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Objective: The poor prognosis and heterogeneity of stage III colon cancer (CC)

suggest the need for more prognostic biomarkers. The tumor

microenvironment (TME) plays a crucial role in tumor progression. We aimed

to explore novel immune infiltration-associated molecules that serve as

potential prognostic and therapeutic targets.

Methods: TME immune scores were calculated using “TMEscore” algorithm.

Differentially expressed genes between the high and low TME immune score

groups were identified and further investigated through a protein-protein

interaction network and the Molecular Complex Detection algorithm. Cox

regression, meta-analysis and immunohistochemistry were applied to identify

genes significantly correlated with relapse-free survival (RFS). We estimated

immune infiltration using three different algorithms (TIMER 2.0, CIBERSORTx,

and TIDE). Single-cell sequencing data were processed by Seurat software.

Results: Poor RFS was observed in the low TME immune score groups (log-

rank P < 0.05). EPSTI1 was demonstrated to be significantly correlated with RFS

(P < 0.05) in stage III CC. Meta-analysis comprising 547 patients revealed that

EPSTI1 was a protective factor (HR = 0.79, 95% CI, 0.65-0. 96; P < 0.05)). More

immune infiltrates were observed in the high EPSTI1 group, especially M1

macrophage and myeloid dendritic cell infiltration (P < 0.05).

Conclusion: The TME immune score is positively associated with better survival

outcomes. EPSTI1 could serve as a novel immune prognostic biomarker for

stage III CC.
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Introduction

Colorectal cancer is the third most common malignant

disease and the second leading cause of cancer death in the

world, with approximately 1.93 million new cases and 930,600

related deaths in 2020 (1). Tumor-node-metastasis (TNM)

staging remains the key determinant of colorectal cancer

prognosis and therapy. In patients with localized colon cancer

(CC), the 5-year overall survival (OS) is 99% and 70% for stage I

and II CC, respectively, versus only 45-65% for stage III patients

(2). However, an increasing number of reports have

demonstrated the wide variability of survival outcomes in

stage III CC according to T and N sub-stages (3), possibly

reflecting tumor heterogeneity. Prognostic assessment in stage

III CC could be refined by using validated biomarkers beyond

the TNM classification system.

The molecular features and prognostic value of the tumor

immune microenvironment have been extensively reported in

various cancer types (4, 5). The colon harbors a large number of

diverse immune cells to maintain gut homeostasis. In CC,

however, these cells lose their tight and well-organized

modulation (6). It was found that in-situ immune cell

infiltration in CC is associated with favorable survival (7, 8)

and that reduced immune cytotoxicity and lack of T-cell

infiltration in CC predict adverse outcomes (9, 10), suggesting

that the tumor microenvironment (TME) might be a promising

source of novel diagnostic and prognostic biomarkers.

Immunohistochemistry (IHC) and fluorescence-activated

cell sorting (FACS) have long been the primary methods for

assessing tumor-infiltrating immune populations. Due to the

limited number of immune markers that can be measured

simultaneously, these two conventional methods are incapable

of demonstrating a comprehensive landscape of diverse immune

cell infiltrates and do not provide sufficient resolution to

discriminate closely related immune cell clusters. Recent

studies have revealed that the number of various infiltrating

immune cell types in a specimen can be inferred from gene

expression patterns specific or abundant to a particular cell type

(11, 12). Remarkably, based on accumulating transcriptomic

data, several computational algorithms have been established to

evaluate large-scale immune landscapes (13, 14, 15).

Based on the transcriptome data, we categorized stage III CC

patients from two independent cohorts into high and low TME

immune score groups. Consistent with previous studies, better

survival was observed in patients with higher TME immune

scores. Additional results from various public datasets confirmed

that EPSTI1 was differentially expressed between the high and

low TME immune score groups and that its expression was

significantly associated with relapse-free survival (RFS) in

patients with stage III CC. To our knowledge, few

investigations have explored EPSTI1’s role in the tumor

immunity of stage III CC. In this study, we revealed that more

immune infiltrates, especially M1 macrophages and myeloid
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dendritic cells (mDCs), were found in tumors with higher

EPSTI1 expression. The association between EPSTI1 and the

above two immune cell types was further validated by single-cell

RNA sequencing analysis, suggesting that EPSTI, as an immune

biomarker, could predict the RFS in stage III CC.
Materials and methods

Data source

We systematically searched publicly available colon cancer

datasets. Studies with no survival or TNM staging information

were removed from further assessment. Five cohorts with bulk

sequencing (TCGA-COAD, GSE39582, GSE37892, GSE17538,

GSE14333) and one single-cell sequencing dataset (GSE178341)

were enrolled. The RNA sequencing and clinical data of

GSE39582, GSE37892, GSE17538, GSE14333 and GSE178341

were downloaded from the medics Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/). Gene expression

data and corresponding clinical information from The Cancer

Genome Atlas (TCGA) colon cancer project were downloaded

from the UCSC Xena browser (https://xenabrowser.net/

datapages/).

Mutation data of the TCGA-COAD cohort were

downloaded from the National Cancer Institute Genomic Data

Commons (https://gdc.cancer.gov/about-data/publications/

mc3-2017). Only TNM stage III CC patients in each dataset

were included in this study. The above datasets were utilized in

compliance with the ethical requirements of the GEO and TCGA

projects. The study was conducted in accordance with the

Declaration of Helsinki.
Identification and verification of genes
related to the TME immune score
and RFS

We performed TME immune scoing for stage III CC patients

in the GSE39582 and TCGA-COAD cohorts using R package

“TMEscore”. The cut-off value of the TME immune score was

selected by X-tile software (version 3.6.1, https://medicine.yale.

edu/lab/rimm/research/software/). Based on the cut-off values,

patients in both cohorts were divided into high and low TME

immune score groups. We compared the difference in relapse-

free survival (RFS) between the two groups using the Kaplan-

Meier method. The receiver operating characteristic (ROC)

curves were then plotted to assess the predictive power of the

TME immune score for RFS. Genes with |log2 Fold Change| > 1

and adjusted P value < 0.05 were defined as differentially

expressed genes (DEGs). The intersection of the DEGs from

the GSE39582 and TCGA-COAD datasets was entered into the

STRING database (https://cn.string-db.org/) to construct the
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protein-protein interaction (PPI) network. The network was

then imported into Cytoscape software (version 3.9.0, https://

cytoscape.org/), and key gene modules were identified using the

Molecular Complex Detection (MCODE) algorithm. Functional

and pathway enrichment analysis of key gene modules were

performed in the Metascape database (https://metascape.org/gp/

index.html#/main/step1).

We then used univariate Cox regression analysis to identify

genes significantly associated with RFS in the above key gene

modules. The association between each gene and RFS was

further assessed by meta-analysis combining the datasets

GSE39582 (n = 206), TCGA-COAD (n = 128), GSE14333 (n =

81), GSE17538 (n = 75) and GSE37892 (n = 57). If robust

heterogeneity was not observed (I2 < 40%, P > 0.05), the fixed-

effects model was chosen to pool HRs from different cohorts.

Otherwise, the random-effects model was selected.
Gene mutation analysis

In the TCGA-COAD dataset, 113 patients with stage III CC

had complete somatic mutation data. In contrast, only TP53,

KRAS, BRAF and mismatch repair mutations were available in

the GSE39582 dataset. We compared the mutations and the

tumor mutation burden (TMB) between the high and low

EPSTI1 groups in the TCGA-COAD cohort. We also analyzed

the mutation status of TP53, KRAS, and BRAF and

microsatellite stability in both groups.
Inference of TME immune cell infiltration

To quantify the degree of immune cell infiltration in each

stage III CC sample, we applied three widely accepted algorithms

for evaluation: TIMER 2.0 (http://timer.cistrome.org/), TIDE

(http://tide.dfci.harvard.edu/) and CIBERSORTx (https://

cibersortx.stanford.edu). According to the algorithm

instructions, we uploaded the prepared gene expression matrix

into the web tool to obtain infiltration scores. Only the immune

cell types detected in more than 50% of the samples were

included in further analysis. In the CIBERSORTx estimation

procedure, we ran the web tool with LM22 gene signatures and

1000 permutations.
Single-cell RNA sequencing data analysis

We performed scRNA-seq analysis using the R package

“Seurat” (version 4.1.0). Cells with less than 200 genes and

more than 50% mitochondrial counts were excluded from the

analysis. The expression matrix was then normalized using the

“SCTransform” function, and the top 3000 highly variable genes

were subjected to principal component analysis (PCA). We
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constructed the shared nearest neighbor (SNN) graph and the

uniform manifold approximation and projection (UMAP)

embedding with the top 20 principal components. The

identification of main cell types was consistent with the

original literature. Based on the M1/M2 macrophage and

pDC/mDC gene signatures summarized in the literature (see

Table S3), we further subclustered the macrophages and DCs

using the R package CelliD (16). The proportion of cells in each

subpopulation was then calculated. The expression of M1 versus

M2 up- and down-regulated genes (17), and plasmacytoid cell

type DC (pDC) versus mDC up- and down-regulated genes (18)

were scored using the “AddModuleScore” function. The same

function was also used to compute the activity scores of

immune-related signaling pathways from the Broad Institute’s

Hallmark collection.
Statistical analysis

Patient groups or cell groups were compared using Welch’s

t-test if the continuous variables were normally distributed;

otherwise, the Mann-Whitney U test was applied. Categorical

variables were compared using the chi-square test. We plotted

survival curves using the Kaplan-Meier method and used the

log-rank test to compare survival differences. The predictive

validity of the model was quantified by the area under the ROC

curve (AUC). For correlation analysis, we calculated Pearson or

Spearman correlation coefficients as indicated. A P value < 0.05

was considered significant. All statistical analyses were

performed using R software (version 4.1.0).
Results

TME immune score predicts the RFS of
stage III CC patients

To investigate the relationship between the tumor immune

microenvironment and RFS in stage III CC patients, we applied

the TMEscore model to perform immune scoring in the

GSE39582 (n = 206) and TCGA-COAD (n = 128) cohorts.

The cut-off value of the TME immune score in each cohort was

determined by X-tile software, and the patients were then

divided into high- and low-immune score groups (Table S1).

According to the cut-off value, 103 patients in the GSE38582

cohort were assigned to the high immune score group, and the

remaining 103 patients were assigned to the low immune score

group. In the TCGA-COAD cohort, the numbers were 82 and

46, respectively. The high and low TME score groups had

different distribution features on the PCA dimensionality

reduction map, reflecting the difference in the expression of

immune-related genes between the two groups (Figures 1 A, D).

In both cohorts, the Kaplan-Meier survival curves showed that
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FIGURE 1

TME immune score correlates with the prognosis of patients with stage III CC. TME, tumor microenvironment. (A, D) PCA plot reveals different
expression patterns of TME immune score-related genes in different groups of stage III CC patients from the GSE39582 and TCGA-COAD
cohorts. (B, E) Kaplan–Meier curves of relapse-free survival according to TME immune score levels in the GSE39582 and TCGA-COAD cohorts.
Stage III CC patients with high TME immune scores have a better prognosis (log-rank test P < 0.05) in both datasets. (C, F) The time-dependent
ROC curves measuring the predictive power of the TME immune score on 2-, 5-, and 7-year RFS in the GSE39582 and TCGA-COAD datasets.
RFS, relapse-free survival.
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RFS was significantly worse in the low-immune score

group (Figures 1 B, E; log-rank P = 0.006 in GSE39582, log-

rank P = 0.04 in TCGA-COAD). To measure the predictive

performance of the TMEscore model, we calculated the time-

dependent AUC values for both cohorts at 2, 5 and 7 years. The

AUCs at these time points were 0.60, 0.58 and 0.61 in the

GSE39582 cohort, while they were 0.62, 0.61 and 0.56 in the

TCGA-COAD cohort (Figures 1C, F). These results suggest

that the TME immune score can predict RFS in patients with

stage III CC.
Identification of key gene modules
associated with TME immune score

We then analyzed the DEGs between the different

TME immune scoring groups in the GSE39582 and TCGA-
Frontiers in Immunology 05
COAD datasets. Compared to the low TME immune score

group, patients in the high TME immune score group had 116

genes that were significantly upregulated and 7 genes that were

significantly downregulated in GSE39582 (Figures 2A, Table

S2), while 182 genes were upregulated and 3 genes were

downregulated in the high immune score group in TCGA-

COAD (Figure 2B). We then intersected the DEGs from the

two cohorts to obtain 53 common genes (Figure 2C). By

entering these genes into the STRING database, we

constructed a prote in-prote in interact ion network

(Figure 2D). The minimum required interaction score was

set as medium confidence (0.400). The PPI network was then

imported into Cytoscape software, and two key gene modules

were identified by the MCODE algorithm: MCODE cluster 1

contained 24 genes (Figure 2E), while MCODE cluster 2

contained 16 genes (Figure 2F). The enrichment analysis

suggests that these genes are mainly related to human
B C

D E

F

G

H

A

FIGURE 2

Identification of key gene modules from DEGs between the high and low TME immune score groups; DEGs, differentially expressed genes.
(A, B) DEGs between the high and low TME immune score groups in the GSE39582 and TCGA-COAD datasets. The red dots represent
significantly upregulated genes, and the blue dots represent significantly downregulated genes (adjusted P value < 0.05 and |log2FC| > 1); FC,
fold change. (C) The Venn diagram reveals the intersection of DEGs in the GSE39582 and TCGA-COAD cohorts. (D) Protein-protein interaction
network generated from the STRING database. The size of the nodes indicates the degree, which denotes the number of how many
interactions (at the score threshold) that a protein has on the average in the network. The thickness of the edge indicates the combined score,
which represents the confidence of the link between two proteins. (E, F) Critical sub-network components in the PPI network identified by the
MCODE algorithm. MCODE, Molecular Complex Detection; PPI, protein-protein interaction. (E) MCODE cluster 1; (F) MCODE cluster 2. (G, H)
Bar graph of enriched pathways across gene lists in MCODE cluster 1 and 2, colored by P values.
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immune function, particularly the interferon gamma signaling

pathway (Figure 2G, H).
Genes associated with TME immune
scores and RFS

Survival analysis was performed via univariate Cox

regression to identify a subset of genes closely related to RFS

in the MCODE clusters. The results revealed that only EPSTI1

and CXCL11 were significantly associated with RFS in both the

GSE39582 and TCGA-COD cohorts (Figure 3). In GSE39582,

the hazard ratios (HRs) for EPSTI1 and CXCL11 were 0.79 (95%

CI, 0.65-0.96; P < 0.05) and 0.89 (95% CI, 0.80-0.99; P < 0.05),

respectively. In TCGA-COAD, the HRs for the two genes were

0.69 (95% CI, 0.50-0.95; P < 0.05) and 0.74 (95% CI, 0.57-0.97; P

< 0.05), respectively. Using X-tile software, we determined the

cut-off values for EPSTI1 and CXCL11 expression levels,

respectively, and divided patients in the GSE39582 and

TCGA-COAD cohorts into groups with high and low
Frontiers in Immunology 06
expression levels of the corresponding genes. Kaplan-Meier

survival curves showed that the high EPSTI1 group had

prolonged RFS (Figure 4A, B; P < 0.05), and the high CXCL11

group also had a better prognosis (Supplementary Figure 1A, B;

P < 0.05). To further confirm the relationship between these two

genes and RFS in patients with stage III CC, 547 patients from

five datasets, GSE39582 (n = 206), TCGA-COAD (n = 128),

GSE14333 (n = 81), GSE17538 (n = 75) and GSE37892 (n = 57),

were subjected to meta-analysis. No significant heterogeneity

was observed among these datasets (I2 < 40%, P > 0.05), and

thus, the fixed effects model was selected for the meta-analysis.

The pooled HRs of EPSTI1 and CXCL11 were 0.81 (95% CI,

0.71-0.91) and 0.92 (95% CI, 0.86-0.98), respectively (Figure 4C;

Supplementary Figure 1C). These results suggest that high levels

of EPSTI1 and CXCL11 expression in stage III CC are

significantly associated with prolonged RFS.

To date, a wide range of studies have explored the role of

CXCL11 in antitumor immunity in diverse tumors, including

CC (19, 20). However, the role of EPSTI1 in antitumor

immunity in CC has not yet been reported. Therefore, in the
FIGURE 3

Forest plot of univariate Cox regression analysis for MCODE cluster 1 and 2. The results show that only the ESPTI1 and CXCL 11 are significant
protective factors (HR < 1, P < 0.05) for RFS in both the GSE39582 and TCGA-COAD cohorts. MCODE, the Molecular Complex Detection
algorithm; RFS, relapse-free survival.
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following analysis, we focused on the association of EPSTI1

with the immune microenvironment of CC and its impact

on RFS.
Mutations in the high and low
EPSTI1 groups

The top 20 mutated genes in the high and low EPSTI1

groups from the TCGA-COAD are illustrated in Supplementary

Figure 2A. Although the mean TMB was greater in the high

EPSTI1 group, there was no significant difference between the

two groups (Supplementary Figure 2B; P > 0.05). The mutation

rate of TP53 exceeded 50% in both groups, but no significant

difference was observed (Supplementary Figures 2C, D). The

proportions of patients with BRAF mutation or microsatellite

instability were also not significantly different between the two

groups (Supplementary Figures 2C, D). In the GSE39582 cohort,

the KRAS mutation rate in the high EPSTI1 group was 37%,

which was significantly lower than the 61% rate in the low EPSTI

group (Supplementary Figure 2D). Although the KRAS

mutation rate in the high EPSTI1 group was still smaller than

that in the low EPSTI group in the TCGA-COAD cohort (33%
Frontiers in Immunology 07
vs. 41%), the difference was not statistically significant

(Supplementary Figure 2C).
Association between EPSTI1 and immune
infiltrates

In this study, we evaluated immune infiltration in tumor

tissue based on bulk RNA-seq data using three different

approaches, including TIMER 2.0, TIDE and CIBERSORTx.

TIMER 2.0 analysis demonstrated that macrophages, myeloid

dendritic cells, neutrophils and CD8 T cells were more

abundantly infiltrated in the high EPSTI1 group (Figure 5A; P <

0.05). TIDE found significantly lower infiltration abundance of

M2 tumor-associated macrophages (TAM) in the high EPSTI1

group in both cohorts when assessing immunosuppressive cells

(Figure 5B; P < 0.05). For MDSCs, the infiltration abundance was

significantly lower in the high EPSTI1 group in the TCGA-COAD

cohort (Figure 5B; P < 0.05). In the GSE39582 cohort, the

difference was only marginally significant (Figure 5B; P =

0.076), although the high EPSTI1 group still had a smaller

infiltration abundance than the low EPSTI1 group. The

CIBERSORTx algorithm calculates the infiltration status of 22
B

C

A

FIGURE 4

Association between EPSTI1 expression level and RFS in patients with stage III CC. CC, colon cancer; RFS, relapse-free survival. (A, B) Kaplan-
Meier survival curves for high and low EPSTI1 groups in the GSE39582 and TCGA-COAD cohorts. Patients with high EPSTI1 levels have
significantly better RFS than those with low EPSTI1 levels. (C) A meta-analysis of 5 independent studies shows that the expression level of EPSTI1
is a protective factor for RFS (fixed model effect, pooled HR = 0.81, 95% CI 0.71-0.91). HR, hazard ratio; CI, confidence interval.
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types of immune cells. In this study, we excluded a cell type if its

infiltrative abundance was calculated to be zero in more than 50%

of the samples. Pearson correlation analysis revealed that in the

GSE39582 cohort, EPSTI1 expression was positively correlated

with the infiltration of memory activated CD4 T cells, follicular

helper T cells, andM1macrophages (Figure 5C; R > 0.2, P < 0.05),

and negatively correlated with the infiltration of resting memory

CD4 T cells, resting NK cells and activated mast cells (Figure 5C;
Frontiers in Immunology 08
R < -0.2, P < 0.05). In the TCGA-COAD cohort, EPSTI1

expression was positively correlated with the infiltration of CD8

T cells, follicular helper T cells and M1 macrophages (Figure 5D;

R > 0.2, P < 0.05), and negatively correlated with the infiltration of

naive B cells and resting NK cells (Figure 5D; R < -0.2, P < 0.05).

Notably, M1 macrophages displayed a strong correlation with

EPSTI1 expression in both cohorts (R = 0.561 in GSE39582;

R = 0.394 in TCGA-COAD).
B

C

D

A

FIGURE 5

The association between EPSTI1 expression level and immune cell infiltration. (A) Comparison of immune cell infiltration in the high and low
EPSTI1 groups estimated with the TIMER algorithm in the GSE39582 and TCGA-COAD cohorts. TIMER, Tumor Immune Estimation Resource.
(B) Enrichment scores of immunosuppressive cell signatures estimated by the TIDE algorithm. TIDE, Tumor Immune Dysfunction and Exclusion.
(C, D) Scatter plots of EPSTI1 expression and immune cell infiltration levels, which were estimated by the CIBERSORTx algorithm. The Pearson’s
correlation coefficient (R) and corresponding P-value are shown at the left top of each plot.
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Expression of EPSTI1 at the
single-cell level

In the bulk RNA-seq datasets above, EPSTI1 was closely

associated with immune infiltrates. To further investigate the

relationship between EPSTI1 and tumor immune cells, we

analyzed 32 stage III CC patients from the single-cell dataset

GSE178341. According to the quality control criteria in the

original literature, we obtained 114,928 cells from CC tissues.

Cell types were identified with reference to the original paper.

From the EPSTI1 dimplot and dotplot (Figure 6A), we found

that EPSTI1 was predominantly expressed in immune cells, both

in terms of EPSTI1 expression levels and the proportion of

EPST1-positive cells. Further sorting of immune cells

revealed that macrophages and DCs were the main

cell clusters expressing EPSTI1 (Figure 6B), similar to

the immune infi ltration analysis of the bulk RNA-

seq datasets above.

Several studies have indicated that M1macrophages exert

tumor-preventing activities, whereas M2 macrophages are

associated with immunosuppression (21, 22, 23). At the single-

cell level, the ratio of EPSTI1+ macrophages was significantly

correlated with that of M1 macrophages (R = 0.405, P = 0.022;

Figure 6C, Supplementary Figure 3A), which was consistent with

the CIBERSORTx analysis of bulk sequencing described

previously. Moreover, EPSTI1+ macrophages scored

significantly lower on the M2 but significantly higher on the

M1 signature modules (Figures 6D, E; P < 0.05). In the scoring of

cell signaling pathway activity, EPSTI1+ macrophages had a

higher mean score for immune-related signaling pathways

(Figure 6F), showing a different function pattern from

EPSTI1- macrophages.

DCs were another major cell cluster that expressed EPSTI1

in our study. By origin, DCs can be classified into mDCs, which

are derived from common myeloid progenitors (CMPs) that also

produce macrophages, and pDCs, which are derived from

common lymphocyte progenitors (CLPs) that also produce B

cells, T cells and NK cells. Although the proportion of EPSTI1+

DCs was positively correlated with that of mDCs without

statistical significance (R = 0.302, P = 0.093; Supplementary

Figure 3B, C), EPSTI1+ DCs had significantly lower pDC but

higher mDC feature scores (Supplementary Figures 3D, E; P <

0.05). Similar to EPSTI1+ macrophages, the mean scores of

immune-related signaling pathways were higher in EPSTI1+

DCs (Figure 6G). The association between DCs and

macrophages in EPSTI1 expression was also inspected by

Pearson correlation analysis. In the 32 patients with stage III

CC in GSE178341, macrophages and DCs were significantly

correlated (R > 0.6, P < 0.05), both in terms of the average level of

EPSTI1 expression and the proportion of EPSTI1+ cells

(Figures 6H, I).
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Discussion

The immunocyte infiltration has received extensive attention

for its important role in both tumor prognosis and therapy (24, 25).

In our study, patients with a high TME immune score, which

reflects immunocyte infiltration, experienced better RFS. The result

was consistent with previous reports using Immunoscore calculated

by assessing CD3 and CD8 immunohistochemical staining both in

the tumor center and invasive margin (26). To explore more

potential molecules associated with both immunocyte infiltration

and prognosis, we compared the DEGs between the high and low

TME immune score groups and screened out EPSTI1 and CXCL11.

However, CXCL11 has been included in the TME immune score

algorithm and widely investigated in various cancers, including

colon cancer (20, 27). EPSTI1, initially identified as an induced gene

in a three-dimensional tumor environment assay (28), was reported

to promote epithelial-mesenchymal transition (EMT) and tumor

metastasis in breast cancer (29, 30, 31). Its significance in colon

cancer, especially its participation in the immune response, has not

been well explored.

To further confirm the prognostic significance of EPSTI1 in

stage III CC, we explored the relationship between RFS and

EPSTI1 expression in a meta-analysis including more than 500

patients in 5 datasets at the mRNA level. The results indicated

that high expression of EPSTI1 was significantly associated with

better RFS. Analysis of the single-cell dataset further showed that

the average expression of EPSTI1 was highest in immune cells.

The types and functions of infiltrative immune cells are

various and complex. Analysis results from both bulk tissue and

single-cell RNA sequencing revealed that the expression of

EPSTI1 was significantly high in macrophages and DCs,

especially classically activated M1 macrophages, playing roles

in antitumor immunity (32, 33, 34). In our analysis of pathway

activity assessment for macrophages and DCs, EPSTI1 was

found to be associated with several immune-related pathways,

such as interferon-g (IFNg) response, interleukin-6 (IL6)-Jak-

Stat3 signaling and tumor necrosis factor-a (TNF-a) signaling
activated by nuclear factor kB (NFkB). M1 phenotypes of

macrophages are usually polarized via IFNg, and subsequently

release numerous cytokines (such as TNF-a and IL-6) and

reactive oxygen/nitrogen species to realize the tumoricidal

activity (35). An NFkB-dependent and IFNg-regulated gene

network in mDCs promotes antigen presentation from dying

tumor cells and the subsequent recruitment and activation of

cytotoxic T cells (36). In Kim YH et al.’s research, EPSTI1 was

found to be highly expressed in macrophages exposed to IFNg
and lipopolysaccharide (LPS) and to modulate M1 polarization

via the Stat1 and p65 pathways (37). Therefore, we speculate that

EPSTI1 in the stage III CC exerts antitumor immunity and

inhibits tumor progression by promoting macrophage and mDC

infiltration, accelerating the M1 polarization of macrophages,
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FIGURE 6

The analysis of EPSTI1 expression at the single cell level. (A, B) EPSTI1 expression levels in various cell types revealed by dimensional reduction
plots (left and middle panels) and dot plots (right panels). The results show that EPSTI1 is mainly expressed in immune cells, especially in
macrophages and dendritic cells. Epi, epithelial cells; Strom, stromal cells; B, B cells; Granulo, granulocytes; Mast, mast cells; NK, natural killer
cells; TCD4, CD4 positive T cells; TCD8, CD8 positive T cells; DC, dendritic cells; Macro, macrophages; Mono, monocytes; Plasma, plasma cells.
(C) The EPSTI1+ macrophage ratio and M1 macrophage ratio are significantly correlated (R = 0.406, P = 0.021) (D, E) The module scores of
gene signatures related to M1/M2 polarization in EPSTI1+/- macrophages suggest that EPSTI1+ macrophages have more M1 features. (F) Mean
pathway activity scores of EPSTI1+/- macrophages. The immune-related pathways appear to be more active in EPSTI1+ macrophages. (G) Mean
pathway activity scores of EPSTI1+/- DCs. Immune-related pathways are scored higher in EPSTI1+ DCs. (H, I) Macrophages and DCs are
significantly correlated (R > 0.60, P < 0.001) in terms of EPSTI1 expression levels and the proportion of EPSTI1 positive cells.
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enhancing the antigen presentation ability of M1 macrophages

and DCs and reinforcing subsequent tumor killing.

Apart from chemotherapy, radiotherapy and targeted therapy,

immunotherapy has been emerging as another pillar for tumor

treatment (38, 39). Although immune checkpoint blockers (ICBs),

which primarily target cytotoxic T lymphocytes, are widely used

in current clinical practice (40, 41), TAMs and DCs have also been

favored and explored in recent decades. A variety of therapeutic

strategies targeting TAMs and DCs are being tested in basic

researches and clinical trials (42, 43, 44), for example, inhibiting

mononuclear macrophage recruitment, TAM depletion and

inhibition of activation, reprogramming TAMs and DC-based

cancer vaccines. Correspondingly, a variety of relevant molecules

are being targeted, for instance, blockade of CD47 to enhance the

phagocytotic abilities of antigen-presenting cells, inhibition of

phosphoinositide 3-kinase g (PI3Kg) to interrupt M2

polarization, and Toll-like receptor (TLR) agonists to induce M1

polarization. Considering the potential significance in

macrophages and DCs, EPSTI1 deserves more in-depth research

and might be another target for cancer immunotherapy.

In conclusion, the TME immune score is positively

associated with better survival outcomes. EPSTI1 could serve

as a novel immune prognostic biomarker for stage III CC.
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SUPPLEMENTARY FIGURE 1

Identification of RFS-related genes in MCODE cluster 1 and 2. (A) Forest
plot of univariate Cox regression analysis for MCODE cluster 1 and 2. The

results show that only the ESPTI1 and CXCL 11 are protective factors (HR <

1, P < 0.05) for RFS in both the GSE39582 and TCGA-COAD cohorts.
MCODE, the Molecular Complex Detection algorithm; RFS, relapse-free

survival. (B, C) Kaplan-Meier survival curves for high and low CXCL11
groups in the GSE39582 and TCGA-COAD cohorts. Patients with high

CXCL11 levels have significantly better RFS than those with low CXCL11
levels. (D) A meta-analysis of 5 independent studies shows that the

expression level of CXCL11 is a protective factor for RFS (fixed model

effect, pooled HR = 0.92, 95% CI 0.86-0.98). HR, hazard ratio; CI,
confidence interval.

SUPPLEMENTARY FIGURE 2

Analyses of somatic mutation profiles in stage III CC patients. (A)
Oncoplot of detailed mutation information of top 20 genes in low and

high EPSTI1 groups of the TCGA-COAD cohort. Genes are ordered by

their mutation frequency. (B) Comparison of tumor mutation burden
between low and high EPSTI1 groups in the TCGA-COAD cohort. (C, D)
Stacked bar plot shows the distribution of mutation spectra for low and
high EPSTI1 groups in the TCGA-COAD and GSE39582 cohorts.

SUPPLEMENTARY FIGURE 3

Supplementary analysis of EPSTI1 expression at the single-cell level. (A, B)
Subclusters of macrophages and DCs identified by the R package CelliD.
(C) The proportion of EPSTI1+ cells is positively correlated with that of

mDCs without statistical significance (R = 0.302, P = 0.093). (D, E)The
module scores of gene signatures related to plasmacytoid/myeloid DC.

The results show that EPSTI1+ DCs have more myeloid features.
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