a collaboration between the Edge
and Cloud infrastructures may constitute a viable solution for large-scale deployment
scenarios. Furthermore, integrating machine learning techniques in our user density
prediction approach will enable addressing errors in the predictions of the dynamically
estimated values of the position and number of end-user devices.
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Appendix A

Assume a finite set S, |S| = n, with elements s ∈ S referred to as sites or nodes. These
correspond to access points of the considered infrastructure. Every site s is associated with
a random variable Xs that expresses its state. In our case, the state of each site will depend
on the excess workload and number of assigned servers. Let the phase space Λ be the set of
possible states of each s ∈ S, i.e., Xs takes a value xs ∈ Λ. The collection X = {Xs, ∀s ∈ S}
of random variables with values in Λ consists of a Random Field (RF) on S with phases
in Λ. A configuration ω = {xs : xs ∈ Λ, ∀s ∈ S} corresponds to one of all possible
states of the system and the product space Λn, ω ∈ Λn denotes the configuration space. A
neighborhood system on S is defined as a family N = {Ns}s∈S of subsets Ns ⊂ S, such
that for every s ∈ S, s 6∈ Ns and r ∈ Ns if and only if s ∈ Nr. Ns is called the neighborhood
of site (node) s. The RF X is called a Markov Random Field (MRF) with respect to N , if for
every site s ∈ S,

P(Xs = xs | Xr = xr, r 6= s) = P(Xs = xs | Xr = xr, r ∈ Ns). (A1)

A RF X is called a Gibbs Random Field (GRF) if it satisfies:

P(X = ω) =
1
Z

e−
U(ω)

T , (A2)

where Z := ∑ω∈Λn e−
U(ω)

T is the partition function and T is the temperature of the system.
U(ω) is called the potential function and represents a quantitative metric of the current
state of the configuration ω. The potential function is not unique. A very useful class
of potential functions, which we will employ in our approach, is one in which U(ω) is
decomposed into a sum of clique (maximally connected subgraph) potential functions,
as U(ω) = ∑c∈C Vc(ω), where C is the set of the cliques formed by the sites and each
clique potential Vc depends only on the states of the cliques formed in the underlying
system graph. The Hammersley–Clifford theorem [41] asserts that a GRF with distribution

P(X = ω) = 1
Z e−

U(ω)
T and potential function expressed in terms of clique potentials leads

to an MRF with conditional probabilities P(Xs = xs | Xr = xr, r 6= s) = P(Xs = xs | Xr =
xr, r ∈ Ns) and vice versa. This property is also employed for the design of the potential
function and the implementation of distributed decision-making via Gibbs sampling.

References
1. Jeon, Y.; Baek, H.; Pack, S. Mobility-aware optimal task offloading in distributed edge computing. In Proceedings of the 2021

International Conference on Information Networking (ICOIN), Jeju Island, Korea, 13–16 January 2021; pp. 65–68.
2. Bebortta, S.; Senapati, D.; Panigrahi, C.R.; Pati, B. An adaptive performance modeling framework for QoS-aware offloading in

MEC-based IIoT systems. IEEE Internet Things J. 2021. [CrossRef]
3. Sahni, Y.; Cao, J.; Zhang, S.; Yang, L. Edge mesh: A new paradigm to enable distributed intelligence in internet of things. IEEE

Access 2017, 5, 16441–16458. [CrossRef]
4. Li, S.; Zhang, N.; Lin, S.; Kong, L.; Katangur, A.; Khan, M.K.; Ni, M.; Zhu, G. Joint admission control and resource allocation in

edge computing for internet of things. IEEE Netw. 2018, 32, 72–79. [CrossRef]
5. Thai, M.T.; Lin, Y.D.; Lai, Y.C.; Chien, H.T. Workload and capacity optimization for cloud-edge computing systems with vertical

and horizontal offloading. IEEE Trans. Netw. Serv. Manag. 2019, 17, 227–238. [CrossRef]
6. Xia, X.; Chen, F.; He, Q.; Grundy, J.; Abdelrazek, M.; Jin, H. Online collaborative data caching in edge computing. IEEE Trans.

Parallel Distrib. Syst. 2020, 32, 281–294. [CrossRef]
7. Li, Y.; Wang, S. An energy-aware edge server placement algorithm in mobile edge computing. In Proceedings of the 2018 IEEE

International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018; pp. 66–73.

https://github.com/maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx
https://github.com/maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx
http://doi.org/10.1109/JIOT.2021.3123554
http://dx.doi.org/10.1109/ACCESS.2017.2739804
http://dx.doi.org/10.1109/MNET.2018.1700163
http://dx.doi.org/10.1109/TNSM.2019.2937342
http://dx.doi.org/10.1109/TPDS.2020.3016344


Sensors 2022, 22, 660 28 of 29

8. Daraghmeh, M.; Al Ridhawi, I.; Aloqaily, M.; Jararweh, Y.; Agarwal, A. A power management approach to reduce energy
consumption for edge computing servers. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge
Computing (FMEC), Rome, Italy, 10–13 June 2019; pp. 259–264.

9. Avgeris, M.; Spatharakis, D.; Dechouniotis, D.; Kalatzis, N.; Roussaki, I.; Papavassiliou, S. Where there is fire there is smoke:
A scalable edge computing framework for early fire detection. Sensors 2019, 19, 639. [CrossRef]

10. Gambs, S.; Killijian, M.O.; del Prado Cortez, M.N. Next, place prediction using mobility markov chains. In Proceedings of the
MPM ’12-First Workshop on Measurement, Privacy, and Mobility, Bern, Switzerland, 10 April 2012; pp. 1–6.

11. Jia, M.; Liang, W.; Xu, Z.; Huang, M. Cloudlet load balancing in wireless metropolitan area networks. In Proceedings of the IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14
April 2016; pp. 1–9.

12. Zhang, F.; Deng, R.; Zhao, X.; Wang, M.M. Load Balancing for Distributed Intelligent Edge Computing: A State-based Game
Approach. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 1066–1077. [CrossRef]

13. Guo, J.; Song, Z.; Cui, Y.; Liu, Z.; Ji, Y. Energy-efficient resource allocation for multi-user mobile edge computing. In Proceedings
of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7.

14. Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.;
Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control
theory solutions. Comput. Netw. 2021, 195, 108177. [CrossRef]

15. Dechouniotis, D.; Athanasopoulos, N.; Leivadeas, A.; Mitton, N.; Jungers, R.M.; Papavassiliou, S. Edge Computing Resource
Allocation for Dynamic Networks: The DRUID-NET Vision and Perspective. Sensors 2020, 20, 2191. [CrossRef]

16. Wang, L.; Jiao, L.; Li, J.; Mühlhäuser, M. Online resource allocation for arbitrary user mobility in distributed edge clouds. In
Proceedings of the ICDCS 2017—The 37th IEEE International Conference on Distributed Computing Systems, Atlanta, GA, USA,
5–8 June 2017; pp. 1281–1290.

17. Puliafito, C.; Mingozzi, E.; Vallati, C.; Longo, F.; Merlino, G. Companion fog computing: Supporting things mobility through
container migration at the edge. In Proceedings of the IEEE SMARTCOMP 2018—The 4th IEEE International Conference on
Smart Computing, Taormina, Italy, 18–20 June 2018; pp. 97–105.

18. Labriji, I.; Meneghello, F.; Cecchinato, D.; Sesia, S.; Perraud, E.; Strinati, E.C.; Rossi, M. Mobility aware and dynamic migration of
MEC services for the Internet of Vehicles. IEEE Trans. Netw. Serv. Manag. 2021, 18, 570–584. [CrossRef]

19. Plachy, J.; Becvar, Z.; Strinati, E.C. Dynamic resource allocation exploiting mobility prediction in mobile edge computing. In Pro-
ceedings of the IEEE PIMRC 2016—27th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,
Valencia, Spain, 4–8 September 2016; pp. 1–6.

20. Sun, X.; Ansari, N. Adaptive avatar handoff in the cloudlet network. IEEE Trans. Cloud Comput. 2017, 7, 664–676. [CrossRef]
21. Shi, Y.; Chen, S.; Xu, X. MAGA: A mobility-aware computation offloading decision for distributed mobile cloud computing. IEEE

Internet Things J. 2017, 5, 164–174. [CrossRef]
22. Al-Shuwaili, A.; Simeone, O. Energy-efficient resource allocation for mobile edge computing-based augmented reality applications.

IEEE Wirel. Commun. Lett. 2017, 6, 398–401. [CrossRef]
23. Elgendy, I.A.; Zhang, W.Z.; Zeng, Y.; He, H.; Tian, Y.C.; Yang, Y. Efficient and secure multi-user multi-task computation offloading

for mobile-edge computing in mobile IoT networks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2410–2422. [CrossRef]
24. Ren, J.; Yu, G.; Cai, Y.; He, Y. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Trans.

Wirel. Commun. 2018, 17, 5506–5519. [CrossRef]
25. Farris, I.; Militano, L.; Nitti, M.; Atzori, L.; Iera, A. MIFaaS: A mobile-IoT-federation-as-a-service model for dynamic cooperation

of IoT cloud providers. Future Gener. Comput. Syst. 2017, 70, 126–137. [CrossRef]
26. Sonmez, C.; Ozgovde, A.; Ersoy, C. Fuzzy workload orchestration for edge computing. IEEE Trans. Netw. Serv. Manag. 2019,

16, 769–782. [CrossRef]
27. Jia, M.; Liang, W.; Xu, Z.; Huang, M.; Ma, Y. Qos-aware cloudlet load balancing in wireless metropolitan area networks. IEEE

Trans. Cloud Comput. 2018, 8, 623–634. [CrossRef]
28. Leivadeas, A.; Nilsson Y., T.; Elahi, A.; Keyhanian, A.; Lambadaris, I. Link Adaptation for Fair Coexistence of Wi-Fi and LAA-LTE.

In Proceedings of the ACM MobiWac 2018—The 16th ACM International Symposium on Mobility Management and Wireless
Access, Montreal, QC, Canada, 28 October–2 November 2018; pp. 43–50.

29. Erceg, V. IEEE 802.11-03/940r4; IEEE P802.11 Wireless LANs TGn Channel Models. IEEE: Piscataway, NJ, USA, 2004.
30. Madwifi Project—Minstrel Algorithm. Available online: https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/trunk/

ath_rate/minstrel/minstrel.txt (accessed on 8 May 2021).
31. Tran, T.X.; Pompili, D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE

Trans. Veh. Technol. 2018, 68, 856–868. [CrossRef]
32. Leivadeas, A.; Papagianni, C.; Papavassiliou, S. Going Green with the Networked Cloud: Methodologies and Assessment. In

Wiley Quantitative Assessments of Distributed Systems: Methodologies and Techniques; John Wiley & Sons: New York, NY, USA, 2015;
pp. 351–374.

33. Cuervo, E.; Balasubramanian, A.; Cho, D.k.; Wolman, A.; Saroiu, S.; Chandra, R.; Bahl, P. MAUI: Making smartphones last longer
with code offload. In Proceedings of the ACM MobiSys 2010—The 8th Annual International Conference on Mobile Systems,
Applications, and Services, San Francisco, CA, USA, 15–18 June 2010; pp. 49–62.

http://dx.doi.org/10.3390/s19030639
http://dx.doi.org/10.1109/TCCN.2021.3087178
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.3390/s20082191
http://dx.doi.org/10.1109/TNSM.2021.3052808
http://dx.doi.org/10.1109/TCC.2017.2701794
http://dx.doi.org/10.1109/JIOT.2017.2776252
http://dx.doi.org/10.1109/LWC.2017.2696539
http://dx.doi.org/10.1109/TNSM.2020.3020249
http://dx.doi.org/10.1109/TWC.2018.2845360
http://dx.doi.org/10.1016/j.future.2016.06.028
http://dx.doi.org/10.1109/TNSM.2019.2901346
http://dx.doi.org/10.1109/TCC.2017.2786738
https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/trunk/ath_rate/minstrel/minstrel.txt
https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/trunk/ath_rate/minstrel/minstrel.txt
http://dx.doi.org/10.1109/TVT.2018.2881191


Sensors 2022, 22, 660 29 of 29

34. Kosta, S.; Aucinas, A.; Hui, P.; Mortier, R.; Zhang, X. Thinkair: Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading. In Proceedings of the IEEE INFOCOM 2012—The 31st Annual IEEE International Conference on
Computer Communications, Orlando, FL, USA, 25–30 March 2012; pp. 945–953.

35. Ljung, L. System Identification: Theory for the User; Prentice-Hall: Englewood Cliffs, NJ, USA, 1987.
36. GLPK (GNU Linear Programming Kit). Available online: https://www.gnu.org/software/glpk/ (accessed on 30 Novem-

ber 2021).
37. Beloglazov, A.; Buyya, R.; Lee, Y.C.; Zomaya, A. A taxonomy and survey of energy-efficient data centers and cloud computing

systems. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2011; Volume 82, pp. 47–111.
38. Falkner, M.; Leivadeas, A.; Lambadaris, I.; Kesidis, G. Performance analysis of virtualized network functions on virtualized

systems architectures. In Proceedings of the IEEE CAMAD 2016-21st IEEE International Workshop on Computer Aided Modelling
and Design of Communication Links and Networks, Toronto, ON, Canada, 23–25 October 2016; pp. 71–76.

39. Bohnert, F.; Zukerman, I. Personalised viewing-time prediction in museums. User Model.-User-Adapt. Interact. 2014, 24, 263–314.
[CrossRef]

40. Dash, S. Exponential lower bounds on the lengths of some classes of branch-and-cut proofs. Math. Oper. Res. 2005, 30, 678–700.
[CrossRef]

41. Kindermann, R.; Snell, J.L. Markov random fields and their applications. Am. Math. Soc. 1980, 1. [CrossRef].
42. Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal.

Mach. Intell. 1984, PAMI-6, 721–741. [CrossRef] [PubMed]
43. Silva Filho, M.C.; Oliveira, R.L.; Monteiro, C.C.; Inácio, P.R.; Freire, M.M. CloudSim plus: A cloud computing simulation

framework pursuing software engineering principles for improved modularity, extensibility and correctness. In Proceedings of
the IFIP/IEEE IM 2017—The 15th IFIP/IEEE International Symposium on Integrated Network Management, Lisbon, Portugal,
8–12 May 2017; pp. 400–406.

44. Cao, J.; Zhao, Y.; Lai, X.; Ong, M.E.H.; Yin, C.; Koh, Z.X.; Liu, N. Landmark recognition with sparse representation classification
and extreme learning machine. J. Frankl. Inst. 2015, 352, 4528–4545. [CrossRef]

45. Chen, Z.; Hu, W.; Wang, J.; Zhao, S.; Amos, B.; Wu, G.; Ha, K.; Elgazzar, K.; Pillai, P.; Klatzky, R.; et al. An empirical study
of latency in an emerging class of edge computing applications for wearable cognitive assistance. In Proceedings of the SEC
’17—The Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, 12–14 October 2017; pp. 1–14.

46. Le Tan, C.N.; Klein, C.; Elmroth, E. Location-aware load prediction in edge data centers. In Proceedings of the IEEE FMEC
2017-The 2nd International Conference on Fog and Mobile Edge Computing, Valencia, Spain, 8–11 May 2017; pp. 25–31.

47. Jin, C.; Bai, X.; Yang, C.; Mao, W.; Xu, X. A review of power consumption models of servers in data centers. Appl. Energy 2020,
265, 114806. [CrossRef]

https://www.gnu.org/software/glpk/
http://dx.doi.org/10.1007/s11257-013-9141-8
http://dx.doi.org/10.1287/moor.1050.0151
http://dx.doi.org/10.1090/conm/001
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://www.ncbi.nlm.nih.gov/pubmed/22499653
http://dx.doi.org/10.1016/j.jfranklin.2015.07.002
http://dx.doi.org/10.1016/j.apenergy.2020.114806

	Introduction
	Motivation & Challenges
	Contributions & Outline

	Related Work
	Mobility Prediction for Task Offloading
	Single-Site Offloading & Resource Allocation
	Multi-Site Offloading & Resource Allocation

	System Model
	Edge Infrastructure & Applications
	Task Offloading
	VM Flavor Design
	Power Modeling
	User Density and Workload Prediction

	Resource Allocation & Workload Redistribution
	Stage 1—Resource Allocation Optimization
	Stage 2—Inter-Site Redistribution of Excess Workload
	ENERDGE Core Algorithm

	Performance Evaluation
	Smart Museum Experiment Setting
	Resource Allocation Evaluation
	User Density Prediction Impact
	Stage 1 Evaluation—Response to Dynamic Network Conditions
	Stage 2 Evaluation—MRF-Based Excess Workload Redistribution Analysis

	Two-Stage Approach Comparison

	Conclusions
	
	References

