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LETTER TO EDITOR

Integrated biomarker profiling of the metabolome
associated with impaired fasting glucose and type 2 diabetes
mellitus in large-scale Chinese patients

Dear Editor,
Type 2 diabetes mellitus (T2DM) is an important cause

of diabetes complications and mortality.1 The prevalence
of prediabetes including impaired fasting glucose (IFG) is
approximately one-third of the population in China,2 but
comprehensive early risk evaluation is weak. Thus, it is
important to identify diagnostic biomarkers of prediabetes
and T2DM and improve the disease risk prediction abil-
ity.We created the validated integrated biomarker profiling
(IBP) related to the development of IFG and T2DM. More-
over, the established service website of the IBP implied
potential clinical application.
To construct the IBPs of IFG (fasting blood glucose

(FBG), 6.1 ≤ FBG < 7.0 mmol/L) and T2DM (FBG ≥

7.0 mmol/L), 1705 participants (BMI < 30) from five cen-
ters in China recruited randomly assigned into the discov-
ery (n= 153), test (n= 420), and validation phases (n= 1132,
146 hyperlipidemia patients as an interference group, train-
ing set of 792 [69.96%], test set of 340 [30.04%]) (Figures 1A
and B), which were homogeneous (Table 1).
The nontargeted metabolomics analysis was performed

in the discovery and test phases to identify potential
biomarkers of IFG and T2DM; in the validation phase,
the potential biomarkers were quantified based on tar-
geted metabolomics. In the discovery, after peak pretreat-
ment using the 80% rule (Figures S1A-S1G in Support-
ing Information),3 the quality control samples clustered
together (Figures S2A-S2B), which indicated that the anal-
ysis was stable and reliable. Furthermore, there were sig-
nificant differences in metabolites among the normal glu-
cose tolerance (NGT), IFG, and T2DM groups (Figures
S2A-S2F)with not overfitting (Figure S1H).After screening
and identification, 31 and 42 biomarker candidates were
identified in the fasted serum of IFG and T2DM patients,
respectively (Tables S1-S2 in Supporting Information). In
the test phase, P < .05 was regarded as significant within
similar retention time ranges. Basis on the results of logis-
tic regression (LR) and receiver operating characteristic
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curve (ROC) analysis (Tables S3-S4), 41 metabolites were
regarded as the potential biomarkers of IFG or T2DM in
multicenter (Table S5).
In the validation phase, the significant differences

were found in the serum concentrations of the poten-
tial biomarkers (Figure S3). The results of risk analysis
showed that l-valine, l-leucine, and l-isoleucine appeared
to be risk factors for IFG and T2DM; lysophosphatidyl-
choline (LPC, P-16:0) appeared to be associated with a
lower risk of IFG and T2DM, which was consistent with
the previous studies.4–6 Oppositely, the concentration of l-
phenylalanine was lower in the serum of IFG and T2DM
patients than in that of individuals with NGT, which
was contrary to the reported findings (Table S6).4 Unfor-
tunately, ROC analysis showed that the single potential
biomarker performed poorly for the diagnosis of NGT, IFG,
T2DM, and hyperlipidemia (Figure S4). Therefore, it is
necessary to integrate multiple biomarkers to comprehen-
sively reflect the occurrence and development of diabetes.
The differences in metabolites might mediate the occur-

rence and development of diabetes associated with insulin
resistance and dysfunction of pancreatic islet β-cells,7
which wasmanifested the disorder of glycerophospholipid
metabolism and amino acid metabolic pathways (Figure
S5).With the Krebs cycle as the hub,4,5,7 there was an inter-
relation among the metabolic pathways (Figure 2). Thus,
the risk biomarkers of diabetes should be regarded as a
whole biological event associated with biological network.
Therefore, the construction of IBP to assess diabetes risk
from the perspective of multiple biomarkers that related
to the occurrence and development of IFG and T2DM pro-
vides a potential biological mechanism basis.8
Simply considering multiple nonquantitative biomark-

ers as a single biomarker ignored the overlap of individu-
als with and without the incidence of disease, which com-
promised their discriminatory ability.9 Three machine-
learning methods (eXtreme Gradient Boosting [XGBoost],
LR, and support vector machine [SVM]) were selected
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F IGURE 1 Study design. (A) The three-step analysis strategy. Nontargeted metabolomics in the discovery and test phases was
performed to identify and validate potential biomarkers. In the validation phase, the potential biomarkers were screened using Gini impurity
to construct the integrated biomarker profilings of IFG and T2DM based on the eXtreme Gradient Boosting model, and individuals with
hyperlipidemia were set as an interference group to evaluate the prediction accuracy of the integrated biomarker profiling. (B) The overview
of study design. In the discovery phase, 153 subjects were enrolled to screen biomarker candidates of IFG and T2DM; 420 subjects were
recruited to test the biomarker candidates in the test phase; in the validation phase, an independent training set of 792 subjects was used to
construct the IBP prediction model for NGT, IFG, T2DM, and hyperlipidemia. Then, the IBP prediction models were evaluated with a test set
of 340 subjects. Abbreviations: IFG, impaired fasting glucose; LLOQ, low limit of quantification; LPC, lysophosphatidylcholine; NGT, normal
glucose tolerance; ROC, receiver operating characteristic curve; T2DM, type 2 diabetes mellitus; UHPLC-Q-Orbitrap-HRMS, ultra-high
performance liquid chromatography Q Exactive-Orbitrap high-resolution mass spectrometer; UHPLC-TSQ-Altis QQQMS, ultra-high
performance liquid chromatography TSQ Altis triple quadrupole mass spectrometer
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F IGURE 2 Coarse pictorial diagram of main metabolic pathways of candidate biomarkers and their interrelationships. Red arrows
represent the notable increase, whereas green arrows represent the notable decrease of serum biomarkers (candidate biomarkers
(aquamarine boxes) and potential biomarkers (grass boxes)). Black arrows represent one or more steps of an enzymatic reaction.
Abbreviations: LPC, lysophosphatidylcholine; PC, phosphatidylcholine

F IGURE 3 Establishment of integrated biomarker profiling. (A) AUC of the integrated 16 potential biomarkers from the LR, SVM, and
XGBoost model. (B) AUC of the integrated 10 potential biomarkers from the LR, SVM, and XGBoost model. (C) Incremental feature selection
curve of the integrated 16 potential biomarkers from analysis of variance, mutual information, and Gini impurity based on XGBoost model.
(D) Gini impurity of 16 potential biomarkers. Abbreviations: AUC, area under the curve; LR, logistic regression; LPC,
lysophosphatidylcholine; MI, mutual information; SVM, support vector machine; XGB, eXtreme gradient boosting
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F IGURE 4 Schematic prediction diagram of several typical representative samples using the integrated biomarker profiling. Schematics
for representative NGT (A) (the predictive values of unknown sample 1 in NGT, IFG, T2DM, and hyperlipidemia were 0.795, 0.075, 0.066, and
0.064, respectively), IFG (C) (0.092, 0.676, 0.139, and 0.093), T2DM (E) (0.094, 0.173, 0.597, and 0.137), and hyperlipidemia (G) (0.157, 0.092,
0.048, and 0.702) samples using the integrated biomarker profiling. Predictive values for representative samples belonging to the NGT (B),
IFG (D), T2DM (F), and hyperlipidemia (H) groups. It could be interpreted that the unknown sample belongs to the group that has the
highest predictive value. After normalized concentrations, solid line: the mean value of potential biomarkers in four groups; gray area: mean
± SD; dotted line: the normalized value of concentration of the potential biomarker in an unknown sample. Abbreviations: Hyper,
hyperlipidemia; IFG, impaired fasting glucose; LPC, lysophosphatidylcholine; NGT, normal glucose tolerance; T2DM, type 2 diabetes
mellitus

to construct prediction model. The results showed that
the XGBoost model has better predicted performance
(XGBAUC= 0.819, LRAUC= 0.791, and SVMAUC= 0.789;
Figure 3A).10 Further, Gini impurity was used to select
10 biomarkers that have better prediction ability of IFG
and T2DMdisease risk from targeted 16 potential biomark-
ers to construct IBP (XGBAUC = 0.823, Figures 3B and
C), which consisted of LPC (P-16:0), l-isoleucine, l-
arginine, l-carnitine, l-phenylalanine, l-glutamic acid,

l-lysine, l-methionine, l-leucine, and acetyl-l-carnitine
(Figure 3D).
The predicted performance of the IBP was satisfactory.

In the discovery phase, the prediction accuracy of the
IBP for discrimination of NGT, IFG, and T2DM was 96%
with high sensitivity and specificity. The AUC values of
the IBP in the discrimination of IFG and NGT, T2DM
and NGT, T2DM and IFG, and T2DM and hyperlipidemia
were 0.804, 0.936, 0.823, and 0.937, respectively (Figure S6).
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Moreover, the AUC value of the IBP for discrimination of
NGT, IFG, and T2DM was 0.828 in the test phase (Table
S7). The IBP showed that the concentrations of 10 potential
biomarkers were different in NGT, IFG, and T2DM (Fig-
ure 4). An unknown and random sample might belong
to the group that has the highest predictive value in
NGT, IFG, T2DM, and hyperlipidemia groups based on the
XGBoost model. For examples, if the predictive values of
unknown sample 1 in NGT, IFG, T2DM, and hyperlipi-
demia group were 0.092, 0.676, 0.139, and 0.093, respec-
tively (Figure 4D), which implied that it might be a patient
with IFG (Figure 4C). The predictions for representative
samples in the other groups were shown in Figure 4.More-
over, we established a website of the IBPs for IFG and
T2DM for the first time (http://pdm.lin-group.cn/) that can
further improve the potential clinical public service ability
of this study.
In conclusion, based on large sample data from the clin-

ical real world, through metabolomics and machine learn-
ing methods, we have established the IBPs of IFG and
T2DM and its public service website related to the occur-
rence and development of prediabetes and T2DM, which
could avoid the use of multiple biomarkers that could con-
fuse the interpretation of the results, reduce the impact of
information fluctuation of single or isolated biomarker on
the overall evaluation efficiency, and improve the auxiliary
evaluation ability of the potential biomarkers for clinical
diseases.
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