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Abstract: Healthcare service centers must be sited in strategic locations that meet the immediate needs
of patients. The current situation due to the COVID-19 pandemic makes this problem particularly
relevant. Assume that each center corresponds to an assigned place for vaccination and that each
center uses one or more vaccine brands/laboratories. Then, each patient could choose a center
instead of another, because she/he may prefer the vaccine from a more reliable laboratory. This
defines an order of preference that might depend on each patient who may not want to be vaccinated
in a center where there are only her/his non-preferred vaccine brands. In countries where the
vaccination process is considered successful, the order assigned by each patient to the vaccination
centers is defined by incentives that local governments give to their population. These same incentives
for foreign citizens are seen as a strategic decision to generate income from tourism. The simple
plant/center location problem (SPLP) is a combinatorial approach that has been extensively studied.
However, a less-known natural extension of it with order (SPLPO) has not been explored in the same
depth. In this case, the size of the instances that can be solved is limited. The SPLPO considers an
order of preference that patients have over a set of facilities to meet their demands. This order adds a
new set of constraints in its formulation that increases the complexity of the problem to obtain an
optimal solution. In this paper, we propose a new two-stage stochastic formulation for the SPLPO
(2S-SPLPO) that mimics the mentioned pandemic situation, where the order of preference is treated
as a random vector. We carry out computational experiments on simulated 2S-SPLPO instances
to evaluate the performance of the new proposal. We apply an algorithm based on Lagrangian
relaxation that has been shown to be efficient for large instances of the SPLPO. A potential application
of this new algorithm to COVID-19 vaccination is discussed and explored based on sensor-related
data. Two further algorithms are proposed to store the patient’s records in a data warehouse and
generate 2S-SPLPO instances using sensors.

Keywords: heuristic algorithm; Lagrangian and semi-Lagrangian relaxations; mathematical pro-
gramming; SARS-Cov2; sensing and data extraction; simple plant and uncapacitated facility location
problems; XPRESS software

1. Introduction

The process of making decisions based on a solution to a problem, within the context
of mathematical modeling, can take several stages. In each of these stages, events are
defined in a such way that may be dependent on each other and on the variables that
they define.
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The use of random variables in the above-mentioned form of decision making may be
described within a stochastic programming context. Then, the model can be represented as
a sequential decision-making process, where the variables of one stage that are unknown
at first are part of the input parameters of the subsequent stage.

A stochastic programming problem is a mathematical formulation with constraints
where some of its components can be represented by random variables. If the problem
has decisions that have to be made after the uncertainty is resolved (realization), it takes
the name of the resource program [1]. The values of the random variables are known after
carrying out an experiment, and decisions can be made at a first stage and at a second
stage, before and after the experiment, respectively. In addition, each stage can contain a
succession of decisions and they can be made over different periods of time. In this case, a
multi-state stochastic programming problem should be formulated. Thus, we can say that a
stochastic programming problem is multi-state if the decisions depend on realizations that
occur over time. Since its introduction in the seminal papers by Dantzig [2] and Beale [3],
the stochastic framework has been widely studied and applied in diverse areas, such as
transportation [4], inventory management [5], drug supply [6], and industrial processes [7],
among others.

Another example of the above framework is the so-called simple plant location prob-
lem, SPLP in short [8]. In the SPLP, given a set of possible locations, we must decide where
to open facilities and then distribute resources demanded by certain customers/patients,
minimizing the costs involved. Note that the SPLP is a combinatorial approach, where the
mathematical model can be viewed as one of two stages that tries to answer two questions:
(i) what facilities should be opened, and (ii) how should these facilities be located in such
a way that the customer demand is met? The second question must be answered after
the facilities (unknown at the beginning) are stated, that is, after the variables defined at
this stage for such a decision are revealed by conducting an experiment that considers a
possible future state of a second stage. Therefore, it is logical to think that it is necessary to
define different forms of this state of nature that represent possible future scenarios such
that the effect of uncertainty is minimized. Described in this way, the SPLP is known as a
two-stage stochastic simple plan location problem, 2S-SPLP in short.

The 2S-SPLP has been widely studied, and its solution methods have been shown to
be efficient. As mentioned in [1], it is important to consider that, taking advantage of the
structure of the problem, the 2S-SPLP is especially beneficial in stochastic mathematical
programming, and it is the main focus of the algorithmic work in this area. Here, the
concept of structure refers to any characteristic in the mathematical formulation that can be
used to provide a solution. One of the most-used procedures for stochastic mathematical
programming that involves integer variables is the so-called integer L-shape method
proposed in [9]. This method is a branch-cut algorithm that uses the L-shape that the
coefficient matrix has in the stochastic formulation of the 2S-SPLP and solves subproblems
obtained by the Benders decomposition. For details of this and other similar procedures,
see [1,10]. Lagrangian relaxation (LR) is a less-used approach, but a full description of
different applications can be found in the references previously cited. Some gradient
(subgradient)-based methods, such as those used in LR, were applied over other algorithms
to speed up the search for the optimum in discrete problems; see [11] as an example.

A less-known extension of the SPLP is when an order of preference, that customers
have over a set of facilities to meet their demand, is considered. The SPLP with order is
denoted by SPLPO in short [12,13], with the size of the instances in the SPLPO that can be
solved being limited. Such an order incorporates a new set of constraints in its formulation
that increases the difficulty to obtain an optimal solution. To the best of our knowledge,
the use of order with two stages in the SPLP based on stochastic programming has not
been considered until now. We use an algorithm that incorporates a heuristic component
to handle the complexity that is added when orders of preference are included.

The motivation for our study comes from a problem related to healthcare services,
where service centers must be sited in strategic locations to meet the immediate needs
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of patients. The current situation due to the COVID-19 pandemic makes this problem
particularly relevant [14]. Let us assume that each center corresponds to an assigned
place for vaccination and that each center uses one or more vaccine brands from different
laboratories. Then, each patient could choose one center instead of another, because she/he
may prefer the vaccine from a laboratory to be considered more reliable. This defines a
ranking (order of preference) which will not necessarily be given for all of them, since
a patient may not want to be vaccinated in a center where there are only non-preferred
vaccine brands. In countries where the vaccination process is considered successful, the
order of preference assigned by each patient to the vaccination centers is defined by
incentives that local governments give to their population. These same incentives for
foreign citizens are seen as a strategic decision to generate income from tourism.

The main objective of this work is to solve the problem of large instances based on a
more general version of the 2S-SPLP, which we call the two-stage stochastic simple plant
location problem with order (2S-SPLPO). Our secondary objective is to show a potential
use of the 2S-SPLPO in COVID-19 vaccination based on sensor-related data. Indeed, we
provide an algorithm that stores patient’s service records in a central data warehouse
using sensors. We conduct computational experiments on simulated instances to assess the
performance of the 2S-SPLPO.

In the 2S-SPLPO, the customers have preferences over the set of facilities that can serve
them. We consider the possibility that the order of preference given by patients is partial,
that is, a patient may want to be served by only a subset of all possible facilities that may
be open in some locations. In the stochastic formulation that we propose for the 2S-SPLPO,
together with the variables defined to decide in which locations to open facilities, the
preferences (partial or complete) are considered random variables. To solve the 2S-SPLPO,
we use the accelerated dual ascent (ADA) algorithm proposed in [12,13], which solves large
instances of the non-stochastic version of the SPLPO. Our algorithm is based on that given
in [15] for the SPLP. The ADA algorithm uses LR and semi-Lagrangian relaxation (SLR) in
an iterative procedure to approximate the solution. The SLR is a relatively new idea that
exploits the structure of problems by relaxing a direction of a split equality constraint. The
ADA algorithm tries to solve a Lagrangian dual (LD) problem with a subgradient method
(SGM) as a first step. Then, the results of the first step are used in a second step to solve a
semi-Lagrangian dual (SLD) problem with a dual ascent method (DAM). At last, a heuristic
procedure is applied to accelerate the search of the optimum in a third step. For a complete
description of the SGM, the reader is referred to [16–21], whereas for a description of the
SLR, the reader is referred to [15,22] Applying heuristic procedures is a common practice
in optimization, but without guarantee of reaching the optimum. Some creative algorithms
help to finding sufficiently good solutions [23]. In the next sections, we shows how the
ADA algorithm produces good solutions, comparing them to the exact solutions given by
the XPRESS software.

Other two potential applications of the our approach can be seen in [24,25], where
one of them is found in business-to-consumer (B2C) e-commerce. As pointed out in [25],
e-commerce has logistical advantages over traditional B2C. However, although costs can be
reduced considerably, due to the use of technology, the problem of distributing the products
demanded to patients from centers exists still. Sometimes, patients prefer to pick up the
products from these centers and, therefore, may have preferences about where to do it, as
the distance to travel or travel times can influence the problem’s variables. Thus, the aim
of the B2C e-commerce organizations lies in finding the best way to locate the distribution
centers, reducing the logistics costs related to this process and also considering the order
of preference of the centers. These applications proposed in [24,25] are complemented
with the potential application in COVID-19 vaccination based on the sensor-related data
proposed in the present investigation.

The rest of the article is distributed as follows. Section 2 provides background on
stochastic programming. Sections 3 and 4 define the SPLPO and 2S-SPLPO, respectively.
In Section 5, a description of the three steps that form the ADA algorithm is provided.
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In Section 6, we introduce two sensor-based algorithms that store patients’ service records
in a central data warehouse and that generate 2S-SPLPO instances, respectively. In Section 7,
we report the results of computational experiments performed on large instances. Finally,
in Section 8, some conclusions and recommendations for future studies on this topic
are outlined.

2. Two-Stage Stochastic Linear Programming

In this section, we provide the background of stochastic programming, with MP
standing for mathematical program. In MP 1, Eξ denotes the mathematical expectation on
the random vector values ξ, whereas c ∈ Rn1 , b ∈ Rm1 , A ∈ Rm1×n1 , and W ∈ Rm2×n2 are
known vectors and matrices.

Let Ω = {ω1, . . . , ω|Ω| } be a finite sample space of some experiment. Let ξ be a
random variable over the elements of Ω with values ξ(ω). For simplicity, we call any
ξ(ω) the scenario ω. In a stochastic program, the scenarios can be seen as states of the
nature since all the unknown information could depend on them. In addition, we assume
a discrete probability function expressed as

p(ξ) = P(ξ = ξ(ω)) = αω. (1)

The vectors y ∈ Rn1 and x ∈ Rn2 are the decision variables of the first and sec-
ond stages, respectively. Therefore, y can be considered the decisions to be made under
uncertainty, and x the corrective decisions made when uncertainty is revealed. Further-
more, q(ω) ∈ Rn2 , h(ω) ∈ Rm2 and T(ω) ∈ Rm2×n1 are vectors with known compo-
nents after the realization of ω, with T(ω) being usually called the technological matrix
and W the fixed resource matrix. Let Ti(ω) be the i-th row of T(ω). A random vector
χ(ω) = [q(ω), h(ω), T1(ω), . . . , Tm2(ω)]> ∈ Rn2+m2+(m2×n1) is implicitly defined in MP 1,
whose formulation was originally stated in [2,3].

MP 1 Two-stage stochastic mathematical programming formulation with fixed resources.

min Z = c>y +Eξ [min q(ω)>x]
subject to Ay = b,

T(ω)y + Wx = h(ω),
y ≥ 0,
x ≥ 0.

3. Simple Plant Location Problem with Order

In this section, we define the SPLPO. Let I = {1, . . . m} be a set of customers, and let
J = {1, . . . n} be a set of possible sites where facilities can be opened. Let Ji be a subset of J
defined for each customer i, with |Ji| = ni and Ji = J \ Ji. Unit costs cij ≥ 0 are considered
to supply the demand of customer i from facility j, and fixed costs f j ≥ 0 to open a facility
at location j. We say that k is i-worse than j if the customer i prefers facility j rather than k,
which is denoted by k <i j. We define Wij = {k ∈ J | k <i j} as the set of facilities k strictly
i-worse than j, with its complement being denoted as Wij and Wij ∪ {j} as W ′ij. Let xij be
a decision variable that represents the fraction of the demand required by the customer i
and covered by facility j. Let yj be a binary variable such that yj = 1 if a facility is open
at the location j, and yj = 0 otherwise. We assume that each customer i classifies her/his
favorite facility j ∈ Ji with a number pij ∈ {1, . . . , ni}, where 1 and ni are the most and

least preferred, respectively. Additionally, for all j ∈ Ji, we have that pij = ni + 1. Under
these conditions, the linear program for the SPLPO is given by MP 2.
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MP 2 SPLPO mathematical programming formulation.

min Z = ∑
i∈I

∑
j∈J

cijxij + ∑
j∈J

f jyj, (2)

subject to ∑
j∈J

xij = 1, ∀i ∈ I, (3)

xij ≤ yj, ∀i ∈ I, j ∈ J, (4)

∑
k∈Wij

xik ≥ yj, ∀i ∈ I, j ∈ Ji, (5)

xij ≥ 0, ∀i ∈ I, j ∈ J, (6)
yj ∈ {0, 1}, ∀j ∈ J. (7)

The statement expressed in (2) says that the program minimizes a cost function related
to opening a facility covering the demand. Equalities presented in (3) ensure that customer
i is supplied by exactly facility j, called assignment constraints. Constraints given in (4)
ensure that if customer i is supplied by facility j, then j must be opened, which are often
called varying upper bounds. Inequalities stated in (5) model the customers’ orders of
preference [26]. Since no capacities are considered and the model minimizes the number of
open facilities y, the demand of customer i can always be covered completely by one single
facility. Therefore, we can guarantee that there is an optimal solution with the values of the
variables xij belonging to {0, 1}, even though this is not specified in the constraints; see
inequalities given in (6). The family of inequalities presented in (7) makes the binary nature
of the variable yj explicit. Note that if it is more favorable to open an installation that does
not belong to a particular subset Ji, customer i can be served by any open installation, since
ni + 1 is the worst classification given for any j.

4. Stochastic Formulation for the SPLPO

In this section, we define the 2S-SPLPO. In the context of the SPLPO, consider the
experiment of asking all customers i ∈ I to rate their preferred facilities j ∈ J. Such as that
defined in MP 1, we call each result of this experiment ω and the set of all of them the
sample space Ω. Recall the random variable ξ with values ξ(ω) over the events {ω } ∈ Ω
called the scenario ω. Once again, we assume that this random variable has the discrete
probability function stated in (1). Under this setting and the mentioned probability function,
a mathematical program for the 2S-SPLPO (complete or partial) can be written as in MP 3.

MP 3 2S-SPLPO mathematical programming formulation.

min Z = ∑
j∈J

f jyj + ∑
ω∈Ω

αω ∑
i∈I

∑
j∈J

cijxω
ij (8)

subject to ∑
j∈J

xω
ij = 1, ∀i ∈ I, ω ∈ Ω, (9)

xω
ij ≤ yj, ∀i ∈ I, j ∈ J, ω ∈ Ω, (10)

∑
k∈Wω

ij

xω
ik ≥ yj, ∀i ∈ I, j ∈ Ji, ω ∈ Ω, (11)

xω
ij ≥ 0, ∀i ∈ I, j ∈ J, ω ∈ Ω, (12)

yj ∈ {0, 1}, ∀j ∈ J. (13)

Note that the mathematical expressions defined in (8)–(13) of MP 3 have a similar
interpretation as those stated in MP 2 for each scenario ω. The second component es-
tablished in (8) represents the expected value of the distribution cost over the scenarios.
Consider that the first decision stage to open a facility is given by binary variable y and
the distribution of the demand is given by x as the second stage. Regarding the family of
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constraints formulated as in (11) of MP 3, each scenario ω is represented by a { 0, 1 }-matrix
W(ω) (W(ω)) of dimension (mn×mn), where each row ij has a one for each element of
Wω

ij (Wω
ij ) and a zero for elements of its complement; see Figure 1. Furthermore, Ω is a

finite set but it can have a big cardinality. For example, if we consider no partial preferences
and since n < +∞, each row of W(ω) (W(ω)) can be given in 2n different ways. Thus,
there are (2n)mn = 2mn2

possible different matrices W(ω) (W(ω)).

4. Stochastic formulation for the SPLPO198

In this section, we define the 2S-SPLPO. In the context of the SPLPO, consider199

the experiment of asking all customers i ∈ I to rate their preferred facilities j ∈ J.200

Such as defined in MP 2.1, we call each result of this experiment as ω and the set201

of all of them as the sample space Ω. Recall the random variable ξ with values202
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MP 4.1 2S-SPLPO mathematical programming formulation

min Z = ∑
j∈J

f jyj + ∑
ω∈Ω

αω ∑
i∈I

∑
j∈J

cijxω
ij (8)

subject to ∑
j∈J

xω
ij = 1, ∀i ∈ I, ∀ω ∈ Ω, (9)

xω
ij ≤ yj, ∀i ∈ I, ∀j ∈ J, ∀ω ∈ Ω, (10)

∑
k∈Wω

ij

xω
ik ≥ yj, ∀i ∈ I, ∀j ∈ Ji, ∀ω ∈ Ω, (11)

xω
ij ≥ 0, ∀i ∈ I, ∀j ∈ J, ∀ω ∈ Ω, (12)

yj ∈ {0, 1}, ∀j ∈ J. (13)

Note that the mathematical expressions defined in (8)-(13) of MP 4.1 have a207
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Figure 1. An example of the matrix W(ω).

Note that the stochastic program formulated in MP 3 has no fixed resources since
the coefficient matrix W(ω) given by the sets Wω

ij with the second-stage variables xω
ij is

random, that is, it depends on ω.

5. A Lagrangian Algorithm for the 2S-SPLPO

In this section, we state a Lagrangian algorithm for the 2S-SPLPO. As noted in
MP 3, since the mathematical formulation of the 2S-SPLPO has similar features to its
non-stochastic version (SPLPO), with obvious differences due to the presence of multiple
random scenarios, we suggest applying the ADA algorithm. Figure 2 shows the scheme of
the ADA algorithm, which includes three modules that we have broken down into internal
steps in a very general way. The SLR theory and some important results, which are exposed
in the description of the ADA algorithm, can be found in [15,22], where this algorithm
was introduced. The main idea of the SLR approach is to relax a direction of an equality
constraint in the Lagrangian sense, keeping the other one without relaxing, and then to
take advantage of the mathematical properties of the resulting programming. Next, we
detail each of the steps of the ADA algorithm summarized in Figure 2.

Lagrangian
relaxation

Semi-Lagrangian
relaxation

Variable fixing
heuristic (VFH)

Figure 2. Scheme of steps in the ADA algorithm.
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Step 1: Lagrangian relaxation

In MP 3, we relax two families of constraints: those of assignment stated in (9) and
those of customer preference defined in (11), obtaining the Lagrangian program given by

LR(µω, λω) := min
(xω ,y)

∑
j

f jyj + ∑
ω

αω ∑
i

∑
j

cijxω
ij (14)

+∑
ω

∑
i

µω
i

(
1−∑

j
xω

ij

)
+ ∑

ω
∑

i
∑

j
λω

ij

(
yj − ∑

k∈Wω
ij

xω
ik

)

= min
(xω ,y)

∑
ω

∑
i

∑
j

(
αωcijxω

ij − µixω
ij − λω

ij ∑
k∈Wω

ij

xω
ik

)

+∑
j

(
f jyj + ∑

ω
∑

i
λω

ij yj

)
+ ∑

ω
∑

i
µω

i ,

subject to: (10), (12), (13).

In the case where a partial order is considered, for all j ∈ Ji, the corresponding terms
λω

ij ∑k∈Wω
ij

xω
ik and ∑ω ∑i λω

ij yj vanish in the objective function defined in (14).

As before, we are assuming that customer i ranks for each scenario her/his favorite
facility j ∈ Ji with a number pω

ij ∈ {1, . . . , ni}, where 1 and ni are the most and least
preferred, respectively. Since in ∑ω ∑i ∑j∈Ji λω

ij ∑k∈Wω
ij

xω
ik each λω

ij is multiplied by a sum

of xω
ij variables with pω

ij terms corresponding to k ≥i j, then each xω
ij is multiplied by a sum

of λω
ik with ni − pω

ij + 1 terms corresponding to k ≤i j. Thus, we can check the following:

∑
ω

∑
i

∑
j∈Ji

λω
ij ∑

k∈Wω
ij

xω
ik = ∑

ω
∑

i
∑
j∈Ji

xω
ij ∑

k∈W ′ωij

λω
ik, (15)

where |W ′ω
ij | = ni − pω

ij + 1.
By using the expression given in (15), the objective function defined in (14) can be

rewritten as

LR(µω, λω) := min
(xω ,y)

∑
j

[
∑
ω

∑
i

(
αωcij − µω

i −Λω
ij

)
xω

ij (16)

+
(

f j + ∑
ω

∑
i

λω
ij

)
yj

]
+ ∑

ω
∑

i
µω

i ,

subject to: (10), (12), (13),

where Λω
ij = ∑k∈W ′ωij

λω
ik, with |W ′ω

ij | = ni − pω
ij + 1.

Similar to its non-stochastic version, with and without order, SPLP and SPLPO, respec-
tively, the problem stated in (16), with multipliers µω and λω fixed, can be easily solved by
considering that

yj =

{
1, if ∑i min(0, αωcij − µω

i −Λω
ij ) +

(
f j + ∑ω ∑i λω

ij

)
< 0,

0, otherwise,

and

xω
ij =

{
1, if yj = 1 and αωcij − µω

i −Λω
ij < 0,

0, otherwise.
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The problem stated in (16) has the integrality property, that is, its optimal value is
equal to the standard linear relaxation LP (2S-SPLPO), which corresponds to the original
problem without the integrality constraints. The ADA algorithm tries to solve the LD
problem related to (16) established as

LD(µω, λω) := max
(µω ,λω)

LR(µω, λω),

with a SGM, due to the fact that its objective function is a piecewise linear concave func-
tion of vector multipliers µω and λω over its domain. Hence, after some iterations, the
multipliers obtained are used as a starting point for the second step. The SGM requires
multiple times to solve the problem given in (16) , but as mentioned, it is simple to solve;
see Algorithm 1, and for its step in line see (12) and also [19–21].

Algorithm 1: Subgradient method.

1 begin
input : The 2S-SPLPO approach.
output : A lower bound for the 2S-SPLPO, multipliers (µω , λω).

2 iter = 0;
3 Maxiter ∈ N;
4 Compute LRub for LR(µω , λω) by applying a heuristic procedure;
5 β = 2;
6 k ∈ N;
7 q ∈ [0, 1] ⊂ R;
8 [µω,iter, λω,iter]> = [minj { αωcij + f j, ∀j } , 0]>;
9 LRiter

best = LR(µω,iter, λω,iter);
10 repeat
11 Find a subgradient vector siter for LR(µω,iter, λω,iter) as

siter =

[
1−∑

j∈J
xω

ij , ∀i, ω; yj − ∑
k∈Wij

xω
ik , ∀i, j, ω

]>
= [siterµ , siterλ ]>

if siter 6= 0 then

12 αiter =
β(LRub−LR(µω,iter,λω,iter))

‖siter‖2 ;

13 end
14 until Either siter = 0 or iter = Maxiter;
15 end

It is possible to prove that the vector computed in step 11 of Algorithm 1 is a sub-
gradient of the Lagrangian problem. In our experiments, we obtain better results when
µω,0

i = minj { αωcij + f j }, for all i ∈ I and ω ∈ Ω instead µω,0 = 0. In step 4 of Algorithm 1,
we set LRub by applying an upper bound heuristic for the 2S-SPLP (H2S); see Algorithm 2.
First, it opens a facility with the lowest operating cost for all customers. Then, for those
facilities that are not open yet, the procedure compares and chooses for each customer the
most preferred facility between it and its previously assigned supplier. Consequently, the
new cost is saved and the new open facility has the lowest operating cost. This is repeated
until no more facilities are available.
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Algorithm 2: Upper bound heuristic for the 2S-SPLP.
1 begin

input : A bipartite graph G(I ∪ J, Eω = ∅), costs cij to compute the total cost (TC).
output :An upper bound G(I ∪ J, Eω) for the 2S-SPLPO.

2 Find j∗ ∈ J such that ∑i,ω αωcij∗ = min {∑i,ω αωci1, . . . , ∑i,ω αωcin };
3 J′ = J \ { j∗ }, Eω

m = { (i, j∗)ω | i ∈ I, ω ∈ Ω }, TCj∗ = ∑i,ω αωcij∗ ;
4 for ω ∈ Ω do Eω

r = Eω
j∗ ;

5 repeat
6 for j ∈ J′ do
7 for ω ∈ Ω do Eω

j = ∅;

8 for i ∈ I and ω ∈ Ω do
9 Find kpref such that pω

ikpref
= min[{ pω

ij } ∪ { pω
ik | (i, k) ∈ Eω

r }];
10 Eω

j = Eω
j ∪ { (i, kpref)

ω };
11 end
12 Compute TCj = ∑((i,j)ω∈Eω

j ,ω) αωcij;

13 end
14 Find jr such that TCjr = min {TCj | j ∈ J′ };
15 J′ = J′ \ { jr };
16 for ω ∈ Ω do Eω

r = Eω
jr ;

17 Find j∗ such that TCj∗ = min {TCj∗ , TCjr };
18 for ω ∈ Ω do Eω = Eω

j∗ ;

19 until J′ = ∅;
20 end

Step 2: Semi-Lagrangian relaxation

We start with a brief description of the SLR. Let the problem (P) of mathematical
program be stated as

(P) := min
x
{ f (x) = c>x | Ax = b, x ∈ X } , (17)

with (i) the set X containing integrality constraints; and (ii) A ∈ Rm×n and rational compo-
nents b ∈ Rm, c ∈ Rn being non-negative.

After splitting Ax = b into Ax ≥ b and Ax ≤ b, inequality Ax ≥ b is relaxed with a
vector of multipliers λ ≥ 0. Then, the SLR problem related to (P) is expressed as

SLR(λ) := min
x
{ f (x) + λ(b− Ax) | Ax ≤ b, x ∈ X},

with its SLD being given by SLD(λ) := maxλ≥0 SLR(λ).
The following theorems summarizes the basic properties derived from the definition

of the SLR.

Theorem 1 ([15]). Let (P) be a problem as defined in (17) under the same conditions. Then, we
have the following:

(i) SLR(λ) is concave, non-decreasing on its domain, and b− Ax is a subgradient at the point λ.
(ii) There is an interval [λ∗,+∞) where for each multiplier, we obtain the optimal solution of

SLR(λ).
(iii) LP(P) ≤ LD(λ) ≤ SLD(λ) = (P), that is, SLR(λ) closes the duality gap.
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In MP 3, we semi-relax the assignment constraints defined in (9). Thus, we obtain the
program formulated as

SLR(γω):= min
(xω ,y)

∑
ω

∑
i

∑
j

cijxω
ij + ∑

j
f jyj + ∑

ω
∑

i
γω

i

(
1−∑

j
xω

ij

)

= min
(xω ,y)

∑
j

(
∑
ω

∑
i

(
αωcij − γω

i

)
xω

ij + f jyj

)
+ ∑

ω
∑

i
γω

i ,

subject to (10), (11), (12), (13), and ∑j∈J xω
ij ≤ 1, ∀i ∈ I, ω ∈ Ω.

The corresponding dual problem is stated as SLD(γω) := maxγω LR(γω). We follow
the same idea given in [15], in the context of the SLR applied to the uncapacitated facility
location problem, to restrict our search for the vector of multipliers γω in SLD(γω).

Theorem 2. Let SLR(γω) and c(ω)
i = maxj{αωcij + f j}, cω = (c(ω)

1 , . . . , c(ω)
m ) be the maximal

cost for costumer i associated with facility j and the vector of these costs, respectively. Then, we
obtain γω ∈ Q = [γ∗,+∞) if γω ≥ cω.

Proof. If ∑j∈J xω
ij = 1 for all i and ω ∈ Ω, the SLR closes the duality gap. By hypothesis,

c(ω)
i − γω

i ≤ 0. If we choose j′ such that c(ω)
i = αωcij′ + f j′ , then (αωcij′ − γω

i ) + f j′ ≤ 0.
This inequality is true for any j since j′ gives the maximum among all αωcij + f j. Therefore,
the event ∑j∈J xω

ij = 0 cannot happen at an optimal solution since it is always possible to
set xω

ij = 1 and yj = 1 for all i and j, meeting all the constraints.

Theorem 3. Let SLR(γω). For each i ∈ I and ω ∈ Ω, let αωc(1)i ≤ · · · ≤ αωc(n)i be the sorted
cost αωcij. Then, if γω < αωc1, γω /∈ Q.

Proof. By hypothesis, αωc(1)i − γω
i > 0. Then, we have that αωc(j)

i − γω
i > 0 for all j since

we are minimizing at the optimal solution xω
ij = 0 for all j. Therefore, the event ∑j∈J xij = 1

cannot happen at an optimal solution and γω /∈ Q.

Theorems 2 and 3 limit the search of γω to B = {γω | αωc(1) < γ ≤ cω}. We use
the multipliers µω obtained in the previous step as starting point in this step by setting
γω = µω. Then, based on Theorems 2 and 3, we solve the LD problem by increasing the
components of γω in each iteration of a DAM that requires solving SLR(γω) many times;
see Algorithm 3. However, this problem is harder than LR(µω, λω). The DAM algorithm
employs the following:

• By using the sorted costs αωc(1)i ≤ · · · ≤ αωc(n=|J|)i , each component γω
i of γω can be

either in an interval of the form (αωc(j)
i , αωc(j+1)

i ] or out of it. For the first case, there

are infinite values of γω
i that can belong to a single interval (αωc(j)

i , αωc(j+1)]. Each
one of them has the same effect in the solution of SLR(γω) since only a change from
yj = 1 to yj+1 = 1 and xω

ij = 1 to xω
i,j+1 = 1 modifies the solution.

• We just need a single γω
i representative of the intervals. As we get closer to solving the

SLR, the values of the components of γω increase. Hence, solving the SLR becomes
more and more difficult. Then, it is always convenient to choose a γω

i ∈ Ii being as
small as possible, that is, at an ε distance from the lower bound of an interval.
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Algorithm 3: Dual ascent method.
1 begin

input : A SLR(γω) problem.
output : A lower bound for SLR(γω), multipliers γω .

2 For all i ∈ I and ω ∈ Ω, sort αωcij as αωc(1)i ≤ · · · ≤ αωc(n)i ;
3 ε > 0, iter = 0, MAXiter ∈ N;
4 for i ∈ I and ω ∈ Ω do
5 c(ω)

i = maxj{αωcij + f j};
6 if γω,iter

i < αωc(1)i then
7 γω

i = αωc(1)i + ε;

8 else if γω,iter
i > αωc(n)i then

9 γω,iter
i = αωc(n)i ;

10 else
11 Find a ji such that γω,iter

i ∈ (αωc(ji)
i , αωc(ji+1)

i ];

12 γω,iter
i = αωc(ji)

i + ε;
13 end
14 end
15 repeat
16 Use an exact method to solve SLR(γω,iter);

17 Find a subgradient siter =
[
1−∑j∈J xω

ij

]
, ∀i, ω;

18 if siter 6= 0 then
19 for i ∈ I and ω ∈ Ω do
20 if sω,iter

i = 1 then
21 ji = ji + 1;

22 γiter+1
i = min{αωc(ji)

i + ε, c(ω)
i }

23 end
24 end
25 iter = iter+ 1;
26 end
27 until Either siter = 0 or iter = MAXiter;
28 end

Step 3: Variable fixing heuristic

A heuristic method is used to speed up the search process to the optimum. In a run
of the DAM, the procedure chooses by a cost criteria, from the solution given, a subset
corresponding to a percentage ps× 100% of the best variables yj, such that yj = 1. These y
are fixed to solve the 2S-SPLPO in the next iteration by an exact method. The procedure is
described in Algorithm 4. In addition, the procedures described above are assembled in
the ADA method stated in Algorithm 5.

Algorithm 4: Variable fixing heuristic.

1 begin
input :A vector γω in a solution given by the DAM.
output :A feasible solution for the SPLPO (probably the optimum).

2 Yγω = { yj | yj = 1, j ∈ J };
3 ps ∈ [0, 1] (a percentage of elements of Yω

γ );
4 sort Yγω such that yj ≺ yk if ∑ω ∑i(α

ωcij + f j) < ∑ω ∑i(α
ωcik + fk);

5 choose the first ps× 100% smallest elements from the sorted set Yγω to form the set Ysubset
γω ;

6 fix yj = 1, ∀yj ∈ Ysubset
γω ;

7 solve the 2S-SPLPO with an exact method;
8 end



Sensors 2021, 21, 5352 12 of 17

Algorithm 5: Accelerated dual ascent algorithm.

1 begin
input :The 2S-SPLPO approach.
output :A feasible solution for the 2S-SPLPO.

2 µω,0
i = minj{αωcij + f j}, ∀i ∈ I, ω ∈ Ω, λω,0 = 0;

3 run SGM(µω,0, λω,0) during sgm_iter iterations and find the iteration best_sgm_iter where is the best LR(µω , λω)

value;
4 γω,0 = µω,best_sgm_iter;
5 run DAM(γω,0) during dam_iter iterations;
6 run the DAM during vfh_iter iterations. In each iteration, run VFH;
7 find the best solution in the searching process to obtain the best values for xω

ij and yj;

8 end

6. Sensing Patients’ and Simulated Data for the Proposed Methodology

In this section, we propose an algorithm that allows us to update patients’ records and
store them in a central data warehouse. Consider COVID-19 vaccination centers. Patients
go to the different care points based on an order of preference. At each point, there is a local
repository that stores the data of the patients who were treated at that point. However,
the data must be centralized in a single database for persistent storage purposes and also
for later analysis. With a certain periodicity (for example, at the end of the day), a sensor
located at each local repository sends the data related to the care of each of the patients to
the central warehouse. It is important to keep in mind that each vaccination center usually
stores the local data for one day of care. In a general scenario, Algorithm 6 permits us to
centralize, in a warehouse, the data obtained when patients are served in the facilities. In
addition, to simulate data and solve instances of the 2S-SPLPO, we propose Algorithm 7
which sensorizes the database.

Algorithm 6: Approach for updating patients’ records in a central data warehouse using sensors.
1: Clear the local data repository of each facility at the beginning of the operations.
2: Store a data record in the local repository for each patient and for each facility.
3: Send the patients’ records to a central data warehouse by a sensor located at the local data repository of the facility at the

end of the operations.
4: Store the patient’s records for all facilities permanently in the central data warehouse.
5: Use the central warehouse for any data analysis.

Algorithm 7: Approach to generate and solve instances of the 2S-SPLPO with a sensor.
1: Generate data for the second scenario with the simulation algorithm.
2: Build an instance of the 2S-SPLPO with the data simulated in the previous step for the data taken in the first scenario.
3: Store the instance in the database.
4: Detect the instance of the 2S-SPLPO with a sensor in the database and dynamically build the mathematical model.
5: Call the ADA algorithm to solve the mathematical model with the sensor.
6: Receive the mathematical model and solve it with the ADA algorithm.
7: Store the output of the ADA algorithm in the database and generate tables with the execution results.

7. Computational Experiments

In this section, we show the results of computational experiments obtained after
applying the ADA algorithm to a set of 2S-SPLPO (complete preferences) with two sce-
narios. Problems with one scenario were taken from [27], which are based on the Beasley
OR-Library [28]. The second scenario was randomly generated. In order to simulate data
and solve instances of the 2S-SPLPO, we use Algorithm 7 which sensorizes the database.
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The experiments were carried out on a PC with Intel® Xeon® 3.40 GHz processor and
16 GB of RAM under a Windows® 10 operating system. All problems were solved with
FICO XPRESS® version 8.0.

Table 1 shows the parameter settings for all steps of the ADA algorithm, which were
set after an extensive experimental process. We observe that there is a positive relation
between the number of iterations of the SGM and the size of the problem, with sgm_iter
being set at a value greater than or equal to n. Due to the difficult to solve SLR(γω) in the
DAM, sgm_iter was set with a value less than a 10% of n.

Table 1. Parameter settings of the ADA algorithm for the indicated method. Source: the authors.

m n
SGM DAM VFH

sgm_iter β k q dam_iter ε vfh_iter ps

75 50 50 2 30 0.005 3 0.01 2 0.25
100 75 100 2 30 0.005 7 0.01 2 0.25
125 100 170 2 30 0.005 10 0.01 2 0.25
150 100 170 2 30 0.005 12 0.01 2 0.25

The names of the problems in Tables 2 and 3 use the nomenclature as given in the
following example: [10a][7550]_[2], where [10a]: The second scenario is 10% different
from the first scenario a; [7550]: m = 75 and n = 50; and [2]: Problem 2 with first scenario
a. In the literature on the topic (for example, in p. 145, Section 4 of [27]), the instances shown
in Table 3 are considered large. Note that, although the times in many cases increase as the
size of the problem increases, in some cases, this behavior is not detected. For example,
in Table 3, the ADA algorithm solves the problem 100b10075_1 in 3531 seconds. However,
in a larger instance, such as 100a150100_1, the time is less (1253 seconds). Since the ADA
algorithm is a heuristic, the running times can vary, even on the same problem, due to the
random component that the VFH has. Therefore, we cannot affirm the exponential growth
of the running times.

The results show that the ADA algorithm performs very well in all cases. Indeed,
the optimum was found in most of them. Note that when the percentage of changed
preferences was 10% (first six instances in Table 2), the ADA algorithm was not able to
improve the XPRESS times. Nevertheless, in the remaining cases, the times were improved
considerably with a couple of exceptions. From Table 3, observe that the ADA algorithm
attains the optimal solution in most of the cases in much less time, with the exception of
the problem 100c150100_1, where the time was greater than that obtained by the XPRESS
software. The last of the four groups corresponds to the same problems in the third group
of Table 3 (m = 150, n = 100). Nonetheless, they were tested with a different parameter
sgm_iter = 140. For all these six cases, the ADA algorithm improves the running times
and bounds. The column headers in Tables 2 and 3 mean the following:

• Prob: Name of the problem.
• Opt: Optimal value of the problem.
• LP(P): Linear relaxation value for a problem (P).
• GAPX = (Opt− LP)/Opt× 100%: Relative gap between Opt and LP of a problem by

using the XPRESS software.
• t: Time in seconds
• H2Sub: Best upper bound with the H2S.
• y: Number of opened facilities.
• SGMlb: Lower bound with the SGM.
• ADAub: Best upper bound with the ADA algorithm.
• DAMlb: Lower bound with the DAM (without the VFH).
• GAPV = (bestUB− LB)/bestUB× 100%: Relative gap between the best upper bound

and lower bound of a problem by using the DAM with VHF.
• Tt: Total time in seconds.
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• imp t: ((topt − tADA)/topt)× 100%
• GAP: ((ADAub-Opt)/Opt)× 100%.

Table 2. ADA algorithm applied to the 2S-SPLPO with two scenarios (m = 75, n = 50). Source: the authors.

Prob
XPRESS H2S SGM DAM with VFH ADA

Opt LP GAPX t H2Sub y t SGMlb t ADAub DAMlb GAPV t Tt imp t GAP

10a7550_1 1,648,853 1,200,745 27% 67 1,787,955 1 0 840,831 7 1,698,650 1,279,041 25% 60 67 0% 3.02%
10a7550_2 1,602,647 1,193,378 26% 48 1,738,071 3 0 763,664 6 1,602,647 1,286,736 20% 50 56 −17% 0.00%
10b7550_1 1,226,979 901,051 27% 48 1,335,244 10 0 334,589 5 1,226,979 953,159 22% 57 62 −28% 0.00%
10b7550_2 1,263,465 906,280 28% 53 1,299,259 10 0 372,981 7 1,271,641 970,770 24% 70 77 −46% 0.65%
10c7550_1 1,290,291 900,033 30% 46 1,388,280 9 0 591,938 7 1,290,291 971,785 25% 62 69 −48% 0.00%
10c7550_2 1,248,312 876,053 30% 47 1,365,717 13 0 557,308 6 1,248,312 936,483 25% 65 71 −51% 0.00%

25a7550_1 1,670,734 1,199,273 28% 119 1,761,050 5 0 830,624 6 1,670,734 1,284,052 23% 53 59 50% 0.00%
25a7550_2 1,606,360 1,195,482 26% 67 1,730,389 3 0 770,870 7 1,606,360 1,269,850 21% 53 60 11% 0.00%
25b7550_1 1,256,755 892,106 29% 58 1,329,801 11 0 360,026 6 1,259,217 947,822 25% 61 67 −15% 0.20%
25b7550_2 1,324,578 907,308 32% 153 1,348,842 7 0 380,921 6 1,324,578 988,646 25% 98 104 32% 0.00%
25c7550_1 1,364,933 907,957 33% 166 1,413,489 9 0 579,362 8 1,373,542 978,857 29% 96 104 37% 0.63%
25c7550_2 1,271,029 873,435 31% 84 1,291,327 13 0 578,313 7 1,271,029 958,058 25% 77 84 0% 0.00%

50a7550_1 1,689,428 1,212,042 28% 113 1,778,238 6 0 804,221 7 1,689,428 1,302,236 23% 60 67 41% 0.00%
50a7550_2 1,637,084 1,196,440 27% 86 1,744,372 5 0 760,256 6 1,637,084 1,273,267 22% 51 58 33% 0.00%
50b7550_1 1,331,207 900,654 32% 165 1,388,062 12 0 294,443 7 1,331,207 1,247,451 6% 381 388 −136% 0.00%
50b7550_2 1,307,706 896,181 31% 182 1,364,303 11 0 305,591 7 1,307,706 990,369 24% 94 101 45% 0.00%
50c7550_1 1,347,482 911,370 32% 145 1,446,345 12 0 565,472 6 1,347,482 976,268 28% 77 84 42% 0.00%
50c7550_2 1,287,982 878,852 32% 112 1,439,845 17 0 546,735 7 1,299,952 952,655 27% 71 78 30% 0.93%

100a7550_1 1,787,955 1,208,842 32% 267 1,787,955 1 0 824,731 8 1,787,955 1,293,098 28% 89 97 64% 0.00%
100a7550_2 1,683,058 1,204,739 28% 194 1737„924 5 0 827,668 7 1,720,482 1,268,026 26% 66 72 63% 2.22%
100b7550_1 1,451,139 935,113 36% 363 1,496,648 6 6 311,032 6 1,453,678 989,340 32% 86 92 75% 0.17%
100b7550_2 1,400,184 916,167 35% 271 1,449,128 9 0 358,259 7 1,400,205 1,013,362 28% 106 113 58% 0.00%
100c7550_1 1,360,674 920,342 32% 169 1,430,298 9 0 562,495 8 1,360,674 998,681 27% 106 114 32% 0.00%
100c7550_2 1,402,514 918,696 34% 196 1,462,990 16 0 570,058 8 1,404,147 989,592 30% 102 110 44% 0.12%

Table 3. ADA algorithm applied to the 2S-SPLPO with two scenarios for m ∈ {100, 125, 150} and n ∈ {75, 100}. Source:
the authors.

Prob
XPRESS H2S SGM DAM with VFH ADA

Opt LP GAPX t H2Sub y t SGMlb t ADAub DAMlb GAPV t Tt imp t GAP

100a10075_1 2,469,439 1,811,464 27% 561 2,476,632 1 1 1,644,492 31 2,476,632 1,978,083 20% 265 296 47% 0.29%
100a10075_2 2,458,870 1,805,025 27% 685 2,476,632 1 1 1,627,278 32 2,458,870 1,971,011 20% 237 270 61% 0.00%
100b10075_1 2,132,719 1,364,985 36% 17,935 2,270,467 6 1 1,112,051 37 2,132,719 1,558,555 27% 3531 3568 80% 0.00%
100b10075_2 2,163,818 1,367,450 37% 27679 2,218,215 7 1 1,160,875 43 2,163,818 1,564,516 28% 4380 4422 84% 0.00%
100c10075_1 1,978,807 1,271,848 36% 14,835 2,072,702 6 1 1,052,860 49 1,988,903 1,496,210 25% 1027 1076 93% 0.51%
100c10075_2 1,987,757 1,261,290 37% 11,567 2,118,928 9 1 1,066,388 51 1,987,757 1,452,609 27% 3152 3202 72% 0.00%

100a125100_1 3,070,535 2,416,518 21% 918 3,070,535 1 2 2,237,118 93 3,070,535 2,619,571 15% 573 666 27% 0.00%
100a125100_2 3,070,535 2,388,054 22% 1088 3,070,535 1 1 2,239,726 106 3,070,535 2,587,669 16% 702 808 26% 0.00%
100b125100_1 2,800,573 1,815,018 35% 53,666 2,850,413 5 2 1,601,481 118 2,850,413 2,078,979 27% 20,837 20,955 61% 1.78%
100b125100_2 2,820,883 1,820,001 35% 78,669 3,019,740 4 1 1,592,305 143 2,820,883 2,016,632 29% 8230 8373 89% 0.00%
100c125100_1 2,702,169 1,698,737 37% 239,967 2,866,218 10 2 1,488,148 157 2,702,169 1,990,068 26% 23,717 23,874 90% 0.00%
100c125100_2 2,716,252 1,705,149 37% 204,007 2,829,945 5 1 1,477,796 168 2,717,597 2,007,831 26% 27,442 27,610 86% 0.05%

100a150100_1 3,768,087 2,924,250 22% 1735 3,768,087 1 1 2699949 109 3,768,087 3239975 14% 905 1014 42% 0.00%
100a150100_2 3,768,087 2,918,397 23% 1819 3,768,087 1 1 2702231 111 3,768,087 3,251,719 14% 117 228 87% 0.00%
100b150100_1 3,412,417 2,179,897 36% 169,739 3,637,438 1 1 1,923,456 141 3,412,417 2,599,980 24% 21,111 21,252 87% 0.00%
100b150100_2 3,388,309 2,196,284 35% 69,508 3,637,438 1 2 1,924,300 169 3,388,309 2,679,093 21% 14792 14,962 78% 0.00%
100c150100_1 3,287,595 2,010,587 39% 502,354 3,413,288 4 2 1,768,341 185 3,413,288 N/A N/A N/A N/A N/A 3.82%
100c150100_2 3,229,424 2,012,045 38% 494,721 3,307,459 5 3 1,776,475 132 3,300,341 2,474,515 25% 119,700 119,832 76% 2.20%

100a150100_1 3,768,087 2,924,250 22% 1735 3,768,087 1 1 2,635,877 94 3,768,087 3,229,888 14% 1159 1253 28% 0.00%
100a150100_2 3,768,087 2,918,397 23% 1819 3,768,087 1 1 2,637,900 109 3,768,087 3,242,679 14% 1255 1364 25% 0.00%
100b150100_1 3,412,417 2,179,897 36% 169,739 3,637,438 1 2 1,876,775 147 3,445,585 2,607,746 24% 21,590 21,738 87% 0.97%
100b150100_2 3,388,309 2,196,284 35% 69,508 3,637,438 4 4 1,863,975 155 3,388,309 2,599,780 23% 8984 9139 87% 0.00%
100c150100_1 3,287,595 2,010,587 39% 502,354 3,413,288 4 2 1,750,243 179 3,288,348 2,457,997 25% 78,577 78756 84% 0.02%
100c150100_2 3,229,424 2,012,045 38% 494,721 3,307,459 5 3 1,718,731 185 3,230,261 2,470,331 24% 144,729 144,729 71% 0.03%

The symbol N/A in the table is used when we do not get the result.



Sensors 2021, 21, 5352 15 of 17

8. Conclusions, Limitations, and Future Research

Our work was motivated from a problem related to healthcare services, where service
centers must be sited in strategic locations that meet the immediate needs of patients. The
COVID-19 pandemic makes this problem particularly relevant [29]. We have provided
an algorithm that stores patients’ records in a central data warehouse using sensors. This
allowed us to propose a potential application of our new algorithm to COVID-19 vacci-
nation based on sensor-related data. Specifically, in our investigation, we have proposed
a Lagrangian-based approach for the 2S-SPLPO, called the ADA algorithm. It has three
steps that are related and work consecutively to create a heuristic procedure that takes
advantage of the structure of the problem.

In summary, this paper reported the following findings:

(i) Formulations for SPLPO and 2S-SPLPO with partial preferences were proposed.
(ii) Lagrangian and semi-Lagrangian structures for the 2S-SPLPO with partial preferences

were introduced.
(iii) A theoretical analysis of properties of the Lagrangian and semi-Lagrangian structures

for the 2S-SPLPO was presented to combine them in a procedure that approximates
its solution.

(iv) Theorems 2 and 3 were stated as extensions for the 2S-SPLPO of those given in [15]
for the uncapacitated facility location problem.

(v) To the best of our knowledge, there have been no algorithms proposed to solve the
stochastic version of the SPLPO. The proposed algorithm is a novel approach that
uses a relatively new optimization technique known as semi-Lagrangian relaxation.

(vi) The computational experiments suggested that the ADA algorithm performed satis-
factorily on large instances in both search of the optimum and execution time.

(vii) Possible applications in real cases are described in the context of the COVID-19
vaccination process and B2C e-commerce.

Some limitations of our study are the following:

(i) Since the last step of the ADA algorithm is a heuristic, the optimal is not guaranteed.
(ii) The ADA algorithm is studied in the context of the 2S-SPLPO, so its use is limited to

it. We suggest studying the same ideas in other location problems.
(iii) A cost–benefit evaluation should be carried out in the use of the proposed algorithm

to answer the following question: is the improvement in execution times worth it,
with respect to the savings obtained in the value of the objective function?

(iv) Studies and experiments with deeper parameter settings and more scenarios must be
performed on larger instances.

(v) We suggest carrying out a computational experiment that allows us to determine the
parameter values of the mathematical optimization model from which it is necessary
to design and implement a heuristic or metaheuristic algorithm. High computational
complexity problems can be solved using the heuristic approach. Some examples of
this can be found in [30–32].

The authors are working on these and other issues associated with the present investi-
gation. The corresponding findings are expected to be reported in future works.
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