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Abstract

Psychiatric genetic studies have identified genome-wide significant loci for schizophrenia.

The AKT3/1q44 locus is a principal risk region and gene-network analyses identify AKT3

polymorphisms as a constituent of several neurobiological pathways relevant to psychiatric

risk; the neurobiological mechanisms remain unknown. AKT3 shows prenatal enrichment

during human neocortical development and recurrent copy number variations involving the

1q43-44 locus are associated with cortical malformations and intellectual disability, implicat-

ing an essential role in early brain development. Here, we investigated the role of AKT3 as it

relates to aspects of learning and memory and behavioral function, relevant to schizophre-

nia and cognitive disability, utilizing a novel murine model of Akt3 genetic deficiency. Akt3

heterozygous (Akt3-/+) or null mice (Akt3-/-) were assessed in a comprehensive test battery.

Brain biochemical studies were conducted to assess the impact of Akt3 deficiency on corti-

cal Akt/mTOR signaling. Akt3-/+ and Akt3-/- mice exhibited selective deficits of temporal

order discrimination and spatial memory, tasks critically dependent on intact prefrontal-hip-

pocampal circuitry, but showed normal prepulse inhibition, fear conditioned learning, mem-

ory for novel objects and social function. Akt3 loss-of-function, reduced brain size and

dramatically impaired cortical Akt Ser473 activation in an allele-dose dependent manner.

Such changes were observed in the absence of altered Akt1 or Akt2 protein expression.

Concomitant reduction of the mTORC2 complex proteins, Rictor and Sin1 identifies a poten-

tial mechanism. Our findings provide novel insight into the neurodevelopmental role of Akt3,

identify a non-redundant role for Akt3 in the development of prefrontal cortical-mediated

cognitive function and show that Akt3 is potentially the dominant regulator of AKT/mTOR

signaling in brain.
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Introduction

Schizophrenia is a common neuropsychiatric disorder, characterized by positive (i.e. halluci-

nations, delusions) and negative symptomatology (i.e. flat affect, social withdrawal, lack of

motivation) and cognitive disability. Deficits ascribed to abnormal development of the pre-

frontal cortex (PFC) and hippocampal formation, including working memory, executive func-

tion and cognitive flexibility, represent core features of the illness with an unknown etiology

[1–4].

Large-scale genetic studies of schizophrenia have identified several genomic loci and gene

pathways that increase risk. A recent genome-wide association study (GWAS) of 36,989 cases

and 113,075 controls identified 108 independent associations [5], and network analyses of

these data identified risk in several gene pathways involved in neuronal, immune and histone

biology [6]. Interestingly, overlap of risk loci and antipsychotic drug gene targets has recently

been reported [7], suggesting a link between disease etiology and antipsychotic mechanisms of

action. Given the increasing understanding of the genetic basis of schizophrenia, a critical next

step in mental illness research is identification of mechanisms and characterization of the in
vivo function of risk genes. Such validation is necessary to identify novel therapeutic targets of

pathophysiological relevance.

Genetic variation in the AKT3 locus (chr1:243503719–244002945) is a top GWAS signal in

schizophrenia [5,8] and pathway analysis identified 50 single nucleotide polymorphisms

(SNPs) within the AKT3 gene that contribute to four of the top pathways associated with risk

for schizophrenia and bipolar disorder [6]. Moreover, recent investigations testing for enrich-

ment of the 108 schizophrenia-risk loci, and overlapping rare singleton disruptive mutations

in gene sets coding for proteins targeted by antipsychotic drugs, identified AKT3 as a potential

target gene of relevance to antipsychotic treatment and response [7]. These studies identify

AKT3 as a promising risk gene for schizophrenia and further highlight the AKT signaling

pathway as a potential target for improved treatment development [9–11].

AKT (also known as protein kinase B (PKB)) is a critical intracellular serine/threonine

kinase that translates signals from extracellular stimuli including growth factors, cytokines and

neurotransmitters in response to activation of the intracellular second messenger, phosphati-

dylinositol 3-kinase (PI3K). AKT signaling plays critical roles in organogenesis, influencing

cell growth, proliferation, survival, differentiation and metabolism [12–14] and in mammals,

consists of a tripartite pathway which includes members AKT1, AKT2, and AKT3, each with a

high level of protein homology [15] and encoded by independent genes (14q32.32; 19q13.2

and 1q44, respectively). The key regulatory phosphorylation sites on AKT (Ser473and Thr308)

are conserved across isoforms and recent evidence suggests that phosphorylation of Ser473,

which is governed by mTORC2, determines signaling to specific substrates [16,17]. Although

the cellular function of each isotype is poorly understood, emerging in-vitro data suggests that

AKT isoforms are present at distinct subcellular locations [18,19], exhibit different substrate

specificity and importantly enzyme activity, with AKT3 being 15–40 fold more active than

AKT1 or AKT2 [20,21].

Murine studies of single and double isoform Akt knockout (KO) mice have also provided

critical information on the developmental role of individual Akt isoforms, with Akt1 being a

key regulator of whole body organismal growth [22]; Akt2 being critical for normal glucose

homeostasis [23], and Akt3 playing a specific role in attainment of normal brain size, specifi-

cally through regulation of cell size and number [24,25]. Consistently, recent data in rat stroke

models demonstrate a critical neuroprotective role for Akt3 [26].

In addition to the recent AKT3 association, genetic variation in AKT1 has previously been

implicated in risk for neuropsychiatric phenotypes. Specifically, AKT1 is associated in humans
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with schizophrenia [27–33] and abnormal PFC and hippocampal- structure and function [34–

37]. Furthermore, evidence from postmortem brain and peripheral cells of patients with

schizophrenia has identified reduced AKT activity, either through reduced expression of

AKT1 [27,30], AKT3 [38] or phosphorylated AKT Ser473 [39,40]. It is important to note that it

is currently unknown whether the decrease in AKT Ser473 phosphorylation observed in

patients with schizophrenia [39,40] is accounted for by alterations in the activity of AKT1,

AKT2 or AKT3.

In this context, mice with genetic deletion of Akt1 or Akt2 have previously been examined

for neurobehavioral deficits relevant to psychiatric illness. Akt1 deficiency results in deficits of

sensorimotor gating, hippocampal/PFC-dependent learning (affecting contextual fear and spa-

tial and working memory), synaptic plasticity and electrophysiological measures [27,40–42].

In contrast, preliminary analyses show that Akt2 deletion produces selective anxiety and

depression-like phenotypes in mice [43], thus suggesting that the Akt genes play differential

roles in brain development and function. It is currently unknown whether Akt3 deficiency

affects neurobehavioral and cognitive function and what signaling pathways may be involved.

AKT3 is highly expressed in both human and mouse brain [24,25,44], represents up to 50–

60% of total AKT in the murine cortex and hippocampus [24] and shows differential prenatal

expression patterns, with expression being higher during human fetal brain development [44].

Together these observations suggest a pivotal role for AKT3 in neocortical development and

cognitive function. Consistently, numerous genomic studies have suggested a critical role for

AKT3 in the developing human central nervous system, specifically in the attainment of nor-

mal brain size and intellectual ability. Notably, human germline and somatic mutations and

copy-number variations (CNVs) impacting the 1q44 locus and AKT3 have been identified in a

range of developmental brain malformation syndromes, including microcephaly [45,46],

hemimegalencephaly [47,48] and megalencephalic syndromes [49], all of which are character-

ized by intellectual disability. Furthermore, studies have consistently shown that Akt3 knock-

out mice exhibit organ-specific reductions in brain size, with ~20–25% reductions compared

to wildtype (WT) mice [24,25].

Here, we examined the role of Akt3 in cognitive function, learning and memory utilizing a

novel murine model of Akt3 genetic deficiency and studied the biochemical signaling corre-

lates. Akt3 mice with one (Akt3-/+) or zero alleles (Akt3-/-) were generated on the C57BL/6

background and compared to WT littermates (Akt3+/+). Examination of heterozygote Akt3

mice is an important advance of the current study and provides biologically relevant data on

the function of Akt3 in the context of human genetic conditions of Akt3 dysfunction. A com-

prehensive battery of behavioral and physiological tests relevant to schizophrenia and cogni-

tive dysfunction, chosen to allow dissection of underlying neuroanatomical system deficits

were performed along with comprehensive brain biochemical studies of the Akt/mTOR signal-

ing pathway. Our results identify a novel and non-redundant role for Akt3 in prefrontal corti-

cal and hippocampal-mediated cognitive function, identify potential neurobiological

mechanisms underlying association of the AKT3 gene with schizophrenia relevant to cortical

development, and identify Akt3 as a critical determinant of AKT signaling in the brain.

Materials and methods

Subjects and ethics statement

All animal breeding, maintenance and experimental procedures were in accordance with and

approved by the National Institute Health Animal Care and Use Committee and followed the

National Institutes of Health Using Animals in Intramural Research and the University of Col-

orado Denver Institutional Animal Care and Use Committee (IACUC). Akt3-/- mice were
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generated via germ line excision of murine exon 3 (corresponding to nucleotides 209 to 320 of

the mouse cDNA), which introduces a frame shift in the open reading frame (first described

[24]). Akt3-/- mice were originally generated by Dr. Thomas Ludwig (Columbia University)

and Dr. Morris Birnbaum (University of Pennsylvania) and obtained via Material Transfer

Agreement with Columbia University. We successfully established Akt3 mutants on the

C57BL/6 background (>25 generation of backcrosses) in our laboratory which are maintained

as stable colonies. Wild-type (WT, Akt3+/+), heterozygous (Het, Akt3-/+) and knockout (KO,

Akt3-/-) mice were generated and included in all assessments and represent littermates derived

from multiple independent litters. Mice were group housed (up to 5 animals per cage) and

maintained on a 14 hour light/10 hour dark cycle in a climate-controlled animal facility (22

±2˚C) with food and water ad libitum. Animals were sacrificed one week after all behavioral

testing by guillotine without anesthesia, according to our approved IACUC method of sacrifice

for tissue collection.

Genotyping

Genotyping was performed by PCR analysis of DNA extracted from tail clips. In brief, DNA

extracted by the HOT SHOT method was used as a template for PCR amplification of Akt3

using the following primers: Akt3 forward, Primer1, (5’-GATAGG TGG CTT GTG AGT
TC-3’);Akt3 wild-typereverse,Primer 2, (5’-CCAGGG TAA GGC CTA AAG
CT-3’),which produceda 192kb band from DNAs of wild-typemice.
Primers1 and Akt3 knockoutreversePrimer 3, (5’-GCTCAT TCC TCC CAC
TCA TGA-3’) produced a 340kb band from DNA isolated from Akt3-/- mice (S1A Fig).

Amplification was carried out using Invitrogen Platinum Taq (Thermo Fisher Scientific,

PN#10966–018; Grand Island, NY, USA) per the manufacturers protocol, under the following

thermal cycling conditions: Initial denaturation: 94˚C for 3 min, 40 PCR cycles of: 94˚C for 30

sec, 60˚C for 30 sec, 72˚C for 30 sec, final extension: 72˚C for 7 min.

General physical health

Measures of general health and neurological reflexes were assessed in adult mice, as previously

described [50,51]. Mice were observed for measures including posture, fur condition and

empty cage behavior to detect irregular behaviors such as excessive grooming, digging, rearing,

or stereotypy. Neurological reflexes included trunk curl, limb strength (wire hang test), fore-

paw reaching, corneal reflex, ear twitch, whisker twitch, and the righting reflex were also

examined.

Behavioral testing

All behavioral tasks were performed on adult male mice, 3 to 5 months old during the light

phase. Mice were handled by the experimenter the week preceding testing. To prevent influ-

ences of task-related anxiety, animals were split into independent cohorts with the most aver-

sive task performed last. Animals were tested as follows: Cohort 1 (general health, open field,

temporal order object recognition, and startle prepulse inhibition); Cohort 2 (social cognition

tasks and fear conditioning); Cohort 3 (open field, novel object and fear extinction) and

Cohort 4 (open field, object location). All mice were habituated one hour prior to testing.

Locomotor activity was performed the day before temporal order object recognition, novel

object recognition and object location tasks and served as habituation to the open field. All ses-

sions for open field locomotor activity, sociability, temporal order object recognition, novel

object recognition and object location tasks were video recorded with a top mounted CCTV
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camera (Security Cameras Direct, Luling, TX, USA) using Ethovision XT video tracking sys-

tem (Noldus; Leesburg, VA, USA).

Locomotor activity (open field)

The open field test systematically assesses novel environment exploration, general locomotor

activity, and anxiety-related emotional behaviors. Baseline locomotor activity was assessed as

total distance traveled in an open field experimental arena made of gray polyvinyl (42×42×30cm)

under red light luminescence for 60 mins, as previously described [50]. Time spent and distance

traveled in the center portion of the arena was assessed as a measure of anxiety.

Temporal order object recognition memory

The temporal order object recognition task was assessed as previously described [50–53] and

as described in detail in S1 Methods. Temporal order measures recency discrimination,

defined as a rodent’s ability to differentiate between two familiar objects presented at different

intervals and is dependent on information flow between the medial PFC (mPFC), perirhinal

(PRH) cortex and hippocampus [52]. Briefly, the task was performed in three, 5-minute ses-

sions, in the same experimental arena used for locomotor activity, under red light lumines-

cence (5±2 lux). If temporal order discrimination memory is intact subjects would exhibit a

discrimination ratio > 0. Individual discrimination ratios were calculated as time spent by the

animal exploring the object from sample phase 1 minus the time spent with the object from

sample phase 2, divided by the total time spent exploring both objects during the test period.

Novel object recognition

The novel object recognition test was as previously described with small changes [51,53].

Novel object preference requires intact function of the PRH cortex (but not the mPFC or hip-

pocampus [52]). Briefly, the subject was introduced for 10 minutes to two identical objects for

the acquisition trial. Two hours later, the mouse was placed back into the same arena with a

duplicate of the old object and a new object of the opposite color and shape and allowed to

explore for 5 mins. Individual discrimination ratios were calculated as time spent by the ani-

mal exploring the novel object minus the time spent with the object from phase 1, divided by

the total time spent exploring both objects during the test period. Discrimination ratio > 0

show preference for the novel object.

Object location memory

Object location was performed to specifically assess hippocampal function and spatial memory

[52]. The subject was introduced for 10 minutes to two identical objects for the acquisition

trial. One hour later, the mouse was allowed to explore the same two objects for 5 minutes,

with one object in its original location and the other counter-opposite to its original position.

The object locations were counterbalanced across trials to eliminate the chance of side prefer-

ence. Individual discrimination ratios were calculated as time spent by the animal exploring

the relocated object minus the time spent with the unmoved object from phase 1, divided by

the total time spent exploring both objects during the test period. Discrimination ratio > 0

show preference for the moved object and intact spatial memory.

Acoustic startle and Prepulse Inhibition (PPI)

Startle responses and PPI were measured using SR-Lab Systems (San Diego Instruments; San

Diego, CA, USA) as previously described [50,53]. The background level was maintained at 70
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dB. The trials consisted of measurements of the startle response to no stimulus (Nulstim), to

an auditory startle stimulus (Startle; 40 ms, 120 dB), and of the PPI in response to an acoustic

prepulse of 20 ms at 74, 78, 82, 86, and 90 dB.

Fear conditioning, cued and context

Fear conditioning, dependent on hippocampal and/or amygdala function, was assessed using

Pavlovian methodology as previously described [53]. The task was performed using a San

Diego Instruments Freeze Monitor System (San Diego Instruments; San Diego, CA, USA)

conditioning chamber and is described in detail in S1 Methods.

Fear extinction

Fear extinction testing was used to assess amygdala depotentiation [54]. Mice were assessed

over a total of 3 days. Day 1 (Conditioning Phase), consisted of five trials of five auditory tones

(80db) lasting 30 seconds with variable intervals (ranging from 80 to 220 sec) followed by five

additional trials of 30 sec tones preceding a 0.5 second foot shock. Day 2 and 3 (Extinction

Phases) used identical protocols. On ‘Extinction Phase’ days, mice were exposed to thirty tones

lasting 30 seconds each, at variable intervals without any foot shock. Freezing behavior was cal-

culated by the average freezing time (time frozen/allotted time x 100). Normal freezing behav-

ior in mice should progressively decrease over trial days (i.e. % Freezing on Day 1> Day 2>

Day 3).

Social function

Social behavior was tested using methods previously described for assessment of sociability
and preference for social novelty [53,55,56]. Social approach was tested in an automated three-

chambered apparatus. Mice used as the novel stimulus target were C57BL/6 matched to the

subject mice by sex and age.

Biochemical assessment of AKT signaling in Akt3-deficient mice

Fresh, frozen mPFC and hippocampus from behaviorally naïve mice was homogenized with a

sonicator (Ultrasonic Processor model GE50 Sonics, Newtown, CT, USA) in a lysis buffer con-

taining DTT 1 M (Dithiothreitol, Sigma-Aldrich, St. Louis, MO, USA), protease inhibitor

cocktail and T-PER protein Extraction (PN 78510, Thermo Scientific, Grand Island, NY,

USA). Thirty or fifty micrograms of protein was resolved per standard Western blotting proce-

dure, as previously described [11,50]. A FluorChemQ image analyzer from Protein Simple

(San Jose, CA, USA) was used for Chemiluminescence detection method. The optical density

of the protein bands were calculated using Image J software. β-actin was used as a standard

loading control for normalization. A full list of primary and secondary antibodies are

described in Supplementary material.

Brain to body weight measurements

Male Akt3 mice were weighed at postnatal day 105 using an Ohaus CS 200 balance (Parsip-

pany, NJ, USA) immediately before sacrifice for brain collection and weighing.

Quantitative real-time PCR

To quantitatively assess SDCCAG8 expression, total RNA was extracted from PFC and of male

Akt3 mice 100 using the TRIzol Extraction method (Qiagen). Quantitative Real-Time RT-PCR

was carried out as previously described using the standard curve method [53,57] and TaqMan
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assay (Hs01104613_m1). For each sample the expression levels of the gene of interest were

normalized to the housekeeping gene GAPDH (Mm99999915_g1, Life Technologies).

Statistical analyses

Data was analyzed using SPSS statistical software (IBM Corp, Armonk, NY, USA v.22). Statis-

tical significance levels were indicated by p<0.05. Fisher LSD posthocs were used to investigate

significant findings. General health measures and discrimination ratios for recognition tasks

were analyzed with Univariate ANOVA. Repeated Measures ANOVA was used for all other

behavioral tasks unless indicated. Linear Regression Analysis was used to examine effects of

genotype on quantitative protein traits.

Results

Akt3 deficiency results in reduced brain size, with no overall impact on

body size or general health

Akt3 mice with one (Akt3-/+) or zero (Akt3-/-) alleles did not differ from WT (Akt3+/+) mice in

a comprehensive general health screen (S1 Table), demonstrating physical capability for per-

forming the subsequent battery of behavioral tasks. Consistent with previous reports in Akt3

null mice [24,25], Akt3 deficiency impacted total brain weight. Our data identify that Akt3

deficiency is consistently associated with reduced brain weight, expressed in absolute terms

(Main effect of genotype: F (2, 21) = 51.337, p<0.001; posthoc LSD, Akt3+/+ vs. Akt3-/+ and

Akt3+/+ vs. Akt3-/-, p<0.001; S1b Fig) and as a ratio to body weight (main effect of genotype:

F (2, 21) = 49.497, p<0.001; posthoc LSD, Akt3+/+ vs. Akt3-/+ and Akt3+/+ vs. Akt3-/-, p<0.001;

S1c Fig). In addition, we report a novel allele dose-dependent effect on brain weight, with Akt3

heterozygosity being associated with a 7% reduction in brain weight and null- with a 24%

reduction (S1 Fig).

Baseline locomotor activity is increased in Akt3-/- mice

Repeated measures ANOVA revealed a significant decrease of distance traveled over time dur-

ing the open field test (main effect of time: F (11, 759) = 136.238, p<0.001; Fig 1a), demon-

strating that all mice show similar locomotive habituation. No time x genotype interaction was

observed. A significant main effect of genotype was however observed (F (2, 69) = 5.954,

p = 0.004) whereby Akt3-/- mice were hyperactive compared to their Akt3+/+ and Akt3-/+ litter-

mates (posthoc LSD Akt3+/+ vs. Akt3-/-, p = 0.001; Fig 1b). Further investigation showed that

Akt3-/- mice traveled significantly more distance in the border (F (2, 69) = 5.389, p = 0.007;

posthoc LSD Akt3+/+ vs. Akt3-/-, p = 0.002; Fig 1c and 1d). However, there were no differences

in distance traveled in the center among genotypes (p>0.1). We also measured time spent in

the center of the apparatus to assess if Akt3 deficiency is associated with anxiety-like pheno-

types. Our data indicate no effect of genotype on time spent in center (p>0.1, Fig 1e). These

data reveal that genetic loss of Akt3 in the mouse results in hyperlocomotive behaviors similar

to those observed in models of psychostimulant-mediated effects on increased dopaminergic

function and suggestive of a novel role of Akt3 in dopaminergic signaling.

Deficits of temporal order object discrimination memory, object location

memory, but not novel object preference in Akt3-deficient mice

To determine whether Akt3 is involved in cognitive performance we tested Akt3 mice in a

series of recognition memory tasks, including temporal order discrimination memory, novel

object preference and the object location test. The combination of these tests can be used to
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examine the neuroanatomical components of dysfunction, with each task involving specific

regions involved in components of the tests in question. Temporal order object recognition

memory is critically dependent on the mPFC and integrated information flow with the peri-

rhinal cortex and hippocampus [52]. Novel object preference requires intact function of the

PRH cortex (but not the mPFC and the hippocampus), while object location is critically

dependent on hippocampal function for spatial memory [52]. ANOVA revealed a significant

effect of genotype on discrimination performance during the temporal order object recogni-

tion task (F (2, 46) = 4.805, p = 0.013; Fig 2a), driven by significant deficits in the Akt3-defi-

cient mice (posthoc LSD, Akt3+/+ vs. Akt3-/+, p = 0.011; Akt3+/+ vs. Akt3-/-, p = 0.010).

Akt3-deficient mice did not differ in the amount of exploration in the different phases of the

task (Fig 2b; p>0.1).

Next, we tested a separate naïve cohort of mice in the novel object preference task. ANOVA

revealed no effect of genotype on novel object discrimination (p>0.18; Fig 2c), with all mice

significantly exploring the novel object more than the familiar during the test phase (main

effect of trial; F (1, 24) = 102.298, p<0.001; Fig 2d). Exploration time within the different

phases of the task (acquisition and retention) did not differ between genotype groups (p>0.6,

Fig 2d). These findings suggest intact function of the perirhinal cortex in the context of Akt3

deficiency [52].

Finally, a third cohort of naïve mice were assessed in the object location task to examine

spatial memory, dependent on intact hippocampal function [52]. We observed a significant

Fig 1. Increased locomotor activity but no anxiety-like phenotype in Akt3-/- mice. (a) Ambulatory distance in 5 min bins

displayed by WT and Akt3-deficient mice over the 60 minutes in the open field arena. (b) Akt3-/- (KO) mice display a

hyperlocomotive phenotype, as defined by a significant increase in total distance traveled per segment. (c) Hyperlocomotion

was accounted for by significant increased distance traveled in the border of the open field apparatus. (d) Representative

screen shot of a WT and KO mouse performing the open field task. (e) No effect of genotype on time spent in the center of the

apparatus was observed. (a) Data represents mean ± SEM. (b, c, e) Data bars represent the mean, with individual data points

representing individual subject measures, n = 29 WT, 28 Het, 15 KO. **p�0.002 compared to WT.

https://doi.org/10.1371/journal.pone.0175993.g001
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Fig 2. Impaired temporal order object discrimination memory and spatial location memory in

Akt3-deficient mice. (a) Discrimination ratio displayed by Akt3-deficient mice during the 5 min test phase

(sample 3) of the temporal order object recognition task. (** p�0.01 by posthoc LSD; n = 14 WT, 28 Het, 7

KO). (b) Total time spent exploring the objects presented during the 5-min sample phases 1, 2 and 3. (c)

Discrimination ratio for the novel object by Akt3-deficient mice during the novel object test (n = 9 WT, 11 Het, 7

KO). (d) Time spent exploring the two objects during the 10 min acquisition session and the 5 min retention

session of the novel object recognition test. (e) Discrimination ratio for the moved object over the same-placed

object (**p�0.01; n = 9 WT, 10 Het, 6 KO). (f) Time spent exploring the two objects during the 10 min

acquisition and the 5 min test session of the same object location test. (g) Absence of differences in baseline

movement (Nulstim) or Startle responses in the pre-pulse inhibition test in Akt3-deficient mice. (n = 18 WT, 26

Het, 8 KO). (h) Percentage prepulse inhibition of the acoustic startle response displayed by the same mice

after the presentation of prepulse (n = 18 WT, 26 Het, 8 KO). Data bars represent the mean, with individual

data points representing individual subject measures.

https://doi.org/10.1371/journal.pone.0175993.g002
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effect of genotype on spatial memory (F (2, 21) = 3.755, p = 0.02). WT mice showed a positive

discrimination ratio for the relocated object over the originally placed object (Fig 2e), which

was significantly impaired in Akt3-deficient mice (posthoc LSD, Akt3+/+ vs. Akt3-/+, p = 0.006;

Akt3+/+ vs. Akt3-/-, p = 0.14). Akt3-deficient mice did not differ in their extent of exploration

of the objects during the acquisition and test phases of the task (p>0.2; Fig 2f). Together, these

observations demonstrate deficits of prefrontal cortical and/or hippocampal-mediated cogni-

tive function in the context of Akt3-deficiency.

Sensorimotor gating is normal in Akt3-deficient mice

Prepulse Inhibition (PPI) evaluates sensorimotor gating in the pre-pulse inhibition of the

acoustic startle response and is a deficit observed commonly in neurodevelopmental disorders,

including schizophrenia [58]. One-way ANOVA indicates no significant differences in nulstim

(p>0.06) or startle (p>0.3) between genotypes (Fig 2g). Significant increases of inhibition

across prepulse were observed in all groups (F (4, 196) = 78.345, p<0.001; Fig 2h), with no

genotype effect or genotype x prepulse interaction (p>0.8).

Learned fear conditioning and fear extinction are intact in Akt3-deficient

mice

Using Pavlovian fear conditioning, we evaluated Akt3’s role in learning and memory mediated

via hippocampal and amygdala neural circuitry. Notably, the hippocampus is a key mediator

of the acquisition and expression of conditioned fear to a particular context, while the acquisi-

tion and extinction of auditory cued fear memories relies on the amygdala [59]. During the

context fear test, we observed significant freezing behavior during the post training (acquisi-

tion) and contextual fear phases (main effect of phase: F (2, 74) = 35.972, p�0.001; Fig 3a),

with no significant genotype effects (p>0.8). At baseline, freezing was equal to zero in all

groups. Re-exposure to the same context 24hrs, without cue, elicited a similar pattern of %

freezing to that observed post training in all genotypes (Fig 3a). These data indicate that Akt3

does not impact fear learning and memory. Similarly, during the cued fear test all mice dis-

played normal cued conditioned freezing, revealed by a significant increase in freezing to the

auditory cue (F(1, 37) = 118.634, p<0.001; Fig 3b) with no significant effect of genotype or

interactions (p>0.2). To further assess synaptic efficacy within the amygdala, we used auditory

fear extinction to assess depotentiation, the reversal of the learned condition-induced potentia-

tion of the fear response [54]. All mice displayed a significant decrease of freezing over trials (F

(21, 672) = 41.917, p<0.001; Fig 3c) with no effect of genotype (p>0.1).

Akt3 deficiency does not impact social functioning

Abnormalities of social cognition are present in various neurodevelopmental disorders,

including schizophrenia and autism [60–62]. To assess if Akt3 impacts social interaction

behaviors, we examined sociability and social novelty utilizing the three-chamber sociability

test as previously described in detail [50,53]. Analysis of sociability revealed that all mice exhib-

ited a main chamber preference as assessed by exploration measured as sniff time (main effect

of chamber: F (1, 33) = 121.336, p<0.001; Fig 3d) and time spent in the chamber containing

the novel mouse vs. the novel object (F(1, 33) = 30.920, p<0.001), with no effect of genotype or

interactions observed (p>0.2). For social novelty, all mice displayed significant preference for

interaction with the novel mouse (2) vs. the familiar mouse (mouse 1) (main effect of chamber

measured as exploration via sniff time: (F (1, 33) = 15.724, p<0.001; Fig 3e)), independent of

genotype (p>0.3). These observations suggest that social functioning is preserved in the con-

text of Akt3 deficiency.
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Biochemical signaling in Akt3-deficient mice

We next examined expression and activity of select proteins in the AKT/mTOR signaling

network in the mPFC of Akt3-deficient mice. To address the issue of isoform redundancy

and biological compensation, we first measured total Akt1 and Akt2. Linear regression anal-

yses revealed no differences in levels of Akt1 (p = 0.8; Fig 4a) or Akt2 (p = 0.8; Fig 4b) pro-

tein, consistent with previous findings in Akt3 null mice [24, 25]. Our findings also

demonstrate that hemizygous deletion of Akt3 does not result in changes in the level of Akt1

(Fig 4a) or Akt2 (Fig 4b). Linear regression revealed that 91% of the variance in Akt3 protein

was explained by genotype (Model: F (1,16) = 160.30, p<0.0001; Genotype; β = −.0.95; t =

−12.66; p<0.0001), with decreased levels in Akt3-/+ mice and absence of detection in Akt3-/-

mice (Fig 4c). The activation status of Akt, as measured by phosphorylation of the pAkt

Ser473 site, a conserved site across all three isotypes, was examined in Akt3-deficient mice.

Fig 3. Akt3-deficiency does not impact fear learning and extinction, or social behavior. (a) Freezing behavior prior

(baseline), subsequent (post training), and 24 hours later (context 24hr) after the cue-shock pairings. All genotypes increased

freezing subsequent to the CS-US pairings and genotypes did not differ during the testing of contextual conditioning (n = 12

WT, 20 Het, 8 KO). (b) Freezing behavior during testing for cued conditioning in the altered context without (CS off) and plus

the auditory cue (CS on; n = 12 WT, 20 Het, 8 KO). (c) Fear extinction after repeated exposure to the auditory cue (CS alone)

shows no effect of genotype of genotype x day interaction (n = 13 WT, 13 Het, 9 KO) (d) Time spent sniffing the novel mouse

during the 10-min test for sociability was greater than time spent sniffing the novel object for all mice (n = 10 WT, 18 Het, 8 KO).

(e) Time spent sniffing the novel mouse 2 was greater than time spent sniffing novel mouse 1 (familiar) during the 10-min test

for social novelty was greater for all mice (n = 10 WT, 18 Het, 8 KO). ***p�0.001 main effect of chamber. (a,b,d,e) Data bars

represent the mean, with individual data points representing individual subject measures. (c) Data represents mean ± SEM.

https://doi.org/10.1371/journal.pone.0175993.g003
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Linear regression revealed that 78% of the variance in pAKT Ser473 was explained by geno-

type (Model: F (1,9) = 33.33, p<0.001; Genotype; β = −0.89; t = −5.77; p<0.001), with

decreased levels in Akt3-/+ mice and absence of detection in Akt3-/- mice (Fig 4d). Remark-

ably similar findings were observed in the hippocampus (Model: F (1,9) = 71.01, p<0.001;

Genotype; β = −0.94; t = −8.4; p<0.001; S2 Fig). Phosphorylation of Ser473 is mediated by the

PDK2/Rictor/Sin1-mTOR complex, mTORC2. Significant effects of genotype were observed

on levels of Rictor and Sin1, critical components of mTORC2 (Rictor; Model: F(1, 9) = 6.96,

p = 0.03; Genotype; β = −0.68; t = −2.63; p = 0.03; Sin1; Model: F(1, 9) = 16.88, p = 0.003;

Genotype; β = −0.82; t = −4.1; p = 0.003), with reduced levels observed in the context of Akt3

deficiency (Fig 4e and 4f). Given the evidence for overall reduced activity of Akt in the con-

text of Akt3 deletion, not compensated for by changes in total Akt1 or Akt2, we predicted

altered expression/activation of downstream targets of Akt. The phosphorylation levels and

total levels of glycogen synthase kinase 3 (GSK3β), pGSK3β/GSK3β were unaltered and pro-

teins indicative of mTORC1 signaling were not altered in Akt3 mice (total mTOR; phosphor-

ylation of mTOR at (Ser2448) and p70S6K). No changes were observed in the total levels of

PSD95, PI3K, p110δ (PI3Kδ), AMPA receptor (GluR 2/3/4), NMDA receptor (NMDAR1) or

PDK1. No effects of genotype were observed for expression levels of the SDCCAG8 gene (S3

Fig). Expression of the housekeeping gene and loading control, β-actin did not significantly

differ across genotypes (Fig 4; p>0.9)

Fig 4. Biochemical changes in the mPFC of Akt3-deficient mice as determined by Western blot. Absence of

compensatory changes in Akt1 (a) or Akt2 (b) protein levels in Akt3-deficient mice. (c) Akt3 protein is significantly reduced in

Akt3 (-/+) Het mice and absent in (-/-) KO mice. (d) Reduced pAKT Ser473 in Akt-deficient mice. (e) Total Rictor and Sin 1 (f)

protein was decreased in Akt3 mutant mice. * p�0.05, **p�0.01, ***p�0.001. Quantitative data derived from n = 3–6 per

genotype. Data represents mean ± SEM. Representative Western blots are shown. Arrow denotes excluded sample due to gel

bubble.

https://doi.org/10.1371/journal.pone.0175993.g004
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Discussion

Akt3 is the predominant Akt isotype in the adult brain [24,25], transcription is enriched in

human fetal neocortex [44] and haploinsuffiency in humans is linked to cortical malforma-

tions, including microcephaly and cognitive dysfunction [45,46,63]. Despite this evidence, lit-

tle is known about the neurobiological role and signaling specificity of AKT3. In the present

study, we utilized Akt3 hemizygous and nullizygous mice in a pure C57BL/6J background and

provide evidence for a causal relationship between Akt3 levels and the attainment of normal

brain size, extending prior findings [24,25] to show that heterozygous reduction of Akt3 is

associated with selective, subtle and dose-dependent decreases in brain size (7%). Moreover,

we demonstrate that Akt3 is critical for neurocognitive performance linked to prefrontal corti-

cal-hippocampal circuitry and that these changes are associated with a dramatic reduction of

activated AKT (as measured by AKT Ser473 phosphorylation), deficits not accounted for by

compensation of Akt1 or Akt2 levels. Together, these data implicate an indispensable and

non-redundant role for Akt3 in brain development and cognitive function and identify neuro-

biological mechanisms of relevance to schizophrenia.

Contemporary psychiatric genetic studies have identified polymorphic variation in the

AKT3 gene, including a putative functional SNP (rs14403) in the 3 untranslated region (UTR)

of transcript NM_005465, as genome-wide associated to schizophrenia [5,8]. While the molec-

ular mechanisms of risk remain to be determined, it is noteworthy in the context of our find-

ings, that subtle whole brain- and cortical grey matter volume reductions have been observed

in patients with schizophrenia [64–66], with meta-analyses of postmortem brain and structural

imaging studies showing 2–3% global brain volume reductions, with larger reductions in the

PFC and temporal lobe [64,66,67]. Although there is considerable debate about the origins of

structural brain changes in schizophrenia, including secondary effects of antipsychotic drugs,

drugs of abuse and illness [68], many changes are present to a lesser degree in first-episode

patients [68–70]; and show evidence of heritability in patients and siblings [66,71]. Recent

large-scale imaging genetic studies also provide evidence of a shared genetic basis of several

neuroanatomical phenotypes and schizophrenia risk [72]. Evidence of association to genes

which control key biological processes related to structural brain development, therefore

implicate a potential neurobiological mechanism of risk. Consistently, a new genome-wide

association study of 32,438 adults shows that variants determining human intracranial volume

and related cognitive function are enriched in genes for PI3K-AKT signaling, including AKT3

[73]. Interestingly, rs7538011, an intronic variant associated with human intracranial volume

[73], is in linkage-disequilibrium (LD) with the schizophrenia 3 UTR risk variant, rs14403 (D’

0.92; R2 0.52) and has membership in one of the top pathways showing cross-disorder associa-

tion to psychiatric risk [6].

Previous examination of Akt3 null mice shows that reduced brain size ([24] and confirmed

in this study) is apparent at birth and histologically defined by a reduction in cortical cell size

and density [24], potentially consistent with Akt3’s reported role in axonal and dendritic devel-

opment [74,75]. Notably, similar cytoarchitectural changes have been reported in postmortem

brain of patients with schizophrenia [76–80] and in conjunction with evidence for genetic

association to biological pathways that regulate axonal, dendritic, and postsynaptic develop-

ment [6], suggest that at least some neuropathological changes may be genetically determined,

neurodevelopmental in origin, and potentially related to alterations in AKT signaling.

Mammalian brain size, in particular the magnitude of the cerebral cortex, is a significant

determinant of cognitive ability [81,82] and several disorders of neurodevelopment, including

schizophrenia are characterized by cognitive dysfunction [83]. Behavioral analysis revealed

that genetic reduction of Akt3 produces selective deficits in mPFC and/or hippocampal
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mediated neurocognitive function, as evidenced by discrimination impairments of temporal

order object recognition memory and spatial memory. Such findings are similar to temporal

and spatial memory impairments observed in patients with schizophrenia [84–86] and consis-

tent with abnormalities of prefrontal cortical function in the disorder [1,3, 87–89]. These novel

results identify Akt3 as a critical determinant of prefrontal cortical and hippocampal develop-

ment, not previously appreciated. Indeed, Akt3 is more transcriptionally active in cortex and

hippocampus compared to other brain regions, [24,45] further supporting regional biological

importance. Study of the effects of schizophrenia-risk associated AKT3 polymorphisms (as

previously done for AKT1 [34,35,37]) on neuroanatomical structure and neurocognitive func-

tion in normal human subjects, is warranted.

The results presented here also highlight a key role for Akt3 in the expression of dopamine-

mediated behaviors, with Akt3 null mice exhibiting a generalized increase in baseline locomo-

tor activity in the open field. These findings are in contrast to observations in Akt2 null mice,

whereby decreased ambulatory behavior was observed in the context of an anxiety like pheno-

type [43], and Akt1 null mice where no differences in locomotion were observed [90]. D2,

dopamine receptors (the established target of antipsychotic drugs) are critical regulators of

AKT signaling in brain [91,92], mediated via the β-arrestin 2/PP2A complex [93]; whereby

dopamine-mediated signaling, and D2 receptor antagonism, result in inactivation and activa-

tion of AKT, respectively. [27, 91,92]. Which AKT (1, 2 or 3) mediates these effects is still

unclear, although some evidence suggests a potential role for Akt1 [27]. Our data in this con-

text implicate a novel role for Akt3 in dopamine neurotransmission and highlight more tar-

geted approaches towards Akt3 for targeted neuroleptic drug development.

Biochemically, phosphorylation of Ser473 was dramatically diminished in the brain of Akt3

mutant mice, with Akt3-/+ mice showing 40% reduction and Akt3-/- showing complete abol-

ishment, compared to WT. These effects were not accompanied by changes in total Akt1 or

Akt2, supporting previous observations in Akt3 nullizygous mice [24,25], and suggest that

Akt3 is a primary determinant of Ser473 activity in brain and a critical Akt isotype that does

not exhibit redundancy. Phosphorylation status of Ser473 is used as an endogenous functional

readout of mTORC2 kinase activity and in agreement, while the loss of Akt3 did not affect lev-

els of mTOR, it did significantly abrogate levels of Rictor and Sin1, critical components of the

PDK2/mTORC2 complex [16,94]. Importantly, all sites indicative of mTORC1 activation

[94,95], including phospho-mTOR (Ser2448) and p70S6K were unaltered in Akt3 mice. These

results suggest an mTORC2-dependant mechanism is responsible for the microcephaly and

behavioral impairments in Akt3 mutant mice. Remarkably, ablation of the mTORC2 compo-

nent, Rictor [94], produces dramatically reduced Akt Ser473 activation, microcephaly and alter-

ations in neuronal morphology and function, without impact on mTORC1 signaling.

Consistent results are also observed for Sin1 ablation [16]. These findings are strikingly remi-

niscent of Akt3 deletion and suggest a previously unappreciated feedback loop between Akt3

and mTORC2 and show that in brain, Akt3 may be the primary target for mTORC2 activity.

The related mechanisms, however, remain to be determined. It is noteworthy that attenuated

AKT activity and phosphorylated AKT Ser473 [39,40,96] is observed in patient brain and

peripheral cells, suggesting that impaired PI3K-AKT signaling is relevant to etiopathogenesis

of schizophrenia. Our data in mouse provide support for this hypothesis and demonstrate that

reductions in Akt3 can result in attenuated brain AKT activity and phenotypic outcomes simi-

lar to observations in schizophrenia. Since cognitive deficits remain a significant therapeutic

problem in schizophrenia, these findings highlight the AKT signaling pathway and Akt3 spe-

cifically, as a biologically relevant therapeutic target.

Finally, one potential shortcoming of in-vivo gene-targeting technologies is the issue of dis-

rupting flanking genes [97]. This is particularly important for study of Akt3 function, given
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that SDCCAG8, a gene also implicated in schizophrenia [8, 98], flanks Akt3 both in humans

and mouse and shares regulatory regions. We measured brain SDCCAG8 expression in Akt3

mice and show no differential expression based on genotype. This finding is important as it

demonstrates that phenotypes observed in Akt3 mutant mice are the direct result of Akt3

disruption.

Conclusion

In summary, our study validates the essential role of Akt3 in the attainment of normal brain

size and reveals a critical role for Akt3 in prefrontal cortical-hippocampal mediated cognitive

function relevant to genetic risk for schizophrenia. Furthermore, we identify a central, non-

redundant role for Akt3 in governing brain Akt signalling and identify Akt3 as potential novel

pharmacological target for neuroleptic treatment development.
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