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Abstract

A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray
images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for
constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object
holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating
the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a
computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This
alignment process involves two steps. The first step is to match the ‘‘projected feature points’’ in the sequence of
images. The matched projected feature points in the x-h plane should form a set of sine-shaped loci. The second step is
to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that
the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software
system can be downloaded from the URL, http://www.cs.nctu.edu.tw/ chengchc/SCTA or http://goo.gl/s4AMx.
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Introduction

Synchrotron X-rays possess several unique characteristics

including high intensity, straight-line beam traveling, and low

scattering [1], which can be used to develop an X-ray microscope

[2]. Researchers have developed many synchrotron X-ray

microscopy techniques for various purposes including angiography

[3], X-ray lithography for nanofabrication [4], and cell tomogra-

phy[5–7]. This study investigated a problem arising from 3D

tomography reconstruction when the pixel size is in the nanoscale.

Previous research has demonstrated that a series of X-ray

projections around an object can be used to reconstruct 3D

volume data by using the appropriate reconstruction algorithms

[8–11]. When the light source is a synchrotron X-ray, it cannot

rotate around an object. Therefore, a rotatable object-holder was

designed to hold an object to enable acquiring a series of

projections from different angles while rotating the object (Fig. 1).

The problem of mechanical imprecision arises when the resolution

increases to a certain level, such as that required for cell

tomography. When the pixel size is approximately 10 nm, a slight

mechanical vibration can hinder accurate reconstruction. In the

cell tomography experience of the authors, the pixel size of image

is 11.78 nm. Rotating the object holder can cause a 5 to 30 pixel

difference in position because of the mechanical instability.

Although the position of the object holder can be calibrated

during image acquisition, the calibration process can take an

unacceptably long time, causing the object to receive excessive X-

rays. The TXM controller provided by Xradia (hereinafter called

‘‘Xradia’’) was designed to solve the misalignment problem.

Unfortunately, manual adjustments are generally required to

obtain satisfactory tomography reconstruction. A similar problem

also exists in electron microscopic tomography. Using the cross-

correlation function to align the electron microscopic images is a

common solution to this problem [12]. A software system,

‘‘SPIDER’’, was implemented based on the cross-correlation

function[13]. However, the cross-correlation function alignment

does not considering the projection model, thus limiting the

quality of tomography reconstruction.

This study presents a feature-based alignment approach for

calibrating the displacement caused by mechanical vibration.

Because a synchrotron X-ray is a parallel beam projection, the

resulting displacement can be decomposed into vertical and

horizontal displacements. The proposed method aligns the images

in the vertical direction by direct image alignment. Calibrating the

images in the horizontal direction is more complex than that in the

vertical direction. In addition to matching feature points, the

matched feature points must form sine-wave shaped loci. This

study proposes approximating the loci of the matched feature

points in the x-h coordinate system according to sine waves by

using the least square curve fitting. The deviation between the loci

and the sine waves provides information for horizontal calibration.

The remainder of this paper is organized as follows. The Results

section presents the results. The Methods section presents the
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details of the proposed methods including feature detection,

feature tracking, and the alignment method. Finally, the Discus-

sion section presents a summary and discussion.

Results

The proposed algorithm was used to align projection images

and then reconstruct the 3D volume data of HeLa cells from X-ray

projections. To verify the correctness of the alignment algorithm, a

phantom data set was used to simulate the HeLa cell stained using

the gold nanoparticles. The following subsections present the

construction details and results obtained.

The Phantom
A volume datum containing 20 imitative gold nanoparticles was

constructed, and X-ray projections of the shifted volume were

generated to simulate machine vibrations. Fig. 2 shows the

simulated X-ray image of the phantom cell, in which 180

projections of 5126512 pixels images were generated. The volume

rotated is 1u between successive projections. Before each

projection, the volume was shifted in the vertical and horizontal

directions to simulate the mechanical imprecision of the object

holder. The amount of displacement was determined according to

a random number uniformly distributed over the range 620

pixels.

The proposed alignment algorithm was used to calibrate the

images, which were first aligned in the vertical direction. The

detection and matching methods of projected feature points were

then applied to determine 16 feature points. The locus of the

horizontal position of a feature point over various angles should

form a sine-shaped curve. Fig. 3(a) shows the loci of the 16 points.

This figure is in the x-h coordinate system: the vertical axis

represents the rotation angle, and the horizontal axis represents

the horizontal position of the projected feature point. The loci are

not smooth because of horizontal displacement. The most suitable

sine waves to fit the loci (Fig. 3(b)) were then calculated, and the

displacement of the feature points in the horizontal position were

estimated (Fig. 3(c)). The filtered back-projection (FBP) algorithm

was then used to reconstruct the 3D volume data based on the

aligned X-ray images [14].

To verify the accuracy of the proposed alignment method, the

positions and diameters of the spherical particles in the recon-

structed images were compared with the original volume data,

which included 20 spherical particles, and the diameter of each

particle was 12 voxels. There were 20 particles found in the

reconstructed volume. The average errors of the particle center

and diameter were found to be 0.72 and 0.03 voxels, respectively.

The reconstructed volume is close to the original volume. Fig. 4(a)

shows a slice in the original volume data. Fig. 4(b) shows the

tomography results of the same slice obtained using the proposed

alignment method. For comparing the results of the proposed

method with the SPIDER, the same phantom image was

reconstructed using SPIDER. Fig. 4(c) shows the tomography

reconstructed results using SPIDER.

Figure 1. View of the rotational holder for acquiring the
projection images for reconstructing the 3D volume images
using Synchrotron light source and for correcting the horizon-
tal alignment due to vibration below 10 nm.
doi:10.1371/journal.pone.0084675.g001

Figure 2. The simulated X-ray image of the phantom data. 180
emulated X-ray images were generated. The size of each image is
5126512 pixels, the rotation angle between two consecutive images is
10 , and the ranges of the vertical and horizontal errors are +20 pixels.
doi:10.1371/journal.pone.0084675.g002

Figure 3. Feature loci of the phantom data: (a) loci of 16
projected feature points before horizontal alignment; (b) best-
fit sine waves; and (c) the aligned loci.
doi:10.1371/journal.pone.0084675.g003
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The mean squared error (MSE) of the foreground voxels

between the original volume data and the reconstructed volume

was also calculated. A voxel was classified as a foreground voxel

when its intensity exceeded a given intensity threshold. The MSE

between the original volume and the reconstructed volume from

the unaligned volume was found to be 0.029. The reconstructed

volume obtained from the images aligned using SPIDER has an

MSE of 0.002. For the volume reconstructed from the images

aligned using the proposed method, the MSE was found to reduce

to 0.0005. Because Xradia does not recognize the file format of the

phantom images, the proposed method was not compared with

Xradia.

HeLa Cells
Figs. 5(a) and (b) separately show the projection images of two

HeLa cells. The first HeLa cell, named HeLa1, contained 84

identified projected feature points. Six reliable feature points were

selected from the identified projected feature points. Fig. 6(a)

shows the loci of the selected points in the x-h coordinate system.

Fig. 6(b) shows the sine waves that fit the loci most effectively. The

projection images of HeLa1 are aligned according to the fitted sine

waves, and Fig. 6(c) shows the loci of the projected feature points

after alignment. In the second HeLa cell, HeLa2, four reliable

features were selected from 89 identified projected feature points,

and Fig. 6(d) shows the loci. Fig. 6(e) shows the sine waves that fit

the loci. Fig. 6(f) shows the loci of the projected feature points after

alignment. To compare the different alignment methods, SPIDER

and Xradia were also applied to align the projection images of

HeLa1 and HeLa2. The same FBP algorithm was then applied to

reconstruct the volumes from the aligned images.

Slices in the reconstructed volumes of HeLa1 and HeLa2 are

shown in Figs. 7(a), (b), and (c) and Figs. 7(d), (e), and (f)

respectively. Figs. 7 (a) and (d) were obtained using the proposed

method, Figs. 7 (b) and (e) were obtained using SPIDER, and Fig. 7

(c, f) were obtained using Xradia. As shown in Fig. 7, the results of

the proposed method were more favorable than those of SPIDER

and Xradia. Comparing the results of the SPIDER and Xradia,

the proposed method exhibits most well-defined membrane

structures with least amount of artifacts, which is evident from

7(a) and (d). The texture-based volume rendering algorithm [15]

was used to produce a 3D image of the volume data. Figs. 8 (a), (b),

and (c) show the volume-rendering results of HeLa1, and Figs. 8

(d), (e), and (f) show the volume-rendering results of HeLa2. Figs. 8

(a) and (d) show the results of the proposed method, Figs. 8 (b) and

(e) show the results of SPIDER, and Figs. 8 (c) and (f) show the

results of Xradia. The gold nanoparticles in Figs. 8 (a) and (d) are

clearly shown, thereby enabling the evaluation of the location, the

size, and the amount of the particles. The cell membranes can also

be visualized in the rendered image, helping the user identify the

geometry of the cells.

The proposed algorithm was applied to process 10 other X-ray

image sets of HeLa cells. Among these 10 image sets, eight were

successfully reconstructed (A1–A8, Figs. 9 and 10) except the other

two (B1 and B2, Fig. 11). SPIDER and Xradia were also applied to

the same sets of image data. Neither SPIDER nor Xradia could

align the images in B1 and B2 for reconstruction. Specifically,

SPIDER was effective for A3, A5, and A6; Xradia was effective for

A1, A2, A5, A7, and A8. Although the reconstructions could be

completed, comparing to our results, the artifacts produced due to

the misalignment are more apparent.

Table 1 lists the experiments conducted in this study including

the phantom, HeLa1, HeLa2, and the other 10 HeLa cells, as well

as the computing time required. This table shows that the main

factors affecting computational time are the image size, number of

images, and number of identified projected features. The

experiments in this study show that when the input data contains

180 images of 102461024 pixels, the alignment can be performed

in 10 min.

Methods

Sample Preparation and Image Acquisition
HeLa cells were used in this study. The cells were grown on

Kapton film, and endocytosis [16] was used to stain HeLa cells by

absorbing gold nanoparticles of 250 mM (micromolar). The cells

were then fixed in a container using a mixture of paraformalde-

hyde and glutaraldehyde[17].

The synchrotron microscope used in this study was built at the

National Synchrotron Radiation Research Center, Hsinchu,

Figure 4. One slice in the phantom data: (a) original image; (b) result of proposed method; and (c) the result of SPIDER.
doi:10.1371/journal.pone.0084675.g004

Figure 5. X-ray projection images of HeLa cells. 140 synchrotron
X-ray projection images were acquired for HeLa1 and HeLa2. The size of
each image is 102461024 pixels, and the rotation angle between two
projection images is 10 . (a) HeLa1, and (b) HeLa2.
doi:10.1371/journal.pone.0084675.g005
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Taiwan. The CCD size is 204862048 pixels, and the field of view

is 24 mm. Each projection image was taken after a 1u rotation. To

prevent the object holder from becoming perceptible (occurring

when the object holder is nearly parallel to the X-ray), the range of

the rotation angle of the object holder was 670u. Only 140

projection images were acquired. The size of each image was

102461024 pixels, and the pixel size was 11.78 nm. In this study,

the exposure time of each image was 1 second.

The Alignment Method
A projected feature point is a pronounced mark in an X-ray

projection image. Alignment is accomplished by first aligning the

projected feature points in the vertical direction and then in the

horizontal direction. The projected feature points should be

maintained in the vertical direction. Thus, vertically aligning the

projected feature points in the second image to the previous image

is sufficient. However, the location of the feature points in the

horizontal direction varies among projection images. Calculating

the horizontal location of the feature points is a more difficult task

than alignment in the vertical direction. The following subsections

describe these steps.

Vertical Direction Alignment. For each pair of projection

images, the sum of the intensity values on each row is calculated.

The sums of the rows form histograms that should be similar in a

pair of consecutive images. The vertical displacement can be

calculated by minimizing the difference between the histograms.

Given an N6M image I(x,y), 0ƒxvN, 0ƒyvM and

I(x,y)[[0, 1]. The vertical histogram h is calculated by

Figure 6. The loci of the reliable projected feature points of HeLa1 and HeLa2. (a) There were six reliable feature loci found in the acquired
images of HeLa1. (b) Most suitable sine waves of HeLa1, and (c) aligned loci of HeLa1. (d) There were four reliable feature loci identified in the
acquired images of HeLa2. (e) Best-fit sine waves of HeLa2, and (f) aligned loci of HeLa2.
doi:10.1371/journal.pone.0084675.g006
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h(I ,y)~
1

N

XN{1

x~0

I(x,y): ð1Þ

Assume that Ia is the unaligned image and Ib is the reference

image. The vertical correction of Ia is ŷy, which can be estimated

by

ŷy~ arg min
y’

XM{1

y~0

(h(Ia,yzy’){h(Ib,y))2: ð2Þ

To achieve the most favorable results, the image is preprocessed

to enhance the features. In this experiment, the estimated

correction is more accurate when the images are enhanced by

applying the edge detection method[18].

Horizontal Direction Calibration. The horizontal calibra-

tion is based on the projected feature points forming a sine-shaped

locus in the x-h coordinate system. This calibration involves three

Figure 7. One slice in the reconstructed tomographic images of
HeLa1 and HeLa2. (a), (b), and (c) are the same slice in the
tomographic images of HeLa1: (a) result of proposed method; (b) result
of SPIDER, and (c) result of Xradia. (d), (e), and (f) are the same slice in
the tomographic images of HeLa2: (a) result of proposed method; (b)
result of SPIDER, and (c) result of Xradia.
doi:10.1371/journal.pone.0084675.g007

Figure 8. The 3D volume rendering of the reconstructed
volume (a), (b), and (c) are HeLa1; (d), (e), and (f) are HeLa2:
(a) and (d) Results of proposed method; (b) and (e) results of
SPIDER, and (c) and (f) results of Xradia.
doi:10.1371/journal.pone.0084675.g008

Figure 9. Eight examples of successful alignment (1).
doi:10.1371/journal.pone.0084675.g009
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steps: detecting projected feature points, matching projected

feature points to construct a set of loci from the matched projected

feature points, and fitting the loci to sine curves to adjust the

horizontal displacement of images.

Detecting Projected Feature Points. Feature point extrac-

tion is a fundamental step in image stitching, object recognition,

and feature-based image alignment [19]. Researchers have

proposed many feature detection methods. The corner detection

method proposed by Harris and Stephen [20] is commonly used to

extract corner-shape regions in an image. To achieve scale

invariance, Kadir and Brady [21] selected the salient region from

the image scale-space as the feature that possesses the maximum

entropy. Lowe [22] proposed the scale-invariant feature transform

(SIFT) algorithm to select local extrema from the differences of a

Gaussian (DoG) pyramid in an image. The SIFT algorithm uses

the gradient location-orientation histogram as a feature descriptor

to achieve rotation invariance and illumination invariance.

Researchers have proposed several improved versions of the SIFT

algorithm. Bay et al. used the Haar wavelet to expedite feature

detection [23]. Rady et al. proposed entropy-based feature

detection [24], and Suri et al. combined mutual information

alignment with the SIFT algorithm [25].

In this study, a modified SIFT algorithm was employed to

extract automatically the projected feature points contained in X-

ray images. The typical SIFT implementation involves describing

a feature according to its location, size, the orientation of the

sampling region, and the image gradient histogram in the

sampling region. Because the proposed method matches the

projected feature points in two X-ray images based on mutual

information [26–28], each projected feature point in this study

contained the entropy of the sampling region rather than the

image gradient histogram. To reduce the noise and the number of

low-contrast projected feature points, the entropy of each selected

projected feature point must exceed a given threshold. The

experiments in this study entailed setting a threshold between 0.5

and 1.0. Because the features in the objects are gold nanoparticles,

the size and orientation of the sampling region were fixed in this

implementation.

Matching Projected Feature Points. Let Fi , i~1, . . . ,m be

the sets of projected feature points in m projection images. The

projected feature points are classified into k groups. In the ideal

case, each group is the set of projected feature points, which are

the projections of a feature (i.e., gold nanoparticle) in the object

from various angles. Because the rotation angle of the object is

small, the projected feature points are in proximity and have

similar mutual information in two consecutive images. However,

the distance between the two matched projected feature points

depends on the distance between the feature and the rotation axis

of the object. This means that an affine transform cannot match

the projected feature points in two images. Therefore, this study

presents a greedy method for classifying the projected feature

points. For each pair of images, the random sample consensus

(RANSAC) method[29] was first applied to compute an initial

alignment of the two images, and a tracking method was then

employed to match the projected feature points in the next image.

Several feature tracking methods are available [19]. The

proposed method is designed based on the Shafique and Shah’s

method [30], which is a greedy algorithm for tracking moving

objects in videos, and the Tang and Tao’s method [31], which

integrates the hidden Markov model to eliminate unreliable

matches.

Given the projected feature points sets Fi{1 and Fi, the

RANSAC method was applied to compute a translation matrix

Ti,i{1, so that a sufficient number of projected feature points p and

q in Fi{1 and Fi respectively, jTi,i{1(q){pj is less than a given

threshold . Applying translation matrices Ti,i{1, i~2, . . . ,m to

the consecutive images achieves the initial alignment of the m
projection images. All of the images are aligned based on the first

image.

Given the initially aligned projected feature points

Fi,i~1, . . . ,m, the following procedures yield a set of possible

loci of the projected feature points produced by feature points in

the object.

1. Every projected feature point in F1 is the starting point of a

locus.

2. Iteratively process Fi, i~2, . . . ,m;

(a) Let L be the set of the loci computed. For each locus l[L,

compute Ti{1,i(p) where p is the final point of l and Ti{1,i is

the inverse of Ti,i{1. Let L be a region in I i centered at

Ti{1,i(p). Search in L for the projected feature points

(Fig. 12). If this region contains only one projected feature

point q, then that point q is selected as the final point of l. If

the region contains more than one projected feature point,

Figure 10. Eight examples of successful alignment (2).
doi:10.1371/journal.pone.0084675.g010

Figure 11. Two examples of unsuccessful alignment.
doi:10.1371/journal.pone.0084675.g011
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then select the q that has the greatest M, where M is the

average entropy of q and the previous t points on l. If t is

greater than i{1, then M is the average entropy of q and

the points of the entire locus l.

(b) If Fi contains unmatched projected feature points, then each

of these points creates a new locus.

3. Reverse the image orders and repeat Step 2, but do not include

2b to backtrack all loci.

The X-ray images used in this study measured 1024|1024
pixels, and 128|32 pixels was the size of search region L, and five

previous points for t.

Because two loci could intersect (i.e., two projected feature

points on two loci could overlap or be extremely close), the average

entropy must be computed to select the best-matching projected

feature point in Step 2a. In this step, some projected feature points

with a high entropy in Fi are not included in any locus. These

significant projected feature points should not be disregarded, and

Step 2b entails creating a new locus for each of them.

After Step 2, the forward feature tracking required to construct

the set of loci is complete. To verify the correctness of the loci and

complete the loci added in the Step 2b, backtrack all loci in the

final step.

Horizontal Displacement Estimation
Let the set of k loci collected in the previous step be

fl1,l2, . . . ,lkg. Each locus, lj , 1ƒjƒk, consists of m projected

feature points, vf 1
j ,f 2

j , . . . ,f m
j w. These projected feature points

are expected to be the projections of a feature, pj , in the object

from various angles. Assume that these projected feature points are

the projections from {p=2 and p=2. Recall that f i
j is not a point,

but a rectangular box. Take the X -coordinates of the center of the

rectangular boxes, x, and transform the j to h, the direction of the

projections. Then, draw (x,h) for all f i
j in the x-h coordinate

system. The locus of (x,h) corresponds to a sine curve, (i.e., the

sinogram). Given a set of loci of features, the horizontal alignment

is conducted by fitting the curves to a set of sine curves and then by

computing the deviations.

Consider a locus, lj , and assume that the projected feature

points on the locus are the projections of the feature point pj . This

feature point pj can be expressed as (cj ,vj), where c is the radial

coordinate and v is the angular coordinate. According to the

Radon transform [8], the corresponding horizontal position xj in

the i th image (rotation angle hi), 1ƒiƒm, can be written as

xi
j~cj sin (hizvj) ð3Þ

~cj( cos hi sin vjz sin hi cos vj), ð4Þ

or in matrix form as

x~Hu,

where u~½u1,u2�T~½cj sin vj ,cj cos vj �T , x~½x1
j ,x2

j ,:::,xm
j �

T
, and

Figure 12. The feature tracking between two X-ray projection
images Ii21 and Ii. For a point p, its corresponding projected feature
point, q, can be searched in the area L that is determined by applying
the affine transformation Ti{1,i to p.
doi:10.1371/journal.pone.0084675.g012

Table 1. The test results.

Name Size (pixel)
Number of
images

Number of identified
projected features

Number of
reliable features Time (sec.)

Phantom 5126512 180 16 16 102

HeLa1 102461024 140 84 6 364

HeLa2 102461024 140 89 4 397.5

A1 102461024 300 86 3 886

A2 102461024 150 85 4 393

A3 102461024 140 104 72 518

A4 102461024 320 64 8 712

A5 102461024 140 121 4 454.5

A6 102461024 280 80 8 784.5

A7 102461024 140 103 4 406

A8 102461024 280 26 3 590

B1 102461024 270 0 0 477

B2 102461024 300 0 0 490

The run time statistics were obtained by using a MacBook Pro, Intel i7 2.2 GHz, 8 GB main memory, and running Mac OS X 10.8.
doi:10.1371/journal.pone.0084675.t001
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H~

cos h1 sin h1

cos h2 sin h2

..

. ..
.

cos hm sin hm

2
66666664

3
77777775
:

u1 and u2 can be solved by the least-squares method,

u~(HT H){1HT x: ð5Þ

Finally (cj ,vj),

cj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1zu2
2

q
ð6Þ

and

vj~ sin{1 (
u1

cj

): ð7Þ

The horizontal displacement x̂xi
j is estimated by

x̂xi
j~cj sin (hizvj){xi

j : ð8Þ

Because both vj and p{vj are solutions to (7), choose the one

that minimizes the sum of errors,
Pm

i~1 x̂xi
j . To determine the

horizontal displacement ci for the i th image from k feature loci,

use the average of the k horizontal corrections:

ci~
1

k

Xk

j~1

x̂xi
j : ð9Þ

Some loci are unreliable because of noises, out-of-view

projected feature points, or bad projected feature points matching.

These loci should be removed. For each locus lj , adjust the points

on lj based on the estimated ci, 1ƒiƒm. lj is unreliable if the

absolute peak distance between a point on the adjusted lj and its

best-fitting sine wave is greater than a given threshold s. If there

are no unreliable loci, stop the algorithm and output the aligned

results. Otherwise, remove the unreliable loci and repeat the

horizontal displacement estimation algorithm.

Discussion

This paper presents an image alignment method for X-ray

images produced by synchrotron-radiation microscopy. The

proposed method enables reconstructing the 3D volume of small

objects. The proposed method identifies projected feature points

and classifies the projected feature points into a set of loci. The key

idea of this method is that the projection of a point in the object

should be a sine wave in the x-h coordinate system. Thus, fitting

the set of loci to a set of sine waves can compute the parameters

required for alignment.

The proposed method was applied to 12 cases of HeLa cells,

and only two of the 12 could not be reconstructed. Compared with

the available software systems, SPIDER and Xradia, they could

respectively construct three and five cells. Neither SPIDER nor

Xradia could construct the two unsuccessful cases of the proposed

method. The main reason for the unsuccessful cases is the

insufficient number of projected feature points in the X-ray

images. The most crucial factor affecting the performance of the

proposed method is the number of reliable projected feature

points. If there are enough reliable projected feature points, even if

the projected feature points are not in the field of view in some

projections, the method still works well because it also considers

the set of partial loci. The proposed method performs most

favorably if the features that produce the projected feature points

are close to the rotational axis. Carefully adjusting the rotation axis

before images acquisition can improve the quality of the

reconstruction.

Considering the shape of the projected feature points, aside

from particle objects, the proposed method can manage any shape

of object if it contains a sufficient number of distinct projected

features. For examples, the corners of a square, the two tips of a

rod, and the branch points of a tree-structured object can be used

as feature points as long as the features do not deform during

image acquisition. If the images satisfy these requirements, then

the proposed method can successfully align the images.

Table 1 lists the computing time required for the 10 successful

reconstructions of HeLa cells. A graphical user interface software

system for the Windows system and Mac OS X 10.8 has been

developed. The software system can be downloaded from the

following URL: http://www.cs.nctu.edu.tw/ cheng~~ chc/SCTA,
or http://goo.gl/s4AMx.
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