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Targeting dual-specificity tyrosine
phosphorylation-regulated kinase 2 with a highly
selective inhibitor for the treatment of prostate
cancer
Kai Yuan1,2,7, Zhaoxing Li 1,3,7, Wenbin Kuang1,2,7, Xiao Wang1,2,7, Minghui Ji1,2, Weijiao Chen1,2, Jiayu Ding1,2,

Jiaxing Li1,2, Wenjian Min1,2, Chengliang Sun1,2, Xiuquan Ye1,3, Meiling Lu1,4, Liping Wang1,2, Haixia Ge5,

Yuzhang Jiang 6✉, Haiping Hao1,3✉, Yibei Xiao1,3✉ & Peng Yang 1,2✉

Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide, and hormonal

therapy plays a key role in the treatment of PCa. However, the drug resistance of hormonal

therapy makes it urgent and necessary to identify novel targets for PCa treatment. Herein,

dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is found and confirmed

to be highly expressed in the PCa tissues and cells, and knock-down of DYRK2 remarkably

reduces PCa burden in vitro and in vivo. On the base of DYRK2 acting as a promising target,

we further discover a highly selective DYRK2 inhibitor YK-2-69, which specifically interacts

with Lys-231 and Lys-234 in the co-crystal structure. Especially, YK-2-69 exhibits more

potent anti-PCa efficacy than the first-line drug enzalutamide in vivo. Meanwhile, YK-2-69

displays favorable safety properties with a maximal tolerable dose of more than 10,000mg/

kg and pharmacokinetic profiles with 56% bioavailability. In summary, we identify DYRK2 as

a potential drug target and verify its critical roles in PCa. Meanwhile, we discover a highly

selective DYRK2 inhibitor with favorable druggability for the treatment of PCa.
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Prostate cancer (PCa) is one of the most common cancers in
men with an estimated incidence of 268,490 new cases
in the U.S. alone, accounting for 27% of all new cancer cases

in U.S. males in 20221,2. The mortality rate of PCa ranks second in
U.S. male cancer and is expected to reach 11% of all male cancer
deaths in 20221,2. The majority of PCa primarily relies on androgens
for survival and growth, and PCa treatment mainly focused on
reducing hormone levels3–5. Currently, hormonal therapy, including
the antiandrogens6,7, gonadotropin-releasing hormone (GnRH)
agonists and antagonists8,9, androgen biosynthesis inhibitor10,11, and
androgen receptor inhibitor12,13, has been developed. However,
hormonal therapy can only delay PCa progression but is not a
curative method for PCa treatment14,15. Ultimately, drug resistance
of hormonal therapy is easily generated and most PCa patients
developed to a metastatic, hormone-resistant state16,17. Therefore,
despite the leading role of androgen in the PCa, it is necessary to
identify novel regulators of PCa and target them for PCa treatment.

Dual-specificity tyrosine phosphorylation-regulated kinases
(DYRKs) are evolutionarily conserved enzymes, and the most
remarkable characteristic property of them is to display both
tyrosine and serine/threonine kinase activities. DYRKs can be
divided into class I (DYRK1A and DYRK1B) and class II
(DYRK2, DYRK3 and DYRK4) in mammals. Class I and class II
DYRKs are mainly localized in the nucleus and cytoplasm,
respectively. Among class II DYRKs, DYRK2 is most deeply
studied, which plays important while controversial roles in
human cancers18,19. Previously, DYRK2 was primarily considered
as a cancer suppressor, which can promote phosphorylation of
P53 to induce apoptosis20,21, facilitate degradation of c-JUN and
c-MYC to inhibit the transition of the cell cycle from G1 to S
phase22,23, and accelerate the degradation of snail to suppress
epithelial-to-mesenchymal transition (EMT) and cell migration
and so on24,25. Recently, researches on the DYRK2 have gradually
revealed its distinct role as an oncogene26–28. In multiple mye-
loma (MM) and triple-negative breast cancer (TNBC), DYRK2
phosphorylates Rpt3-Thr25 of the 26S proteasome to activate the
26S proteasome, and then promotes the transition of the cell cycle
from G1 to S phase29,30. The inhibition of DYRK2 impedes 26S
proteasome activity and suppresses the cell cycle progression to
inhibit cell proliferation31,32. Therefore, DYRK2 is a potential
target for the treatment of MM and TNBC. These researches
revealed the critical and multifarious roles of DYRK2 in different
cancers. However, the regulation mechanism of DYRK2 in PCa is
still unclear and has not been reported. Moreover, the reported
small-molecule DYRK2 inhibitors lack selectivity and exhibit
poor druggability. Thus, it is urgent to reveal the function of
DYRK2 in PCa and develop DYRK2 inhibitors with better
potency and higher selectivity to treat PCa and other cancers.

In our work, DYRK2 was identified as a potential target for
PCa treatment. High expression of DYRK2 was detected and
confirmed in both PCa patients and cell lines. Knock-down of
DYRK2 in PCa cells suppressed cell proliferation and metastasis,
promoted apoptosis, and caused a G1 arrest of the cell cycle.
Furthermore, knock-down of DYRK2 significantly inhibited
tumor growth of PCa in a xenograft model. Through virtual
screening and structural optimization, we developed a unique
DYRK2 inhibitor YK-2-69 with high selectivity over 370 kinases,
and the detailed interactions between YK-2-69 and DYRK2 were
further demonstrated by their co-crystal structure. Moreover, YK-
2-69 displayed acceptable safety properties, favorable pharmaco-
kinetic profiles, and stronger suppression of PCa progression than
the first-line PCa drug enzalutamide in vivo. Therefore, DYRK2
was a biomarker in PCa diagnosis and a potential target to
develop anti-PCa drugs. The DYRK2 inhibitor YK-2-69 with high
selectivity and favorable druggability provided a potential can-
didate for the treatment of PCa.

Results
Highly expressed DYRK2 was a potential target in PCa. To
investigate the role of DYRK2 in PCa, we first mined The Cancer
Genome Atlas (TCGA) to analyze the expression of DYRK2 in
normal and PCa patients. We found the higher expression of
DYRK2 in PCa patients when compared with normal controls
(Fig. 1a). Also, different from PCa patients with intermediate risk
and below the age of 65, the expression of DYRK2 was significantly
higher in high risk and above the age of 65 PCa patients, respec-
tively (Fig. 1b, c). Importantly, the relapse-free survival (RFS) in
patients with low expression of DYRK2 was remarkably better than
those with high expression of DYRK2 (Fig. 1d). Therefore, DYRK2
was the potential target for PCa treatment based on analysis of
TCGA. Meanwhile, other DYRK family members, DYRK1A,
DYRK1B, DYRK3, and DYRK4were not great candidate targets for
anti-PCa drugs based on analysis of TCGA (Supplementary Fig. 1).
Furthermore, the DYRK2 mRNA levels of malignancy PCa tissues
were higher than adjacent normal prostate tissues in PCa patients
(Fig. 1e). Immunohistochemistry of DYRK2 in these patient-
derived PCa tumors also demonstrated that the expression of
DYRK2 in tumor tissues was much higher than in normal tissues
(Fig. 1f). Meanwhile, the protein levels of DYRK2 in PCa cells were
further determined by western blotting analysis, and the results
showed the higher expression of DYRK2 in DU145, PC-3, and
22Rv1 cells compared with prostate RWPE-1 cells (Fig. 1g). All
these results indicated that DYRK2 is highly expressed in PCa,
which could be a potential target to develop anti-PCa drugs.

Knock-down of DYRK2 remarkably reduced PCa burden. To
further study the role of DYRK2 in PCa, we knocked down
DYRK2 in DU145 and 22Rv1 cells using shRNAs (Fig. 2a, b and
Supplementary Fig. 2a). DYRK2 depletion significantly sup-
pressed the cell proliferation (Fig. 2c, d and Supplementary
Fig. 2b), migration (Supplementary Fig. 2c) and invasion (Sup-
plementary Fig. 2d) in PCa cells. In addition, knock-down of
DYRK2 caused a G0/G1 arrest of the cell cycle (Fig. 2e, f) and
induced apoptosis (Fig. 2g, h). The cell cycle-related proteins,
including p-RB, CDK4, and CDK6, which promoted the cell cycle
progression, were down-regulated in the DU145 shDYRK2 cell.
In contrast, cyclin-dependent kinase inhibitors (CKIs) P21 and
P27, which inhibited the cell cycle, were up-regulated (Fig. 2i).
The cell apoptosis-related proteins P53 and cleaved PARP were
up-regulated, and XIAP was down-regulated. The increased
expression of E-cadherin was also detected, which demonstrated
metastasis was suppressed (Fig. 2i). Furthermore, to determine
the effects of DYRK2 knock-down on PCa growth in vivo, we
subcutaneously implanted the DU145 shNC and shDYRK2 cells
into the nude mice. The tumor growth was significantly inhibited
(Fig. 2j) while the body weight of mice increased normally when
compared with the shNC group (Supplementary Fig. 2e). H&E
staining and Ki-67 immunohistochemical analysis of tumor tis-
sues indicated that knock-down of DYRK2 exhibited potent
efficacy of killing tumor cells and inhibiting PCa cell proliferation
(Supplementary Fig. 2f, g). The WB analysis of the tumor tissues
demonstrated that p-RB, CDK4, CDK6, and XIAP were down-
regulated, while P27, P53, and cleaved PARP were up-regulated
in vivo (Fig. 2k). Furthermore, we also inoculated subcutaneously
22Rv1 shNC and shDYRK2 cells into mice. Similar as the results
in DU145 shDYRK2 studies, the body weight of mice increased
normally but no visible tumors were detected in the
22Rv1 shDYRK2 group (Supplementary Fig. 2h, i). In summary,
the down-regulation of DYRK2 remarkably reduced PCa tumor
burden in vitro and in vivo, suggesting that DYRK2 played a
critical function in regulating PCa and is a potential therapeutic
target for the treatment of PCa.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30581-4

2 NATURE COMMUNICATIONS |         (2022) 13:2903 | https://doi.org/10.1038/s41467-022-30581-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


YK-2-69 was discovered as a highly selective DYRK2 inhibitor.
Considering the high expression level and critical regulation roles
of DYRK2 in PCa, we took DYRK2 as a potential drug target and
conducted a structure-based virtual screening of the Specs data-
base and an in-house library to identify DYRK2 inhibitors
(Fig. 3a, see Supplementary Methods for details). Compounds
with poor drug-like properties were first filtered33–36, then the
remained 195,483 compounds were subjected to structure-based
virtual screening (DYRK2 PDB ID: 6K0J) via the Libdock and

CDOCKER protocol of Discovery Studio 2020 (DS2020, Accelrys,
CA, USA)32,37,38. 2,724 ligands were reserved and further clus-
tered into 100 clusters, then 15 compounds were selected for
DYRK2 inhibitory activity evaluation (Supplementary Fig. 3)39.
Among these 15 compounds, compound 12 was identified as a
top hit, which displayed potent inhibition on DYRK2 with a half
maximal inhibitory concentration (IC50) value of 263 nM (Sup-
plementary Table 1). Through systematic optimization (see
Methods for details), multiple series of derivatives 16-27

Fig. 1 DYRK2 is highly expressed in PCa. a–c Comparison of DYRK2 expression between tumor (red, n= 51) and normal (gray, n= 51) tissues (a), high
(red, n= 345) and intermediate (blue, n= 152) risk PCa patients (b), age≤65 (blue, n= 354) or > 65 (yellow, n= 143) PCa patients (c) in TCGA database.
FRKM: fragment per killo million. The whiskers of boxplot represent the quantile percentile, from bottom to top are minima, 25%, median, 75%, and
maxima respectively. Two-tailed Student’s t test was applied without adjustment for multiple comparisons (false discovery rate, FDR). d Kaplan–Meier
survival plot of high (red line, n= 246) and low (blue line, n= 246) DYRK2 expression PCa patients. Log-rank test, P= 0.015. e, f Analysis of DYRK2
expression in three PCa patients. DYRK2 mRNA level (e) and immunohistochemical analysis of DYRK2 expression (f) in tumor and normal tissues.
Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3. g DYRK2 protein levels in different PCa cell lines. Normal prostate epithelial cell RWPE-1
was used as the control. Source data are provided as a Source Data file.
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(Supplementary Fig. 4) were synthesized. Among them, com-
pound 26 (re-named as YK-2-69) exhibited the most potent
DYRK2 inhibitory activity with an IC50 value of 9 nM (Fig. 3b). In
particular, YK-2-69 showed selectivity to the DYRK subfamily
with 60-fold selectivity over DYRK1B and more than 100-fold
selectivity over DYRK1A, DYRK3, and DYRK4 (Fig. 3c). To

further estimate the kinase selectivity of YK-2-69, its inhibitory
activities against 370 kinases were tested. Besides DYRK2 and
CDK4/640, YK-2-69 exhibited selectivity over 360+ kinases
(Fig. 3d and Supplementary Fig. 5). In addition, the Kd values of
lead compound 12 and YK-2-69 with DYRK2 were 4.21 µM and
92 nM, respectively (Supplementary Fig. 6a, b). Taken together,
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Fig. 2 Knock-down of DYRK2 inhibited PCa in vitro and in vivo. a, b Protein level of DYRK2 in DU145 shNC/shDYRK2 (a) and 22Rv1 shNC/shDYRK2 (b)
cells. c, d Cell viability of DU145 shNC/shDYRK2 cells (c) and 22Rv1 shNC/shDYRK2 cells (d) during a 5-day course. Unpaired two-tailed Student’s t test.
Error bar, mean ± SD, n= 3. e, f Cell cycle phase distribution of DU145 shNC/shDYRK2 cells (e) and 22Rv1 shNC/shDYRK2 cells (f) determined by flow
cytometry. Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3. g, h Apoptosis of DU145 shNC/shDYRK2 cells (g) and 22Rv1 shNC/shDYRK2
cells (h) determined by flow cytometry. Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3. iWestern blotting analysis of indicated proteins in
DU145 shNC and shDYRK2 cells. j, k BALB/c nude mice were implanted subcutaneously with DU145 shNC (n= 6) and shDYRK2 (n= 10) cells. Tumor
volume of mice (j) was measured every two days. Error bar, mean ± SD. The shNC group was euthanatized at 29th day and shDYRK2 group was
euthanatized at 49th day. Tumor tissues of mice treated with DU145 shDYRK2 and shNC cells were taken out, then the total proteins in the tumor were
extracted and subjected to the western blotting analysis of indicated proteins (k). Source data are provided as a Source Data file.
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YK-2-69 was discovered as a DYRK2 ligand with potent inhibi-
tory activity and high selectivity. The previous report reveals that
4E-binding protein 1 (4E-BP1) is a direct cellular target of
DYRK2, and DYRK2 can directly phosphorylate 4E-BP141,42.
Meanwhile, the phosphorylation of 4E-BP1 contributes to cell
proliferation and tumor growth43–45. Our results revealed that p-
4E-BP1 (Thr37/46) could interact with DYRK2 by the immu-
noprecipitation assay (Fig. 3e). Furthermore, YK-2-69 inhibited
the phosphorylation of 4E-BP1 in a dose-dependent manner
(Fig. 3f). These results demonstrated that YK-2-69 selectively
binds to DYRK2 and inhibits its kinase activity.

To explore the exact interaction of YK-2-69 with DYRK2 and
elucidate the mechanism, we determined the co-crystal structure
of YK-2-69 with DYRK2 at a high resolution of 2.5 Å (PDB ID:
7EJV, Fig. 4a and Supplementary Table 2). The co-crystal
structure showed that YK-2-69 occupied the ATP-binding pocket
of DYRK2, thereby preventing DYRK from exerting its enzymatic
activity (Fig. 4b). The occupancy of the ATP-binding pocket is
the same with all reported co-crystal structures31,32,46–48. The
benzothiazole and pyrimidine rings were located deep into the
ATP binding site. This orientation placed the pyrimidine ring

adjacent to the Lys-231. Lys-231 played a critical role in forming
the hydrogen bond in the previous co-crystal structures (PDB ID:
3KVW, 4AZF, 6HDR)46. The pyrimidine ring and the linked
secondary amine of YK-2-69 also interacted with Lys-231 in the
formation of two hydrogen bonds. The tailed piperazine ring
extended out and the conjoint carbonyl formed a hydrogen bond
with the amino side chain of Asn-234 (Fig. 4c).

YK-2-69 significantly inhibited growth and migration of PCa
cells in vitro. Once we confirmed YK-2-69 as a potent and selective
DYRK2 inhibitor, we further investigated its effects on PCa cells. YK-
2-69 showed potent inhibitory activity against the proliferation of
DU145, PC-3, and 22Rv1 cells (Supplementary Fig. 7a–c). But for
DU145 and 22Rv1 shDYRK2 cells, YK-2-69 exhibited almost no
inhibitory activity on the proliferation even at 80 μM (Fig. 5a), which
further confirmed the selective on-target activity of YK-2-69 to
DYRK2. Meanwhile, YK-2-69 significantly inhibited the cell pro-
liferation of DU145, PC-3, and 22Rv1 cells in a dose-dependent
manner (Fig. 5b–e and Supplementary Fig. 7d, e), which was similar
to knocking down DYRK2 in the PCa cells. Same as depletion of
DYRK2 reduced EMT, YK-2-69 also remarkably inhibited the
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migration and invasion of DU145, PC-3, and 22Rv1 cells in a dose-
dependent manner (Fig. 5f–i and Supplementary Fig. 7f, g). All these
results confirmed that YK-2-69 reduced cell proliferation and EMT
through inhibiting DYRK2.

To investigate the possible role of YK-2-69 on the cell cycle and
apoptosis, we conducted flow cytometry analysis. The treatment
of DU145, PC-3, and 22Rv1 cells with YK-2-69 caused a
significant increase of the apoptotic cell population (Fig. 5j, k
and Supplementary Fig. 7h) and arrested cell cycle at the G0/G1
phase (Fig. 5l, m and Supplementary Fig. 7i) in a concentration-
dependent manner. Furthermore, the DU145 cells treated with
YK-2-69 decreased cell cycle-related protein levels of p-RB, CDK4
and CDK6 as well increased P21, increased apoptosis-related
protein levels of P53 and cleaved PARP as well decreased XIAP,
and also increased expression of E-cadherin (Supplementary
Fig. 7j). In summary, knock-down of DYRK2 and small-molecule
inhibitor YK-2-69 displayed the similar effects on PCa cells
in vitro, which inhibited cell growth through G0/G1 arrest and
apoptosis induction, and decreased the EMT activity.

DYRK2 KD targeted similar signaling pathways to YK-2-69
treatment in the proliferation inhibition of PCa cells. To

investigate which signaling pathways are responsible for the anti-
prostate cancer function of DYRK2 inhibitors, we performed
transcriptome-wide RNA-sequencing analysis of DYRK2 KD-
and YK-2-69- treated human DU145 and 22Rv1 cells as well as
control cells49,50. Many signaling pathways regulated by DYRK2
KD could also be regulated by YK-2-69 treatment, especially the
vast majority of pathways (28 out of 34, 82.4%; 46 out of 48,
95.8%) inhibited by DYRK2 KD were also suppressed by YK-2-69
treatment (Fig. 6a and Supplementary Fig. 8a). By independent
analysis of two different comparisons, we found that both DYRK2
KD and YK-2-69 treatment induced significant inhibition of
MYC targets (Fig. 6b and Supplementary Fig. 8b), which may
contribute to the inhibitory effects of DYRK2 KD and YK-2-69
treatment on cell cycle and proliferation. Moreover, we made
shDYRK2 and YK-2-69 as a single group and re-analyzed the
sequencing data between this group and its control group (shNC
group and DMSO group). Consistently, we found that YK-2-69
treatment and DYRK2 KD inhibited cell cycle and proliferation
related signaling pathways MYC target V1, MYC target V2, E2F
targets (Fig. 6c). DYRK2 KD and YK-2-69 treatment significantly
down-regulated genes enriched in MYC target V1, MYC target
V2 and Mitotic SPINDLE (Fig. 6d). Then, we also found that
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Fig. 5 YK-2-69 inhibited cell growth and metastasis and induced apoptosis in PCa cells. a Antiproliferative activity of YK-2-69 against DU145 and
22Rv1 shDYRK2 cells. Error bar, mean ± SD, n= 3. b, c Effects of YK-2-69 (4, 8, 12 µM or 0.5, 1, 2 µM), palbociclib (2 or 0.5 µM), or enzalutamide (40 or
20 µM) treatment on the DU145 (b) and 22Rv1 (c) cells viability during a 5-day course. Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3.
d, e Quantification of DU145 (d) and 22Rv1 (e) cells colony numbers. Before being plated on the 24-well plate for colony formation, DU145 and 22Rv1 cells
were treated with DMSO, YK-2-69 (2, 4, 8, or 0.5, 1, 2 µM), palbociclib (2 or 0.5 µM), or enzalutamide (40 or 20 µM) for 48 h. Unpaired two-tailed
Student’s t test. Error bar, mean ± SD, n= 3. f, g Quantification of migration ability of DU145 (f) and 22Rv1 (g) cells after treatment with DMSO, YK-2-69
(2, 4, 8 µM or 0.5, 1, 2 µM), palbociclib (2 or 0.5 µM), or enzalutamide (40 or 20 µM) for 48 h. Unpaired two-tailed Student’s t test. Error bar, mean ± SD,
n= 3. h, i Quantification of invasion ability of DU145 (h) and 22Rv1(i) cells after treatment with DMSO, YK-2-69 (2, 4, 8 or 0.5, 1, 2 µM), palbociclib (2 or
0.5 µM), or enzalutamide (40 or 20 µM) for 48 h. Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3. j, k Apoptosis of DU145 (j) and 22Rv1
(k) cells after treatment with DMSO, YK-2-69 (2, 4, 8 or 0.5, 1, 2 µM), palbociclib (2 or 0.5 µM), or enzalutamide (40 or 20 µM) for 48 h determined by
flow cytometry. Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3. l, m Cell cycle phase distribution of DU145 (l) and 22Rv1 (m) cells after
treatment with DMSO, YK-2-69 (2, 4, 8 or 0.5, 1, 2 µM), palbociclib (2 or 0.5 µM), or enzalutamide (40 or 20 µM) for 48 h determined by flow cytometry.
Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3. Source data are provided as a Source Data file.
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DYRK2 KD and YK-2-69 treatment did not affect the
ANDROGEN RESPONSE signaling pathway, while enzalutamide
significantly inhibited the ANDROGEN RESPONSE signaling
pathway (Fig. 6e and Supplementary Fig. 8c). In summary, these
data suggested that DYRK2 KD and YK-2-69 treatment played
important and similar roles in cell proliferation inhibition.

Through the analysis of differentially expressed genes (DEG)
between shDYRK2 and YK-2-69-treated samples in
transcriptome-wide RNA-sequencing (Fig. 6f and Supplementary
Dataset 1) and the further experiment confirmation, we found
significant expression changes in human regulator ribosome
synthesis 1 (RRS1), glutamate-rich WD40 repeat containing 1
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(GRWD1), cyclin G2 (CCNG2), and Yippee-like-3 (YPEL3).
RRS1, an essential nuclear protein involved in ribosome
biogenesis, is overexpressed in some human cancers51, and
downregulation of RRS1 causes a G1 arrest of cell cycle52.
GRWD1, a negative transcriptional regulator of P53, plays an
oncogenic activity in human cancers53,54. Meanwhile, previous
studies have shown that overexpression of CCNG2 can induce
apoptosis and inhibit cell proliferation55,56. YPEL3, a P53-
regulated gene, has been reported to display growth suppressive
and EMT inhibitory activity57,58. The experimental results of
qRT-PCR demonstrated that oncogenes RRS1 and GRWD1 were
downregulated and tumor suppressors CCNG2 and YPEL3 were
upregulated regardless of knocking down DYRK2 or YK-2-69
treatment (Fig. 6g and Supplementary Fig. 8d). These results
suggested that RRS1, GRWD1, CCNG2, and YPEL3 may play
important roles in the DYRK2 regulation mechanism and YK-2-
69 treatment to PCa cells.

The principal component analysis indicated that DYRK2 KD
and YK-2-69 treatment also induced some different transcrip-
tomic changes (Fig. 6h). Therefore, the further Gene Set
Enrichment Analysis (GSEA) between shDYRK2 and YK-2-69
was conducted, which demonstrated that YK-2-69 treatment
induced inhibition of DNA repair and TGF β signaling pathways,
while DYRK2 KD had no remarkable effects on these two
signaling pathways (Fig. 6i). Inhibition of DNA repair is a
successful therapeutic strategy for cancers with several approved
drugs in the market59–61. TGF-β also plays a critical role as a
tumor promoter in late-stage cancer62,63, and a number of drugs
for inhibiting TGF β signaling pathway have been developed and
evaluated in clinical trials64. Therefore, YK-2-69 may regulate
some different signaling pathways to generate potent antitumor
activity when compared with DYRK2 KD.

YK-2-69 displayed favorable safety properties and pharmaco-
kinetic profiles. To evaluate the toxic effects of DYRK2 inhibitor
YK-2-69 in vivo, the ICR mice (n= 10/group) were orally
administrated YK-2-69 in the single dose of 2500 mg/kg,

5000 mg/kg, and 10,000 mg/kg, respectively. No abnormality and
death were observed in mice of each group in 14 days. Also, no
difference was detected in the mice body weight (Supplementary
Fig. 9a) and main organs, including heart, liver, spleen, lung, and
kidney, between drug-treated and control groups (Supplementary
Fig. 9b, c). These data confirmed the favorable safety properties of
YK-2-69 in vivo.

To further explore the pharmacokinetic profiles of YK-2-69,
the Sprague-Dawley (SD) rats (n= 3/group) were administrated
YK-2-69 by oral and intravenous injection (Table 1). In the
intravenous group, the half-life (t1/2), Cmax, and AUC0-∞ values
were 3 h, 974 ng/mL, and 1503 h*ng/mL, respectively. In oral
administration group, YK-2-69 displayed the pharmacokinetic
parameters as follows: t1/2= 5 h, Cmax= 674 ng/mL, and
AUC0-∞= 8384 h*ng/mL. Moreover, the oral bioavailability of
YK-2-69 is 56%. In summary, these results demonstrated the
favorable druggability of YK-2-69 with favorable safety properties
and pharmacokinetic profiles in vivo.

YK-2-69 displayed more potent suppression on PCa than first-
line drugs enzalutamide and palbociclib in vivo. To evaluate
antitumor activities of YK-2-69 in vivo, the DU145 xenograft
mouse model was first established. Enzalutamide, the first-line
PCa drug, and palbociclib, the selective CDK4/6 inhibitor in the
market, were selected as the positive controls since CDK4/6 are
down-regulated in DU145 cells when treated by YK-2-69. They
were administered orally once a day for seven consecutive weeks.
The low dose of YK-2-69 (100 mg/kg) displayed similar anti-
tumor activities with enzalutamide but better activities than
palbociclib. While the high dose of YK-2-69 (200 mg/kg)
demonstrated much better antitumor activities than both enza-
lutamide and palbociclib (Fig. 7a, c, d). Especially, different from
enzalutamide and palbociclib which only delayed the tumor
growth, the high dose of YK-2-69 not only suppressed the growth
of tumor, but also decreased the volume of tumor since the 31st

day (Fig. 7a). It is noteworthy that the body weight of mice also
increased gradually in the high dose group (Fig. 7b). H&E

Fig. 6 Transcriptome-wide RNA sequencing assays in PCa DU145 cells. a Transcriptome strategy of RNA-sequencing conducted on DU145 cells exposed
to YK-2-69 (3 µM) for 48 h. The shNC, shDYRK2, DMSO, and YK-2-69 groups all contain two biological replicates. Venn diagram of upregulated and
downregulated signaling pathways in DYRK2 KD- and YK-2-69-treated DU145 cells. The number of genes in every signaling pathway is >50. Normalized
enrichment score (NES) >1 or <−1; P < 0.05; FDR < 0.25. b The signaling pathways enriched in different groups obtained through Gene Set Enrichment
Analysis (GSEA). c The core-enriched decreased (blue) and increased (red) signaling pathways in shDYRK2 and YK-2-69 treatment groups when
compared with shNC and DMSO groups, respectively. The signaling pathways with P < 0.05 are presented. d The relative abundance of genes involved in
MYC target V1, MYC target V2 and Mitotic SPINDLE in DYRK2 KD- and YK-2-69-treated DU145 cells. n= 2. The whiskers of boxplot represent the
quantile percentile, from bottom to top are minima, 25%, median, 75%, and maxima respectively. Two-tailed Student’s t test was applied without
adjustment for multiple comparisons (FDR). e GSEA was used to analyze the effects of DYRK2 KD or YK-2-69 treatment on the ANDROGEN RESPONSE
signaling pathway in DU145 cells. f Volcano plot of significantly affected genes (absolute fold change > 2, P < 0.05) in DU-145 shDYRK2 group relative to
shNC group and YK-2-69 group relative to DMSO group. The negative binomial distribution test of DESeq2 software was used. g Effects of DYRK2 KD or
YK-2-69 treatment on the RRS1, GRWD1, CCNG2, and YPEL3 mRNA levels in DU145 cells. Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3.
h The principal component analysis was used to identify transcriptome differences between two samples. i The different signaling pathways enriched in
DYRK2 KD and YK-2-69 treatment groups obtained through GSEA. Source data are provided as a Source Data file.

Table 1 Pharmacokinetic parameters of compound YK-2-69 in SD ratsa.

Compd. Admin. Cmax (ng/mL) AUC0-∞ (h*ng/mL) MRT0-∞ (h) Tmax (min) t1/2 (h) CL (mL/h/kg) F (%)

YK-2-69 IV 974 1503 3.5 2 3 669 –
PO 674 8384 8.9 240 5 1198 56

Dose: p.o. at 10 mg/kg. Dose: i.v. at 1 mg/kg. Source data are provided as a Source Data file.
Cmax maximum concentration, AUC area under the plasma concentration-time curve, MRT mean residence time, t1/2 half-life, CL clearance, F oral bioavailability.
aValues are the average of three runs.
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staining of tumor tissues and immunohistochemical analysis of
Ki-67 expression indicated that YK-2-69 exhibited potent efficacy
in killing PCa cells and inhibiting cell proliferation (Fig. 7e, f).
Similar to the in vitro data, the WB analysis of the tumor tissue
excised from DU145 xenograft mouse also indicated that the cell
proliferation and apoptosis-related proteins p-4E-BP1, p-RB,

CDK4/6, RRS1, and XIAP were deregulated, and P27, P53,
CCNG2, and cleaved PARP were upregulated (Fig. 7g). Mean-
while, YK-2-69 also significantly inhibited tumor growth in the
PC-3 xenograft mouse model. Furthermore, same as YK-2-69
reducing tumor size in the DU145 xenograft model, the high dose
of YK-2-69 could also decrease tumor volume in the PC-3
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xenograft model (Supplementary Fig. 10). Taken together, YK-2-
69 displayed much better antitumor activity than first-line drugs
enzalutamide and palbociclib in vivo.

Based on these results, YK-2-69 selectively binds to DYRK2
and inhibits its kinase activity to suppress the phosphorylation of
4E-BP1, which results in the inhibition of cell proliferation
(Fig. 7h). The inhibition of DYRK2 by YK-2-69 can also down-
regulate RRS1 and further up-regulate P21 and P27 to suppress
CDK4/651,52. RRS1-P21/27-CDK4/6 axes can restrain the transi-
tion from G1 to S phase of the cell cycle and eventually inhibit cell
proliferation. Simultaneously, down-regulation of DYRK2 by YK-
2-69 can increase the P53 and CCNG2 level, which promotes
apoptosis55,56. In summary, this highlights DYRK2 inhibition by
YK-2-69 as a promising combination to inhibit proliferation and
promote apoptosis, which provides a “kill two birds with one
stone” regimen of PCa.

Discussion
The expression level of DYRK2 widely depends on the human
tumor tissues, and it plays diverse roles in the occurrence and
development of various cancers, which highlights the possibility
of DYRK2 as a potential target for cancer treatment. Previous
reports mainly considered DYRK2 as a cancer suppressor, which
induces apoptosis through promoting phosphorylation of P53 in
colorectal cancer65, inhibits cell cycle from G1 to S phase via
degrading c-JUN and c-MYC in breast cancer22, and suppresses
EMT by accelerating SNAIL degradation in glioma66. But not all
reports demonstrate that DYRK2 inhibits cancer initiation and
growth as a cancer suppressor. Recent reports revealed the
DYRK2 accelerated G1 to S phase transition of the cell cycle
through regulating 26S proteasome activity, and was considered
as an oncogene in MM and TNBC26,31. Considering the critical
function of DYRK2 in cancers, we conducted a data-mining of
TCGA to find the high expression of DYRK2 in PCa, which was
positively correlated with clinical prognosis and mortality
(Fig. 1a–d). However, the function of DYRK2 in PCa is still
unclear. In our work, DYRK2 was found to be highly expressed in
PCa patient samples and cells (Fig. 1e–g). The knock-down of
DYRK2 in PCa cells significantly inhibited cell growth and
metastasis, caused a G1 arrest of the cell cycle, and induced
apoptosis (Fig. 2c–h and Supplementary Fig. 2b–d). In addition,
knock-down of DYRK2 significantly inhibited tumor growth
in vivo (Fig. 2j and Supplementary Fig. 2h). All these results
indicate that DYRK2 is a potential therapeutic target for the
treatment of PCa.

Although several DYRK2 inhibitors were discovered and
exhibited anti-cancer activity in MM and TNBC31,32, their
selectivity over DYRK family members and drug-like properties
need to be further modified. To develop more potent and selective
DYRK2 inhibitors, we performed a high-throughput virtual
screening and identified a DYRK2 hit with a benzothiazole che-
mical scaffold, which was further modified to offer the highly
selective inhibitor YK-2-69. YK-2-69 exhibited stronger inhibi-
tion to DYRK2 with an IC50 value of 9 nM and showed selectivity

over the DYRK subfamily and a panel of 370 kinases (Fig. 3). To
explore the clear mechanism and elucidate the exact interaction
of YK-2-69 with DYRK2, we solved their co-crystal structure with
a high resolution at 2.5 Å (PDB ID: 7EJV), which showed the
essential interaction residues Lys-231 and Asn-234 (Fig. 4).

Similar to the knock-down of DYRK2 in the PCa cells, YK-2-
69 also significantly inhibited cell growth through G1 arrest and
apoptosis induction, and decreased the EMT activity (Fig. 5 and
Supplementary Fig. 7). Transcriptome-wide RNA sequencing
assays demonstrated that DYRK2 KD and YK-2-69 treatment
played important and similar roles in cell proliferation inhibition
(Fig. 6 and Supplementary Fig. 8). Importantly, YK-2-69 dis-
played acceptable safety properties with a maximal tolerable dose
of >10,000 mg/kg (Supplementary Fig. 9) and favorable phar-
macokinetic profiles with 56% bioavailability (Table 1) in vivo.
Moreover, YK-2-69 exhibited much better antitumor activities
than both enzalutamide and palbociclib. Especially, YK-2-69 not
only suppressed the growth of tumor, but also decreased the
volume of tumor, which was completely different from enzalu-
tamide and palbociclib (Fig. 7 and Supplementary Fig. 10). These
results provided us a possibility that YK-2-69 may contribute to
solving the drug-resistant dilemma of enzalutamide as hormonal
therapy. YK-2-69 exhibited much higher anti-PCa efficacy via
synergistic regulation on a panel of pathways, including DYRK2-
4E-BP1, DYRK2-RRS1-P21/27-CDK4/6, and so on, to promote
apoptosis and inhibit proliferation. This might be one of the
possible reasons why YK-2-69 exhibited significant anti-PCa
efficacy.

The latest data from International Agency for Research on
Cancer reports (World Cancer Report 2020) that prostate cancer
is the second most common cancer in men worldwide, with an
estimated 1.3 million new cases and 360,000 deaths in 2020.
However hormonal therapy, the leading treatment of PCa, is only
a remission but not a cure for PCa, and most PCa patients
became resistant to hormonal therapy at last. Therefore, it is
urgent and meaningful to identify novel targets and develop new
drugs for PCa. Our work identified DYRK2 as a potential drug
target and verified its critical roles in PCa, which offers a valuable
direction for the treatment of PCa. Especially, we discovered a
highly selective DYRK2 inhibitor with favorable druggability,
which could be used as a small-molecule probe for biological
studies and also provide a potential candidate for PCa clinical
treatment. Since DYRK2 plays critical roles in various human
cancers, targeting DYRK2 could also provide a promising
opportunity for other patients with refractory cancers.

Methods
Protein expression and purification. DYRK2 72–479 with an N-terminal 6× His
affinity tag and TEV protease cleavage site was cloned into the pET28a vector.
Sequence verified plasmid was transformed into E. coli BL21 (DE3) cell (Weidibio,
Cat#: EC1002). Bacterial cultures were grown at 37 °C in LB medium to an OD600

of 0.8 before being induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG, Inalco, Cat#: 1758-1400) overnight at 25 °C. Cells were collected by cen-
trifugation and suspended in the lysis buffer containing 20 mM HEPES, pH 7.5,
500 mM NaCl, 20 mM imidazole, and 10% glycerol, and disrupted by sonication.

Fig. 7 YK-2-69 demonstrated remarkable antitumor activities in vivo. a–d BABLc nude mice received subcutaneous injection of 1 × 107 DU145 cells in the
right flank. When tumors grew ~80–100mm3, mice (n= 10/group) were orally administrated vehicle, palbociclib (100mg/kg), enzalutamide (100mg/kg),
and YK-2-69 (100 and 200mg/kg) every day. Tumor volumes (a) and body weight of mice (b) were measured every 2 days. After 35 days, mice in the
control group were killed. After 49 days, mice of treatment groups were killed. Tumor tissues of each group were weighed (c) and then photographed (d).
Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 10. e Representative images of H&E and Ki-67 staining of paraffin section of tumor from
mice treated with vehicle, palbociclib, enzalutamide, and YK-2-69. f Quantification of Ki67 positive rate of tumor from mice treated with vehicle,
palbociclib, enzalutamide, and YK-2-69. Unpaired two-tailed Student’s t test. Error bar, mean ± SD, n= 3. g The total proteins in the tumor were extracted
and used in the western blotting analysis of indicated proteins. The special bands of 4E-BP1 and p-4E-BP1 were shown with arrows. h A proposed model for
inhibition of DYRK2 by YK-2-69 for the treatment of PCa. Source data are provided as a Source Data file.
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The lysate was centrifuged at 40,000 g for 30 min twice at 4 °C. After centrifugation,
the supernatant was initially purified using a Ni-NTA column (GE Healthcare,
Cat#: 17-5318-03), and then eluted with lysis buffers supplemented with 300 mM
imidazole. Eluent recombinant protein with the His6-tag was subsequently cleaved
using TEV protease at 4 °C overnight. The cleaved protein was further purified
using reverse affinity chromatography and size-exclusion chromatography in buffer
containing 20 mM HEPES, pH 7.5, 250 mM NaCl. The pure protein was con-
centrated to 11.2 mg/mL and flash-frozen with liquid nitrogen for later usage.

Co-crystallization, data collection, and structure determination. DYRK2 72–479

(10 mg/mL) was incubated with 1 mM YK-2-69 at 4 °C before crystallization. The
protein-YK-2-69 mixture was then mixed in a 1:1 ratio with crystallization solution
(0.1 M sodium citrate pH 5.5, 8% PEG3350) in a final drop size of 2 µL. The initial
DYRK2-YK-2-69 crystals were grown at 4 °C by the hanging-drop vapor diffusion
method and optimized by seeding. Cuboid-shaped crystals appeared after 2–7 days.
Crystals were cryoprotected in the crystallization solution supplemented with 30%
glycerol before being frozen in liquid nitrogen. The X-ray diffraction data were
collected using a PILTUS3 6M detector on beamline BL19U at Shanghai Syn-
chrotron Radiation Facility (SSRF, Shanghai, China)67. The diffraction data were
indexed, integrated, and scaled using HKL-2000. The structure was determined by
molecular replacement using the published DYRK2 structure (PDB ID: 5LXD) as
the search model using the Phaser-MR program in Phenix47,68. A clear electron
density was observed in the center of the ATP binding pocket after molecular
replacement. YK-2-69 was fitted using the eBLOW and LigandFit program in
Phenix69,70. The structural model was further adjusted in Coot and refined using
Phenix while using NCS restrains71,72. The quality of the structural model was
checked using the MolProbity program in Phenix73. The crystallographic data and
refinement statistics are summarized in Supplementary Table 2.

Clinical samples. Three pairs of prostate tumor and matched normal tissues were
obtained from Huai’an First People’s Hospital with patients’ informed consent. The
human samples used in this study were approved by Ethics Committee of Huai’an
First People’s Hospital. Clinicopathologic information of these three patients was
listed in Supplementary Table 3.

Immunohistochemistry of prostate cancer patient samples. PCa tissues and
adjacent normal prostate tissues were fixed in 4% formaldehyde solution and
processed routinely for paraffin embedding. Sections were cut at around 4 µm
thickness and placed on glass slides, and stained with DYRK2 antibody. Add 2
drops of freshly prepared DAB solution to each sheet, and then re-dyeing and
dehydration seal. Sections were scanned by a digital pathology scanner.

Cell culture. The PCa DU145, 22Rv1, and LNCaP cell lines were obtained from
American Type Culture Collection (ATCC), and cultured in endotoxin-free
RPMI1640 supplemented with 10% fetal bovine serum (FBS, Gibco, Cat#:
10099141C)74. HEK-293T human embryonic kidney cells (ATCC) were cultured in
DMEM with 10% FBS. The DU145 shNC/shDYRK2 and 22Rv1 shNC/shDYRK2
cells were also cultured in endotoxin-free RPMI1640 with 10% FBS. PC-3 human
PCa cells (ATCC), were cultured in F-12K with 10%FBS. RWPE-1 normal epi-
thelial prostatic cells (ATCC) were cultured in KM supplemented with 10% FBS75.
All the cells are not among commonly misidentified cell lines, and were tested for
mycoplasma contamination annually using a PCR Mycoplasma Detection Kit
(Applied Biological Materials Inc., Cat#: G238). To prevent potential contamina-
tion, all the media were supplemented with Penicillin-Streptomycin (Beyotime,
Cat#: C0222) and Plasmocin prophylactic (InvivoGen, Cat#: ant-mpp) according to
the manufacturer’s instructions.

Anti-proliferation activity assays. We seeded 5,000 cells/well, PCa cells on a 96-
well plate and treated with DMSO or tested compounds for 72 h. Add 10 µL of
CCK8 reagent (Share-bio, Cat#: SB-CCK8) to each well, mix lightly, and incubate
the plates in an incubator at 37 °C with 5% CO2 for 1–4 h. The incubated cell
culture plate was placed on the enzyme plate analyzer (Bio-Tek, Cat#: SynergyH1)
and the absorbance value was measured at 450 nm. In all, 2000 cells/well PCa cells
were seeded and subjected to DYRK2 inhibitor YK-2-69 treatment for 5 days and
the cell culture plate was placed on the enzyme plate analyzer every day and the
absorbance value was measured at 450 nm.

Cell growth assays. In all, 2000 cells/well PCa cells were seeded and subjected to
DMSO or tested compounds treatment for 5 days and the cell culture plate was
placed on the enzyme plate analyzer every day and the absorbance value was
measured at 450 nm.

Lentivirus production and infection. Lentivirus-induced DYRK2 KD was mod-
ified in DU145 or 22Rv1 cells. In brief, 0.5 μg pMD2.G, 0.3 μg pMDLg/pRRE, and
0.7 μg PrSV-Rev, and 1.5 μg pLKO-shDYRK2 or pLKO-shNC (Genechem Co. Ltd.
Shanghai, China) were co-transfected into 293T cells in cell culture dish. The
effectene transfection reagent packs lentiviruses. Lentivirus particles were collected
at 48 h and 72 h after transfection and transferred directly into DU145 and

22RV1 cells containing 4 μg/mL polypropylene. PCa cells, including lentiviruses,
were then rotated and inoculated for 90 min at 32 °C and 135 g. Finally, 1 μg /mL
puromycin was added to cultured PCa cells 48 h after rotation inoculation to select
positive infected cells. The shRNA targeting oligo sequence: CCGGGCAGGGT
AGAAGCGGTATTAACTCGAGTTAATACCGCTTCTACCCTGCTTTTTG.

Real-time quantitative PCR. DYRK2 KD cells or PCa cells were treated with
vehicle or YK-2-69 at indicated concentrations for 72 h. Above the cells and
prostate cancer patient tissue cells with total RNA isolated with the TRIZOL
reagent (Thermo Fisher Scientific, Cat#: 15596026) was subjected to reverse
transcription using the PrimeScriptTM RT reagent Kit (RR047Q, Takara). Real-
time quantitative PCR reactions were performed with the THUNDERBIRDSYBR
qPCR Mix (QPS201, TOYOBO) and primers (Tsingke Biotechnology Co., Ltd.,
Beijing, China) listed in Supplementary Table 4.

Immunoprecipitation. We lysed the cells in PBS containing 20% Triton X-100,
10% CHAPS, and Protease Inhibitor Mixture (Roche, Cat#: 04693132001) for
30 min at room temperature. After centrifugation for 5 min, the supernatant was
incubated with 10 μL of anti-DYRK2 antibody (Abcepta, Cat#: AP7534a, 1:1000)
for 2 h at 4 °C. Rabbit IgG (Beyotime, Cat#: A7016, 1:200) was used as a control.
Incubate with antibody and supernatant with 2% BSA and 10 mg protein
A-Sepharose beads (Sigma-Aldrich, Cat#: P1406) at 4 °C overnight. On the next
day, the protein was eluted three times with 0.1% PBST, resuspended in 2× SDS-
PAGE loading buffer, and boiled for 5 min. The eluate was fractionated by SDS-
PAGE.

Western blotting analysis. DU145, PC-3, 22Rv1, LNCaP, and RWPE-1 cells were
grown in T-75 flasks at 5 × 106 cells/mL. PCa cells were treated with vehicle or the
specified YK-2-69 concentration for 72 h, and treated cells were harvested and
lysed by sonication in receptor lysis buffer (RLB) containing 20 mM HEPES (pH
7.5), 500 mM NaCl, 1% Triton X-100, 1 mM DTT, 10% glycerol, phosphatase
inhibitors (50 mM NaF, 1 mM Na3VO4), and protease inhibitor mix. Lysates from
cells and tumor tissues were quantitated and 20 to 50 μg of protein lysates were
boiled in an SDS sample buffer, size fractionated by SDS-PAGE, and transferred
onto a PVDF membrane (Immobilon). After blocking in 5% nonfat dry milk (or
3% BSA), membranes were incubated with the following primary antibodies
overnight: DYRK2 rabbit polyclonal antibody (Abcepta, Cat#: AP7534a, 1:1000),
RB rabbit polyclonal antibody (Proteintech, Cat#: 10048-2-Ig, 1:5000), Phospho-Rb
(Ser807/811) rabbit monoclonal antibody (Cell Signaling Technology, Cat#: 8516,
1:1000), CDK4 rabbit monoclonal antibody (Cell Signaling Technology, Cat#:
12790, 1:1000), CDK6 mouse monoclonal antibody (Cell Signaling Technology,
Cat#: 3136, 1:2000), PARP rabbit monoclonal antibody (Cell Signaling Technology,
Cat#: 9532, 1:1000), Cleaved PARP rabbit monoclonal antibody (Beyotime, Cat#:
AF1567, 1:1000), RRS1 rabbit polyclonal antibody (Proteintech, Cat#: 15329-1-AP,
1:1000), CCNG2 rabbit polyclonal antibody (Abcam, Cat#: ab251826, 1:500), P21
rabbit polyclonal antibody (Proteintech, Cat#: 10355-1-AP, 1:1000), P27 rabbit
monoclonal antibody (Cell Signaling Technology, Cat#: 3686, 1:1000), P53 rabbit
monoclonal antibody (Cell Signaling Technology, Cat#: 2527, 1:1000), XIAP rabbit
polyclonal antibody (Proteintech, Cat#: 10037-1-Ig, 1:1000), E-cadherin rabbit
polyclonal antibody (Proteintech, Cat#: 20874-1-AP, 1:5000), 4E-BP1 rabbit
monoclonal antibody (Cell Signaling Technology, Cat#: 9644, 1:1000), Phospho-
4E-BP1 (Thr37/46) rabbit monoclonal antibody (Cell Signaling Technology, Cat#:
2855, 1:1000), Vinculin rabbit polyclonal antibody (Proteintech, Cat#: 26520-1-AP,
1:1000), Alpha Tubulin mouse monoclonal antibody (Proteintech, Cat#: 66031-1-
Ig, 1:20000). Following three washes in PBST, the blots were incubated with sec-
ondary antibody Goat Anti-Mouse IgG, H&L Chain Specific Peroxidase Conjugate
(Merck, Cat#: 401215-2 ML, 1:5000), or Goat Anti-Rabbit IgG, H & L Chain
Specific Peroxidase Conjugate (Merck, Cat#: 401315-2 ML, 1:5000). Proteins were
detected by chemiluminscent detection system (Tanon, Shanghai, China) and
analyzed by Image J software.

Colony formation assays. Colony formation assays were performed with 5 × 102

cells, which were plated to a 24-well plate. Two weeks after initial plating, cells were
fixed, stained with 0.1% crystal violet (Beyotime, Cat#: C0121) and counted.

Migration and invasion assays. Cells were treated with vehicle or different
concentrations of tested compounds for 48 h, and equal numbers (5 × 104 cells per
well) of the cells were seeded in FBS-free RPMI-1640 culture medium in the
presence of vehicle or different concentrations of tested compounds in the upper
chambers of 8-μm pore size transwell inserts. The lower chambers were filled with
500 μL of medium supplemented with 10% FBS. Cells were allowed to invade the
bottom chamber for 24 h. Non-invading or non-migrating cells in the upper sur-
face were removed, and invaded or migrated cells on the lower surface were fixed
with 4% paraformaldehyde and stained with 0.1% crystal violet for 5 min. The
stained cells were photographed and quantified.

Cell cycle and apoptosis assays. In this study, propidium iodide (PI) DNA
staining kit (Beyotime, Cat#: C1052) was chosen to assess the cells located at G0/
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G1, S, and G2/M stages. For PI staining, 1 × 106 cells were collected, washed once
with PBS, 70% ethanol was added, gently beaten, fixed at 4 °C for 12 h, centrifuged
at 1000 × g for 5 min, and the cells were precipitated. Carefully suck out the
supernatant and add 1 mL PBS and suspended in 0.5 mL Krishan’s buffer sup-
plemented with 0.05 mg/mL PI, 0.1% trisodium citrate, 0.02 mg/mL ribonuclease
A, and 0.3% NP-40, incubated at 37 °C for 30 min and then applied to flow
cytometer (FACSVerse, BD, USA) directly. The samples were transferred onto the
ice before being subjected to flow cytometry. Cell apoptosis was assayed by
Annexin V-APC and PI apoptosis kit (Elabscience, Cat#: E-CK-A217). Cells were
seeded at 1 × 106/well in 10% FBS–RPMI1640 into six-well plates and treated with
tested compounds for 24 h. The cells were then washed twice with cold PBS and
resuspended in 1×binding buffer (0.1 M HEPES (pH 7.4), 1.4 M NaCl, 25 mM
CaCl2) at a concentration of 1 × 106 cells/mL. A 100 μL volume of the solution
(1 × 105 cells) was transferred to a 5-mL culture tube; 5 μL of Annexin V-APC and
5 µL PI were added to each tube. The cell suspension was gently vortexed and
incubated for 30 min at room temperature (25 °C) in the dark, and then 200 μL PBS
was added to each tube. The apoptosis assay was carried out by flow cytometry at
633 nm excitation, and the results were analyzed with FlowJo V10 software. Sup-
plementary Fig. 11 and 12 exemplified the gating strategy in analyzing the results of
cell cycle and apoptosis assays, respectively.

DYRKs kinase activity and kinase-inhibitor specificity profiling assays. For
evaluating the inhibitory effect of tested compounds on DYRKs activity, we first
prepared reaction buffer containing 20 mM HEPES (pH 7.5), 10 mM MgCl2, 1 mM
EGTA, 0.01% Brij35, 0.02 mg/mL BSA, 0.1 mM Na3VO4, 2 mM DTT, and 1%
DMSO. Subsequently, DYRKs kinase and DYRKtide substrate were added into the
reaction buffer and mixed gently. After tested compounds were delivered into the
reaction mixture, 33P-ATP (specific activity 0.01 µCi/µL final) was added to initiate
the reaction. Then, the reactions were spotted onto P81 ion exchange paper
(Whatman, Cat#: 3698-915) followed by incubation for 2 h at room temperature.
The filters were washed extensively in 0.75% phosphoric acid. Finally, measure the
radioactive phosphorylated substrate remaining on the filter paper and calculate
the remaining DYRKs activities in the tested compound group relative to the
DMSO group.

Kinase inhibitor specificity profiling assays were carried out at Reaction Biology
Corporation (https://www.reactionbiology.com/). YK-2-69 kinase specificity was
determined against a panel of 370 protein kinases at the concentration of 1 µM.
YK-2-69 was added to the mixture of the indicated kinase and substrate solution,
then 33P-ATP was added to initiate the reaction. After 120 min, the reaction
mixture was spotted onto P81 ion exchange paper, then washed in 0.75%
phosphoric acid. At last, measuring the radioactive phosphorylated substrate
remaining on the filter paper to determine the kinase activity.

Microscale thermophoresis binding assay. Binding affinities of compounds with
the DYRK2 protein were measured by using the Monolith NT.115.The DYRK2
protein was kept in the PBS-P buffer at a concentration of 10 μM and then labeled
according to the protocol of Protein labeling kit RED-NHS 2nd Generation
(Nanotemper, Cat#: MO-L011). The compounds at a range of concentrations were
incubated with labeled DYRK2 at room temperature for 10 min in the dark. The
mixtures were loaded into 16 hydrophilic glass capillaries, then binding affinities
were measured by monitoring the thermophoresis with 40% LED power on
Monolith NT.115.The data were analyzed by Mo.Affinity Analysis v2.2.4 software.

RNA-seq sequencing. Total RNA samples were isolated from the YK-2-69 or
enzalutamide treated and DYRK2-KD cells respectively. RNA concentration was
measured by NanoDrop 1000, and RNA integrity was measured by 2100 BioA-
nalyzer. According to manufacturer’s instructions, adding an appropriate amount
of MIX1 or MIX2 to each RNA sample. Using the Kapa chain mRNA-seq kit
(Illumina) (Kapa Biosystems, Cat#: KK8541), a library of 300 ng total RNA was
constructed for each sample through 10 PCR amplification cycles. The library was
purified using the AxyPrep MAG PCR Normalizer kit (Axygen, Cat#: MAG-PCR-
NM-50). Each library was quantified using a Qubit fluorometer and assessed for
size distribution using 2100 BioAnalyzer. Sequencing was performed on Illumina
HiSeq 2500 apparatus with a V4 chemically generated 51 bp single-ended read
sequence. Each group contains 3–4 repeats and the corresponding control group
keep the same number of repeats. Quality control of RNA-Seq reads was performed
using FASTQC. The reads with low complexity or low quality were removed using
Cutadapt. Trimmed reads were aligned to human genome reference (GRCh38)
using STAR, and uniquely mapped reads were retained in the downstream analysis.
RSEM was used to calculate the expression levels of genes. DEG analysis was
performed using DESeq2, P < 0.05, and 2-fold change was used as statistical sig-
nificance. Hierarchical clustering analysis was performed using the R package
‘mclust’. GSEA was employed to calculate enrichment pathways based on the
signature gene sets from the Molecular Biology Database (MSIGDB).

Structural optimization. To obtain more potent DYRK2 inhibitor, structural
optimization on the lead compound 12 was conducted (Supplementary Fig. 4).
Firstly, the isopropyl group on the piperazine was replaced with different sizes
substituents (16-18), among which compounds 16 and 18 with a small ethyl or

hydrogen group showed similar activity as lead 12, while compound 17 with a big
Boc group exhibited significantly decreased activity. When benzothiazole was
changed to pyrazolo[1,5-a]pyrimidine (19), DYRK2 inhibitory activity significantly
decreased. Therefore, benzothiazole was retained in the following structural opti-
mization. To our delight, the optimization on the linker between pyridine and
piperazine (20: 35 nM and 21: 85 nM) remarkably improved DYRK2 inhibitory
activity, especially the carbonyl linker. Subsequently, the change of pyridine to
pyrimidine (22: 697 nM) also decreased DYRK2 inhibitory activity. Therefore,
pyridine is a favorable moiety for the maintenance of activity. After confirming the
benzothiazole, pyridine, and carbonyl linker as the optimized groups, the sub-
sequent modification was carried out by introducing substituents on the ben-
zothiazole. The introduction of methyl substituent generated 23 and 24, which
exhibited stronger inhibition on DYRK2 with IC50 values of 22 and 27 nM,
respectively. The introduction of dimethylamine substituent (25, 26) further
improved DYRK2 inhibitory activity, and 26 exhibited the most potent inhibition
on DYRK2 with an IC50 value of 9 nM. The change of pyrimidine to thieno[3,2-d]
pyrimidine generated 27, which showed no inhibition on DYRK2. Taken together,
26 was confirmed as the most potent DYRK2 inhibitor, which was re-named as
YK-2-69 and selected for further biological evaluation.

Acute toxicity studies. The experimental procedures and animal use and care
protocols were approved by the Institutional Animal Care and Use Committee
(IACUC) of China Pharmaceutical University. To study the safety in vivo, seven-
week ICR mice (weight 18–22 g), purchased from Shanghai SLAC Laboratory
Animals Co. Ltd., half male and half female, were randomly divided into one
control group and three treatment groups (n= 10/group). The temperature and
humidity of the animal room is 20–26 °C and 40–70%, respectively. All mice were
given 12 h of light and 12 h of darkness in turn each day. Mice of treatment groups
were administrated by oral at a dose of 2500, 5000, and 10,000 mg/kg, respectively.
After single dose, the signs of toxicity were observed, and body weight was recorded
once 2 days in 14 days.

Pharmacokinetic profiles. The experimental procedures and animal use and care
protocols were approved by the Institutional Animal Care and Use Committee
(IACUC) of China Pharmaceutical University. SD rats, purchased from Shanghai
SLAC Laboratory Animals Co. Ltd., were used to determine the pharmacokinetic
profiles of YK-2-69. SD rats were divided into intravenous and oral administration
groups (n= 3/group). The temperature and humidity of the animal room is
20–26 °C and 40–70%, respectively. All mice were given 12 h of light and 12 h of
darkness in turn each day. The dose of intravenous and oral administration groups
was 1 and 10 mg/kg, respectively. Blood samples of the intravenous group were
collected at 2 min, 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h, and 12 h. and blood
samples of the oral administration group were collected at 5 min, 15 min, 30 min,
1 h, 2 h, 4 h, 6 h, 8 h, 12 h, and 24 h. The concentrations of YK-2-69 in serum were
measured by LC/MS/MS.

In vivo antitumor activity. The experimental procedures and animal use and care
protocols were approved by the Institutional Animal Care and Use Committee
(IACUC) of China Pharmaceutical University. The temperature and humidity of
the animal room is 20–26 °C and 40–70%, respectively. All mice were given 12 h of
light and 12 h of darkness in turn each day. BALB/c nude mice were purchased
from Shanghai SLAC Laboratory Animals Co. Ltd.

BALB/c nude mice received subcutaneous injection of 1 × 107 DU145 shNC and
shDYRK2 cells in the right flank to establish shNC group (n= 6) and shDYRK2
group (n= 10), respectively. After the formation of tumors, tumor volumes and
body weight were measured once every two days. After 29 days, the shNC group
mice were killed for humane reasons, and tumor tissues were weighed and taken
photos. After 49 days, shDYRK2 group mice were killed, and tissues were weighed
and taken photos. Tumor tissues of each group were kept at −80 °C for further
analysis.

BALB/c nude mice received subcutaneous injection of 1 × 107 22Rv1 shNC and
shDYRK2 cells in the right flank to establish shNC group (n= 6) and shDYRK2
group (n= 8), respectively. After the formation of shNC group mice tumors, tumor
volumes of shNC group were measured once every two days, and no visible tumors
were detected in the shDYRK2 group mice. Meanwhile, body weight of shNC
group and shDYRK2 group were measured once every two days. After 19 days, the
mice were killed, and tumor tissues were weighed and taken photos.

BALB/c nude mice received subcutaneous injection of 1 × 107 DU145 cells in
the right flank. When the average tumors reached the volumes of 80–100 mm3, the
mice were randomly divided into control (n= 10/group), drug treatment groups
(n= 10/group). YK-2-69 at doses of 100 and 200 mg/kg were given by oral every
day. Palbociclib and enzalutamide were given to mice orally at a dosage of 100 mg/
kg/d and used as positive references for comparison, while control mice received an
equal volume of saline. Tumor volumes and body weight were measured once every
2 days. After 35 days, the mice in the control group were killed for humane reasons,
and tumor tissues were weighed and taken photos. After 49 days, mice of treatment
groups were killed, and tumor tissues were weighed and taken photos. Tumor
tissues of each group were kept at −80 °C for further analysis.
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BALB/c nude mice received subcutaneous injection of 1 × 107 PC-3 cells in the
right flank. When the average tumors reached the volumes of 80–100 mm3, the
mice were randomly divided into control, palbociclib (100 mg/kg), and YK-2-69
(100 or 200 mg/kg) groups (n= 8/group), and they were given by oral every day.
Tumor volumes and body weight were measured once every two days. After
29 days, mice were killed, and tumor tissues were weighed and taken photos.
Tumor tissues of each group were kept at −80 °C for further analysis.

H&E and Ki67 Staining. Tumor tissues and normal tissues were fixed in 4%
formaldehyde solution and processed routinely for paraffin embedding. Sections
were cut at around 4 µm thickness and placed on glass slides, and counterstained
with hematoxylin and eosin and anti-Ki-67.

Statistics and reproducibility. Data were expressed as mean ± SD. Statistical
analysis was performed using GraphPad Prism 8 software. For experiments with
two groups, two-tailed Student’s t test was used. P < 0.05 was considered to be
statistically significant. As indicated in the figure legends, all in vitro experiments
were performed in three biological replicates unless stated otherwise. Representa-
tive micrographs and western blot shown in figures were repeated three times
independently with similar results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The DYRK2-YK-2-69 complex in this study has been deposited in the Protein Data Bank
under accession code 7EJV. The cited DYRK2-EHT 1610 and DYRK2-LDN192960
complex in this study can be found in the Protein Data Bank under accession code 5LXD
and 6K0J, respectively. The raw RNA-seq data generated in this study have been
deposited in the BIG Data Center under the accession number: HRA002200 (RNA-seq
data in DU145 cells) and HRA002197 (RNA-seq data in 22Rv1 cells). Source data are
provided with this paper.
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