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ABSTRACT: The effects of crowding in biological environ-
ments on biomolecular structure, dynamics, and function remain
not well understood. Computer simulations of atomistic models
of concentrated peptide and protein systems at different levels
of complexity are beginning to provide new insights. Crowding,
weak interactions with other macromolecules and metabolites,
and altered solvent properties within cellular environments
appear to remodel the energy landscape of peptides and proteins
in significant ways including the possibility of native state
destabilization. Crowding is also seen to affect dynamic
properties, both conformational dynamics and diffusional
properties of macromolecules. Recent simulations that address
these questions are reviewed here and discussed in the context
of relevant experiments.

■ INTRODUCTION

Realistic biological environments involve a high degree of
complexity and crowding at the molecular level that is still only
at the beginning of being fully understood.1−5 Increasing
evidence suggests that crowding can markedly affect bio-
molecular structure, dynamics, and thus possibly their
function.6 The most obvious aspect of cellular crowding, a
greatly diminished free volume with mostly entropic con-
sequences, has long been studied in various ways using
experiments, theory, and simulation.7−12 However, the degree
to which artificial crowders approximate real cellular environ-
ments or even reproduce just excluded-volume effects without
any other artifacts is unclear.6,13−15 At the same time, increasing
attention is now focused on the effects of interactions between
the cellular components16−24 and altered solvent proper-
ties,25−30 often contributing enthalpically,15,31,32 as well as the
consequences of a substantial compositional heterogeneity
present in biological cells.33,34

The concentration of biological macromolecules in cells is
between 100 and 450 g/L, occupying 5−40% of the
cytoplasmic volume.35 In addition, structural elements such as
the cytoskeleton, compartments, and membrane surfaces are
present, whereas genomic DNA fills out eukaryotic nuclei and a
good fraction of prokaryotic cells. A variety of metabolites,
small molecules that are intermediates of metabolic reactions
such as phosphates, carbohydrates, amino acids, alcohols,
vitamins, and other cofactors, as well as ions at significant

concentrations further contribute to the rich physicochemical
environment inside living cells. Experiments that are carried out
under in vivo conditions or in the presence of cell extracts face
substantial technical challenges.1,2,25,36 Often, it is difficult to
achieve sufficient resolution to provide detailed insights,
although recent progress especially with in-cell nuclear
magnetic resonance (NMR)24,37−55 and in-cell fluorescence
spectroscopy56−58 techniques is encouraging. An alternative is
computational modeling, which can describe the structure and
dynamics of biomolecules with high resolution in both space
and time within model and resource limitations.59 In particular,
molecular dynamics (MD) simulations using atomistic force
fields are a popular avenue for studying biological systems.
However, MD studies have so far largely focused on single
molecules or complexes without considering crowded environ-
ments, even as multimillion atom systems are now becoming
feasible,60−62 whereas questions in regard to crowding have
been addressed mostly with simplified models.10 This may
reflect in part the computational costs involved with fully
atomistic detailed models of crowded environments, but the
more important constraint is that sufficient experimental data
for building high-resolution models of biological environments
has not been readily available. There has also been a lack of
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suitable experimental data that predictions from simulating
such models could be compared to. However, there is a recent
influx of data from high-throughput experiments that probe the
composition of a cell,63−65 and new experiments can directly
probe macromolecule structure and dynamics in cellular
environments.16−22,25,32,37,40,41,44−46,49,54,56,66−85 This now en-
ables and, we would argue, requires detailed computational
studies of realistic models of crowded biological environments
to connect with the newly emerging experimental data and
generate new hypotheses.86

■ KEY QUESTIONS
The questions to be addressed here revolve around the
structure, interactions, and dynamics of biomolecules, proteins,
nucleic acids, and metabolites in cellular environments.
Essentially, the key point is to determine to what extent the
vast amount of knowledge about the biomolecular structure−
dynamics−function paradigm generated during decades of
structural biology and mechanistic analyses of biological
function under in vitro conditions translates to real biological
environments and ultimately what makes up life.87 The end
point is a fully integrated view of biology that scales from single
molecules to whole-cell models88,89 to explain life based on
physical and chemical principles.90

Structure and Stability. Most of the knowledge about
protein structure has been derived from crystallography where
the environment, although relatively dense in terms of packing,
lacks the heterogeneity of biological environments and where
packing contacts are more likely related to artifacts than being
representative of what would be seen in crowded biological
environments. Structures based on nuclear magnetic resonance
(NMR), on the other hand, are traditionally obtained under
dilute conditions that are far from crowded cellular environ-
ments. Thus, it remains largely unclear whether and how the
structure and stability of proteins, and more broadly the
conformational energy landscape, is affected by crowding in the
cell.91 Simple arguments based on a volume exclusion effect due
to crowding focus on a shift in populations toward compact
states on an otherwise largely unchanged landscape,11 but this
view conflicts with recent experiments.17,22,23,73,92,93 Largely
unaltered conformations in vivo vs in vitro are seen with in-cell
solution NMR40,44 and solid-state (SS) NMR,54 but other
evidence from experiments and simulations indicates that
cellular environments may remodel the folded or unfolded
ensemble or both16,17,49,71,94−100 with potentially varying effects
in different cellular compartments.82 This suggests a more
complicated picture where it is unclear whether remodeling of
the ensemble is again driven mostly by entropic volume
exclusion effects or by more enthalpic effects due to
interactions with protein crowders and other components of
the biological environment.16,17 Significant crowding effects are
also expected for intrinsically disordered peptides (IDPs) where
extended and dynamic ensembles have to be accommodated
under crowded environments.37,69,75,76,83,100,101

Although proteins have received most of the attention,
similar, less well-explored questions have been raised about
how nucleic acid structures may act as crowders43 or be affected
by crowded cellular environments compared to what we know
about DNA and RNA from crystallography and solution NMR
studies.102−109

Dynamics. Biomolecular dynamics links structure with
function, and it is equally unclear how it may be affected in the
context of cellular environments. Conformational dynamics is a

key mechanistic factor in most biological macromolecules, and
any effect of cellular crowding on such dynamics would directly
impact biological function. There is some insight into altered
folding kinetics under crowded conditions,48,56,80,82 and a few
studies suggest that the internal backbone and side chain
dynamics on sub-microsecond time scales remain largely
unaltered.78,110−112 On the other hand, only a few studies
have examined how functionally relevant motions in the native
state, e.g., dynamics related to allosteric mechanisms, ligand
binding, or catalysis, and dynamics of intrinsically disordered
peptides may change upon crowding.113−115 This leaves many
open questions yet to be addressed.
Diffusional motions of biomolecules in cellular environments,

on the other hand, are somewhat better understood. Diffusion
rates are a key determinant for the kinetics of many biological
processes. Ligand diffusion is rate-limiting in many enzyme
reactions, and protein diffusion is an important factor in most
protein−protein and protein−nucleic acid interactions.116−120

There is a general understanding that diffusion of proteins is
slowed down by about 1 order of magnitude under crowded
conditions due to increased viscosity and interactions with
crowder molecules,77,121−124 although this may not be generally
true for natively disordered proteins.122 Anomalous diffusion
results in diffusion rates varying on different time scales due to
confinement within cellular compartments and caging effects
due to temporary encapsulation by larger crowders.34,123,125−128

However, details of how diffusion is modulated by different
cellular microenvironments and by the presence of DNA or
membrane surfaces have remained unclear.77 There is also an
incomplete understanding of how smaller molecules, metabo-
lites and other ligands navigate the dense cellular environments
where available space is not just limited and solvent viscosity
may be altered but where the various macromolecular surfaces
also provide ample opportunities for distractions that could, for
example, slow down diffusion toward an enzyme active site.129

Interactions. Cellular crowding undoubtedly increases the
opportunities for frequent encounters of biomolecules due to
weak interactions.79,130,131 It is not clear, however, whether
such soft interactions simply hinder diffusion and alter the
conformational energy landscape as discussed above or whether
interactions between biomolecules are altered with possible
functional implications.16,66,70,74,84,132 Crowding has been
found to affect native complex formation31,68,133−135 and
aggregation,136−138 while other evidence indicates enhanced
formation of nonspecific complexes between proteins in the
cellular milieu.14 Weak interactions under highly crowded
conditions may further lead to protein-enriched regions,
forming distinct phases within the cell such as droplets with
gel-like characteristics.139,140

Metabolite−protein interactions are also subject to crowding
effects. Studies of substrate binding and product release during
enzyme reactions under crowded conditions have suggested
crowding effects.129 Moreover, effective metabolite concen-
trations in vivo may be reduced as a result of metabolites being
sequestered from bulk solvent by nonspecific binding to
biomolecular surfaces,141 whereas competition by promiscuous
interactions with the environment, on the other hand, may
modulate specific binding of ligands to target binding
sites.132,142

Solvent and Membrane Environments. Finally, a
fundamental question is how the solvent environment is
altered in the presence of biomolecules at very high
concentrations. Simple geometric considerations suggest that,
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although water still makes up about 70% of the cytoplasm, only
a relatively small fraction is actually bulk-like, as defined by
water molecules being several layers away from the closest
macromolecule. This has been shown to impact water
dynamics,29,143 viscosity,66,144,145 and dielectric properties,26,146

which then in turn may further exacerbate crowding effects on
the macromolecules compared to dilute environments.29 While
experiments have provided varying insights,28,147 a more
detailed analysis of the properties of aqueous solvent inside
biological cells is desirable. There are also many unanswered
questions about how membrane bilayers respond to crowd-
ing,148 both inside the membrane by membrane proteins and
outside by a crowded cytoplasm and how membrane surfaces
modulate crowding effects in the cytoplasms.
A full review of all experiments, simulations, and theoretical

studies that have looked at these questions is not possible here.
Instead, the specific focus of this article is to highlight recent
advances based on computer simulations of dense macro-
molecular systems in atomistic detail, and relate those findings
to experimental studies, both past and future.

■ CELLULAR ENVIRONMENTS IN COMPUTER
SIMULATIONS

Computer simulations have examined biological systems at a
wide range of scales from full atomistic detail to very coarse
representations. Most simulations of crowded cellular environ-
ments have involved simplified models where macromolecules,
crowder molecules, and the solvent environment are
represented with different degrees of coarse-grain-
ing.95−98,127,149−152 For example, coarse-grained models of
proteins in the presence of spherical crowders without any
explicit representation of solvent are one avenue for studying
the effect of crowding on protein folding or association
equilibria,30,153 whereas Brownian, Stokesian, or other
stochastic dynamics simulations of rigid protein models at
different levels of detail have offered insights into how crowding
modulates diffusive properties.127,151,154−158 Another possibility
is postprocessing of trajectories using particle-insertion
methods.159 All of these approaches involve simplifications
that are attractive for saving computational costs and have
allowed the exploration of relatively long time scales, in the
range of micro- to milliseconds. However, there are significant
trade-offs as intermolecular interactions and solvent effects
often do not fully reflect cellular environments and intra-
molecular dynamics may be neglected or not fully accounted
for.
As with any modeling, the degree of detail should match the

questions that are being asked and an in silico model of a
complete cell does not necessarily have to include every atom
that is present. However, we argue that the central questions
that are being asked here, conformational sampling, stability,
and dynamics of biomolecules in the cellular environment,
require, at the minimum, a model with the following features:
(1) Proteins, nucleic acids, and metabolites should be fully
flexible with an interaction potential that is able to maintain
native states under dilute conditions but that can also sample
non-native states in response to interactions with cellular
components. (2) Weak interactions between the cellular
components are physically accurate and predictive without
requiring previous knowledge about specific complexes, since
nonspecific interactions dominate in cellular environments. (3)
The essential characteristics of the solvent environment are
captured including an ability to reflect altered solvent behavior

under crowded conditions such as reduced solvent dynamics
and hydrodynamics interactions.
These requirements are a tall order for most coarse-grained

approaches that typically focus only on certain aspects while
failing to capture other features. For example, Go models can
describe the thermodynamics of protein folding and complex
association assuming that the structures of the end states are
known and may offer some insight into how crowding shifts
populations between known states.160−162 However, perturba-
tions of the energy landscape toward unknown conformational
states that may be induced as a result of crowding are difficult
to capture with structure-based models. On the other hand,
simulations of rigid or spherical biomolecules via Brownian and
Stokesian dynamics schemes can describe diffusive properties
well,155,157,163,164 but these approaches neglect intramolecular
dynamics and conformational sampling. More sophisticated
physics-based coarse-grained models165 such as PRIMO,166

OPEP,150 or COFFDROP167 that are combined with implicit
solvent and/or models for hydrodynamic interactions156 are in
a better position to satisfy these criteria, as the increased level of
model detail requires fewer constraints and provides more
transferability and ability to capture the various features
outlined above. Such models can at least at a general qualitative
level capture the main features of biomolecular structure and
dynamics cellular environments.149,168,169 Atomistic simula-
tions, with explicit26,143,170−176 or implicit solvent,27,97,98 or
multiscale models, where atomistic and coarse-grained
resolutions are mixed,169 provide even greater levels of detail
and can, at least in principle, satisfy all of the requirements for
modeling crowded cellular environments outlined above.
However, because the balance between molecular stability,
weak interactions, and solvent interactions in crowded
environments depends on subtle shifts between enthalpic and
entropic energy terms, the major challenge is an accurate
interaction potential, both at the coarse-grained and atomistic
level that can accurately reproduce both intra- and
intermolecular interactions.177−179 For example, just a slight
unbalance between protein−protein and protein−water inter-
actions is enough to lead to aggregation177 and overcompaction
artifacts180,181 with significantly mispredicted diffusive proper-
ties being one consequence. The choice of the water model is
also a concern, since the most widely used models (SPC/E182

and TIP3P183) significantly mispredict viscosity and dielectric
properties26,184,185 which in turn impacts macromolecular
properties.185 Therefore, future efforts should continue the
improvement of force fields186−192 to better balance the
interactions between the various cellular components.
Another issue is the high computational cost of the most

detailed models that limits the time scales that can be accessed.
Current computer hardware, especially GPUs and other many-
core coprocessors such as Intel Xeon Phi and high-performance
simulation software,193−198 are now allowing for atomistic
simulations of biomolecules in crowded cellular environments
on time scales well into the microsecond regime with
millisecond dynamics being within reach now199 and probably
becoming routine within a decade. While such time scales are
short compared to most functional dynamics of biological
processes, they cover the majority of diffusive processes within
the cell for all but the very largest particles such as ribosomes
based on the extrapolation of sub-microsecond diffusion rates
in crowded environments estimated from simulation.173

Therefore, the development of more accurate coarse-grained
models that can describe biomolecular dynamics on millisecond
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to second time scales remains an attractive goal in the
foreseeable future. The length of the simulations also
determines the degree of sampling and the statistical
significance of properties determined via averaging. However,
this is a minor issue, since parallel computing architectures
facilitate replicate simulations and crowded systems with
multiple copies of a given system of interest allow ensemble
averaging in addition to time averaging.
One strategy for overcoming limitations in simulation times

is the use of enhanced sampling techniques200 such as umbrella
sampling,201 generalized-ensemble methods,202,203 metadynam-
ics,204 λ-dynamics,205 or accelerated MD,206 just to name a few.
These methods generally focus on specific processes where
significant kinetic barriers hinder sampling, and they are usually
used to extract thermodynamic quantities such as ligand
binding affinities. So far, enhanced sampling methods have not
seen extensive use, in part because there is still very limited
knowledge about what states may exist under crowded
conditions and enhanced sampling methods are less advanta-
geous for exploratory simulations where little is known about a

system’s behavior. However, as more information is becoming
available, the energetics of protein−protein or protein−ligand
interactions or conformational dynamics between different
states seen under crowded conditions are good problems for
using enhanced sampling. Enhanced sampling methods are also
less effective for accelerating processes that are limited by slow
diffusion, a major factor in crowded cellular environments.
Diffusion-limited processes can be accelerated, however, by
using mean-field models of cellular environments,27,103,152

although the implicit models have other drawbacks, as they
may oversimplify cellular environments169 and the extraction of
kinetic properties is hindered. Developing enhanced sampling
methods that target the sampling of diffusion-limited processes
while fully capturing all components of cellular environments
and allowing the extraction of thermodynamic and kinetic
properties remains a significant challenge that we hope can be
addressed in the future with new methods.
While it is clear that the simulation of crowded cellular

environments is still in its infancy, the aim of this Feature
Article is to review what has been reported so far from

Figure 1. Crowded and cellular systems studied via molecular dynamics simulations: Concentrated solution of villin in explicit water and ions (top
left); chymotrypsin inhibitor 2 (CI2; blue) in the presence of bovine serum albumin (BSA) crowders with explicit water (top right); model of a
bacterial cytoplasm consisting of proteins, RNA, metabolites, ions, and water shown only for part of the system in cyan (bottom).
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molecular simulations of proteins in dense cosol-
vents,97,98,112,143,207,208 of dense peptide and protein solu-
tions,26,29,143,159,170−172,174,175,209−213 and of more complex
models of cellular environments.112,163,168,214

■ ATOMISTIC SIMULATIONS OF CELLULAR
CROWDING

Table 1 gives an overview of crowding simulations studied via
atomistic models in recent years. We selected studies of
peptides and proteins where at least the solute for which
crowding effects are studied is represented in atomistic detail
but allowed for crowders and/or solvent environments to be
modeled in a coarse-grained or implicit fashion. We included
simulations of dense amino acid and peptide systems, as they
offer insight into protein amino acid interactions under
crowded conditions. Despite some overlap, we did not consider
simulations involving amyloidogenic peptides.216 The concen-
trations of solutes in those studies are generally low compared
to crowded environments, whereas their analysis primarily
focuses on their aggregation propensities offering less insights
into cellular crowding. In addition to studies of peptides and
proteins, there are also a few studies involving nucleotides and
nucleic acids under crowded and concentrated condi-
tions,103,217−219 but since general insights have remained
limited, these studies will also not be discussed here.
As a representative overview of the kind of systems that are

now being studied in atomistic detail via computer simulations,
Figure 1 shows models that have been studied recently in our
group. The systems range from mixtures of a few proteins at
different concentrations to models of cytoplasmic environments
with thousands of macromolecules. The number of atoms in
these systems ranges from 50K to 100M atoms, and the time
scales that were reached varied between tens of nanoseconds
and microseconds. In all of these cases, all-atom force fields
were used to describe the solutes, aqueous solvent, and any
other molecules such as metabolites that were present, allowing
for unrestrained dynamics of all components. On the basis of
simulations of such systems, exciting new ideas have been
found for how the stability and dynamics of proteins may be
modulated by interactions with other molecules in the cell.
Solute Interactions. A key feature of crowded environ-

ments is the opportunity for frequent encounters between
biomolecules. The well-understood volume-exclusion effect of
crowding typically assumes crowder molecules that are
repulsive or at least not attractive so that such interactions
would be minimized to just unavoidable random collisions.
However, atomistic simulations of crowded environments have
shown many examples of attractive interactions between
proteins97,98,170,171,173,174,177 and between proteins and other
molecules such as metabolites.143,173,207 Such interactions are
generally nonspecific; i.e., the formed complexes cover a broad
range of arrangements and do not correspond to specific
functional complexes, but they have the potential to
significantly perturb protein structure and dynamics over
solutes in dilute environments that are free from such contacts.
Weak transient interactions, commonly termed quinary
interactions,2 nevertheless, do have the potential to be
functionally relevant, for example, to bring enzymes involved
in a common metabolic pathway into proximity to facilitate
substrate channeling.173 Whether such close interactions are
formed depends greatly on the involved partners. For example,
chymotrypsin inhibitor 2 (CI2) interacts extensively with
lysozyme but hardly at all with bovine serum albumin (BSA),

whereas BSA prefers to interact with other BSA molecules.170 A
similar finding was reported for Trp-cage in the presence of
protein G vs bovine pancreatic trypsin inhibitor (BPTI)
crowders, with BPTI more strongly self-interacting with other
BPTI molecules.97 Differential protein interaction propensities
can be traced to the nature of the amino acids decorating the
surface of different proteins that lead to charge differences98

and hydrophobic patches97,171 along with sufficiently good
shape complementarity to allow close interactions. Simulations
of dense solutions of amino acids and small pepti-
des29,143,175,176,178,213 have offered additional insights into
which amino acids are more favorable to interact178 and how
such interactions are formed via hydrogen bonding,176,213

aromatic ring interactions,213 dipole−dipole interactions,176 or
mediation via water molecules.29 Generally, the degree to which
amino acid interactions were found to be favorable reflects
established hydrophobicity profiles;213 e.g., isoleucine, leucine,
and valine readily interact due to their hydrophobicity, whereas
basic and acidic residues strongly prefer to remain
solvated.143,213 There are differences that can be at least in
part be explained by strong intermolecular self-interactions, e.g.,
between asparagine and glutamine side chains,213 but variations
were also seen as a function of the force field that was
used.178,213

A concern that has been raised is whether the overall strength
of peptide−peptide and protein−protein interactions in dense
solutions is correctly calibrated in the current generation of
force fields. On the basis of simulations of villin, it has been
suggested that protein−protein interactions may be overall too
strong relative to protein−water interactions.177 This would
also be generally consistent with the observation that
intrinsically disordered peptides are too compact with most
force fields220−222 unless amino acid−water interactions are
enhanced.180,191 However, simulations of concentrated amino
acids and peptides seem to come to the opposite conclusion
that solubilities are significantly overestimated compared to
experimental values.176,178 This is clearly an area that will
require further attention, but significant challenges exist in how
to effectively compare with experimental measurements. For
example, the extraction of solubilities that are comparable with
macroscopic measurements, while possible in principle,176

requires a system with a large number of solutes that are
simulated over long enough times to overcome kinetic
bottlenecks of aggregate formation. Another possibility is to
match rotational and/or translational diffusion rates for
concentrated solutions as the slow-down in diffusion upon
crowding is expected to depend upon the extent of protein
interactions170 while deviations from nonideal behavior vary
with the crowder type.123 A meaningful comparison between
experiments and simulations also requires long simulations as
well as reliable force field parameters for solutes and solvent
and faces potential experimental difficulties in analyzing highly
retarded and likely complex dynamics in concentrated
solutions, e.g., via nuclear magnetic resonance (NMR)
spectroscopy.81,175

Apart from interactions between peptides and proteins, some
studies have examined interactions with high concentrations of
smaller cosolvents such as metabolites173,207 or glu-
cose112,143,208 or osmolytes such as trimethylamine N-oxide
(TMAO).223 The general finding is that such molecules may
interact extensively with protein solutes172,207 or among
themselves,207 displace water molecules,143 and further affect
the structure and/or dynamics of proteins as a consequence of
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such interactions.173 The simulations can be compared with
experiments224−227 by quantifying preferential solvation via the
integration of MD-derived density fluctuation of water and
cosolvents to obtain Kirkwood−Buff integrals.228−232 While
this approach can be readily applied for proteins in two-
component, or at the most, three-component solvents with
small cosolvent molecules, the extension to cellular environ-
ments where a large number of components are present and
density distributions of larger molecules such as proteins do not
converge well is not as straightforward.
Protein Structure Stability. A central question is whether

crowded cellular environments affect the stability of protein
native states and, more broadly, whether the conformational
landscape is modulated over dilute conditions. As mentioned
already above, one aspect of crowding, the reduction of
accessible volume, is well understood and generally believed to
stabilize the native state as the most compact state a given
protein will assume.233 Unfortunately, such a simple view is not
borne out in the atomistic simulations of peptides and proteins
under crowded conditions. Instead, the simulations suggest that
crowded cellular environments may perturb the native state,
either directly due to interactions with other solutes170,173 or
indirectly due to altered solvent properties (see example in
Figure 2).26,27,29,172 There is also evidence from simulation that

crowding may not just affect the native state but also folding
intermediates215 or the unfolded ensemble based on the
analysis of an intrinsically disordered peptide.174

One theme for such native state perturbations is the
competition between inter- and intramolecular interactions
that can lead to a shift toward more extended states. Examples
range from concentrated (GlySer)2 solutions,

29 Trp-cage in the
presence of protein G169 or BPTI,97,98 villin in villin/protein G
mixtures,171 pyruvate dehydrogenase α subunit in a cytoplasmic
environment,173 and ordered and natively disordered proteins
in a heterogeneous environment.174 The presumed general
mechanism in all of these cases is that favorable intermolecular
interactions with peptide or protein crowders combined with
an overall reduction of solvent exposure due to complex
formation can drive partial unfolding. However, specific
interactions with crowders such as edge-to-edge β-sheet
interactions may also have the opposite effect of stabilizing
the native state, as demonstrated for the GB1m3 hairpin.97

A second theme is the modulation of secondary structure
propensities as a result of crowder interactions. While this has
been systematically analyzed using coarse-grained models,95,96

atomistic simulations have provided evidence for an apparent
stabilization of secondary structure elements, especially helices,
as a result of crowding.27,97,98,174 One way to understand that is
via crowder amino acid side chain interactions that stabilize

helices95 or β-hairpin turns.97,98 Another interpretation is based
on a reduced dielectric response of solvent in crowded
environments26,27 where intramolecular hydrogen bonding
would be strengthened as a result of reduced electrostatic
screening.27

A third theme is a disruption of the hydrophobic core that
would lead to a general destabilization of natively folded
peptides.27,29,169,174 This could simply be a corollary of a shift
toward extended states driven by protein−protein interactions,
but it may also be understood in the context of a reduced
dielectric response of the solvent that would imply a weakened
hydrophobic effect.27

Finally, a newly emerging theme is the role of metabolites in
modulating protein structure. Functionally relevant ligand-
induced conformational changes are well documented,234 and it
is easy to imagine that nonspecific metabolite interactions could
have similar effects. Indeed, in a recent study of a model for a
bacterial cytoplasm, nonspecific binding of negatively charged
metabolites was found to modulate the structure of
phosphoglucokinase and induce structural compaction via
electrostatic screening.173

Experimental validation of the specific effects seen in the
different simulations is largely missing so far and is therefore
difficult to tell how real the specific effects seen in the
simulations are. We imagine that it would be relatively
straightforward to test the predicted effects of metabolites on
protein structures, whereas in-cell NMR24,38,41,42,44−46,115 and
fluorescence techniques56,58,235 should be able to test how real
the crowding-induced perturbations of the conformational
ensembles are. Specifically, the hope would be that the
experiments could identify the presence of the predicted non-
native subpopulations in the presence of certain protein
crowders, but it may be challenging to discern minor
populations of heterogeneous non-native conformations
induced by crowding in vivo.38 Other avenues for comparing
the simulations with experiments would be to identify key
residues based on the simulations that appear to play a role in
facilitating crowding-induced structural changes and propose
experimentally testable mutations that should be resistant to
crowding effects on structural stability.
While the results from specific simulations are questionable

without experimental validation, the overall picture from the
simulations taken together is that the conformational landscape
of proteins may become perturbed as a result of nonspecific
weak interactions in cellular environments and a resulting
competition between intra- and intermolecular interactions that
can stabilize non-native states. The possibility of native-state
destabilization in vivo is generally consistent with experi-
ments,22,23 but the simulations, furthermore, suggest specific
mechanisms by which the energy landscape may be altered such
as direct contacts with nearby crowder protein surfaces that
shift the balance toward unfolded states and a role of altered
solvent properties and metabolites. Nevertheless, much remains
to be learned about more general principles that would, for
example, allow predictions of how the structure and stability of
a specific protein may be affected by cellular environments.
Such insight is desirable to advance the fundamental under-
standing of biology, but it is also practically relevant in the
context of protein design and therapeutic developments
involving protein targets.

Protein Dynamics. Dynamics is what connects structure to
function for all but a few proteins. The dynamics of proteins
spans a wide range of time scales and covers internal,

Figure 2. Villin native state destabilization under crowded conditions.
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conformational rearrangements as well as diffusive motions.
Internal dynamics may be further distinguished into fluctua-
tions around the native state and conformational transitions
between different states including the folding−unfolding
transition. The available simulations suggest that fluctuations
around the native state, as measured by S2 order parameters or
Debye−Waller B-factors, are only moderately affected by
crowding.97,98,143,174,208 Other results point at increased
fluctuations as a result of protein−protein contacts in CI2
when interacting with lysozyme,170 whereas somewhat reduced
backbone dynamics were observed in other studies as a result of
crowding.112,174 Experiments also indicate moderate effects of
crowding on fast internal motions but a stronger influence on
slower conformational dynamics.41,110,236 A more detailed
understanding of how crowding may affect internal dynamics
beyond these general observations can be gained from direct
comparisons between MD and NMR,143 but further studies are
needed to address this question. A somewhat clearer picture
exists for the kinetics of conformational transitions between
different states. Crowding with either proteins174 or glu-
cose143,208 led to a significant slowdown in conformational
sampling. A similar conclusion was also reached for
(GlySer)2.

29 The slowdown in conformational transitions has
been correlated with crowders, such as glucose, or water
molecules becoming trapped between solutes and exhibiting
slow diffusion and long residence times.29,208 It remains
difficult, however, to clearly separate cause and effect with
respect to retarded solvation causing slow conformational
dynamics or vice versa. In any case, as conformational
transitions are essential in many biological mechanisms,
understanding how much such kinetic processes are slowed
down in cellular environments is critical for fully understanding
biological processes.
Translational and rotational diffusion is well-known to be

significantly slower under crowded conditions (by about a
factor of 10).237−240 Furthermore, experiments show varying
degrees of deviations from nonideality with respect to how the
observed diffusion slows down with increased viscosity as a
function of crowder type (proteins vs nonproteins and also
between different proteins) that are taken to indicate different
degrees of protein−crowder interactions.121−123 Diffusion rates
from atomistic simulations under crowded conditions are
generally consistent with these observations,170,173,175,208 and
simulations clearly show a slowdown in diffusion that strongly
depends on protein−protein interactions.170,173 This means in
the context of a diverse cytoplasmic environment that different
copies of the same protein may experience very different
diffusion rates depending on the local environment. Or for a
given molecule, diffusion may vary significantly on μs−ms time
scales as different local environments are sampled as the
molecule diffuses across a cell.173 In addition, there is evidence
for anomalous diffusion as a result of caging by crowders,
especially when interactions with those crowders are weak.170

One may take that argument a step further to postulate that a
diffusing protein molecule in a heterogeneous cellular environ-
ment should experience a spectrum of diffusion time scales as
crowders of different sizes and with different levels of attraction
are encountered. This analysis informs dynamic models of
processes at cellular levels that require diffusion rates as
input.241

Taken together, new insight into the dynamics of
biomolecules under crowded conditions from the simulations
is a significant degree of heterogeneity in the diffusion on

microsecond time scales, while other findings so far are largely
confirming more general observations that are known already
from experiments. We believe that simulations are especially
valuable for describing how dynamics varies over different time
scales in the presence of crowding. This will require that more
efforts are made to extend future simulations of crowded
systems well into the tens of microseconds regime which is
technically becoming possible with specialized hardware such as
the Anton 2 supercomputer.242

Solvent Properties. Most of the simulations discussed here
involve explicit solvent. Therefore, the analysis of how
crowding and cellular environments affects solvent properties
is straightforward. The first realization from such analysis is that
bulk-like water, defined here as water molecules beyond the
second solvation layer from the closest macromolecular solute,
only represents a small fraction under cellular conditions with
macromolecular concentrations of 30−40% vol.26 For concen-
trations beyond 40% vol, even water molecules in the second
solvation layer become rare. This means that under crowded
conditions most of the water is either in the first solvation shell
in direct contact with a macromolecular solute or sufficiently
close to still experience the electric field of a solute (see Figure
3). While this has only a minor impact on water structure,

analyzed in terms of pairwise radial distribution and hydrogen
bonding,26,29 water dynamics has been found to be more
strongly altered. According to the simulations, self-diffusion of
water is reduced and residence times are increased significantly
upon crowding.26,29 Further analysis suggest that the crowding
effects vary with the size of the protein crowders.172 Smaller
proteins led to a more pronounced slowdown in dynamics than
large proteins at the same volume fraction, essentially as a result
of larger protein surface areas for the smaller crowders.
As a further indication of reduced dynamics, the dielectric

response of water is also lowered to values between 20 and
60,26 in agreement with experimental measurements.146 The
dielectric response of the entire cellular environment is more
difficult to assess. Polar and charged metabolites and ions may
increase the polarizability,207 while proteins with interior
dielectric constants lower than pure water243,244 would be
expected to reduce the overall dielectric response. A net
decrease in the dielectric response in cellular environment
would also be consistent with a tendency toward native-state
destabilization with a partial loss of the hydrophobic core and
an increase in secondary structure formation as discussed
above.
Taken together, the simulations suggest that solvent exhibits

significantly altered properties in crowded environments which
in turn is expected to affect biomolecular structure, dynamics,
and function. The general idea is that crowding reduces water

Figure 3. Interfacial water under crowded conditions with one (1) or
two (2) layers of water between noninteracting proteins.
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dynamics and lowers the dielectric response which in turn
suggests a reduced hydrophobic effect in crowded cellular
environments. There is limited experimental data consistent
with this picture,146 but further experimental probes that
quantify solvent dynamics and describe electrostatic properties
under crowded conditions are needed to validate the theoretical
predictions.32

Limitations and Failures with Current Simulations.
Since most simulations on crowded cellular systems lack direct
experimental validation so far, it is difficult to assess how
realistic the predictions made by the simulations really are. We
expect that the overall picture of altered conformational
landscapes and reduced diffusional dynamics as a result of
intermolecular interactions with crowders is largely correct but
there are indications that protein−protein interactions could be
too strong177 and that there is a bias toward the sampling of
compact states vs more disordered states due to force field
artifacts180,191,220−222 limiting the ability to accurately describe
conformational ensembles of peptides and proteins under
crowded conditions. Ongoing force field improvements are
aimed at addressing such problems.186 The other major issue
are the relatively short time scales in the atomistic simulations
published to date that have largely limited the study of
dynamics to sub-microsecond time scales. Although longer time
scales can be reached with coarse-grained models,154,155 such
models do not provide as much detailed insight and a major
challenge going forward is how to extend atomistic simulations
of crowded systems further into the μs−ms regime.
Quantitative studies of dynamics are also affected by the
venerable three-site TIP3P and SPC/E water models in
common use today that do not describe viscosity and dielectric
properties of water as well as newer, more expensive four- and
five-site models.245,246 The use of the newer water models may
appear straightforward, but the main challenge is that the
current force fields will need to be reparametrized to be
compatible with these water models while the higher
computational costs due to the additional sites further limit
the time scales that can be reached in simulations.

■ CONNECTIONS WITH EXPERIMENT
The recent detailed atomistic simulations of crowded cellular
environments have been motivated and enabled by experiments
in the growing field of cel lular structural biol-
ogy.24,38,39,41,42,44−46,54,56,85,247 There are increasing opportu-
nities now to advance the field by complementing the
experiments with simulations,143,170,171 where the role of
simulations is ideally to provide more detailed insights and
make predictions that can then be validated via additional
experiments. Especially new NMR and fluorescence experi-
ments5,6,15,17,19,20,22,44,48−50,52,54,56,71,73,75,82,84,92,105,108,132,248

are well suited to connect simulations with experiments as the
experimental observables can be extracted easily from
simulations and the high resolution in both spatial and
temporal scales, especially with NMR, matches the level of
detail in MD results well. As the experiments offer insights into
biomolecular structures under concentrated conditions in vitro
and in vivo, simulations can provide additional details about the
exact mechanisms by which the structure and dynamics of a
given system may be altered as a result of quinary interactions
with cellular environments. Simulations are in principle able to
combine dynamic and structural analyses for a given protein in
the presence of crowders and make a direct connection with
how crowding interactions lead to a modified structural

ensemble. One advantage of simulations is that even minor
populations can be observed that could be more difficult to
detect experimentally and simulations can, at least in principle,
pinpoint and quantify which interactions with other molecules
in a more complex cell-like environment are most relevant for
explaining crowding effects observed, for example, via in-cell
NMR experiments. It is also possible to consider a variety of
mutants for both the protein that is studied and the crowder
proteins to obtain a more detailed view of how individual
residues contribute to crowding effects. The results of such
simulations would then lead directly back to experimentally
testable hypotheses with respect to mutant proteins predicted
to exhibit altered susceptibility to crowding effects.
As new simulations and experiments of cell-like environ-

ments have just recently begun to emerge in parallel, there are
not many examples of direct comparisons yet as different
systems have been studied via experiment and simulation.
Focusing both sides, experiments and simulations, on the same
systems in the same environments will be necessary to lead to
more productive and meaningful interactions. However,
coordinating experiments and simulations is not without
challenges. Experimental systems may involve large crowders
such as bovine serum albumin (BSA) that are computationally
costly to study via simulation or involve complex in vivo
environments that are basically impossible to reproduce exactly
in silico. On the other hand, some computational studies involve
systems that are difficult to prepare or analyze experimentally
such as highly concentrated protein solutions171 or involve
probe molecules at low concentrations in highly complex
environments.173 Nevertheless, there are questions raised by
recent simulations that could be tested experimentally, such as,
for example, the idea that the two domains of phosphogluco-
kinase are closer in cellular environments because of electro-
static effects,173 and variations in secondary structure
propensities as a function of crowder interactions.95,96 On the
other hand, recent experiments of altered protein stabilities of
small proteins like CI2,22 protein L,73 protein G,71 and SH348

in the presence of protein crowders as well as cosolute and
crowding effects on the binding energetics of a dimer-forming
protein G variant,68 just to give some examples, are a strong
motivation for simulations to determine the exact mechanisms
by which destabilization occurs.
Finally, direct imaging methods are rapidly advancing in

recent years and super-resolution microscopy249 and high-
resolution cryo-electron microscopy250 are primed to study the
structure and dynamics of cellular environments, especially if
the resolution both in space and time can be further increased.

■ NEXT STEPS
Detailed simulations of crowded cellular environments have so
far largely focused on proteins and protein crowders. There is
also some insight into the role of metabolites as cosolvents
under crowded conditions, but there is clearly room for
additional studies to explore how metabolites may modulate
biomolecular structure and dynamics in crowded environments.
A related and possibly more important question is how
metabolites behave in the presence of high concentrations of
biomolecules where there are ample opportunities for non-
specific interactions that could reduce effective concentrations
and distract from finding enzyme active sites. Insight into such
questions would be especially relevant for understanding the
dynamics of drug molecules where the kinetics of reaching a
given target site is a key determinant of efficacy and important
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for understanding the mechanisms of unfavorable potential side
effects.
Other largely unexplored questions revolve around inter-

actions with nucleic acids, membranes, and cytoskeletal
components. Some studies are hinting at crowding effects
altering the structure and dynamics of DNA and RNA,103,104

but how the presence of nucleic acids in the cellular interior
affects proteins that do not specifically bind DNA or RNA is
unclear. Chromosomal DNA fills a large part of bacterial
cells251−253 and most cytoplasmic proteins will not be able to
avoid nonspecific interactions with the DNA, yet there is almost
no insight, especially from simulation, how that may affect
protein diffusion and/or stability. The major challenge in
addressing such questions is the lack of realistic high-resolution
molecular models of chromosomal DNA.
Membrane protein crowding has received some attention

with limited insights from simulations.148,254,255 However,
interactions between membranes and crowded cellular interiors
are unclear. For example, one may wonder how nonmembrane
binding proteins that are pushed to interact with membranes
simply by virtue of cellular crowding maintain their stability and
whether they become kinetically trapped or gain fluidity by
facing a membrane bilayer instead of a crowded cytoplasm. It is
also possible that the structure and dynamics of membranes
themselves are affected by the presence of a crowded
cytoplasm, little of which has been explored so far. Clearly,
this is a wide open area that is ripe for detailed atomistic
simulations to generate insights and guide experiments.
The ultimate goal is a molecular-level understanding of entire

cells. Fully atomistic whole-cell simulations, at least for bacterial
cells, are not too far from reality. However, a larger impact will
probably be realized by using the detailed insights from
atomistic simulations of cellular environments to build more
simplified models that capture the essential physics but scale to
longer time scales and allow the exploration of biological
questions by the broader community without requiring access
to extreme high-performance computing environments. Com-
putationally tractable, yet physically realistic in silico whole-cell
models also offer much potential for transforming rational drug
design protocols that up to now largely rely on single molecules
and highly empirical approaches.256,257
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(14) Luh, L. M.; Han̈sel, R.; Löhr, F.; Kirchner, D. K.; Krauskopf, K.;
Pitzius, S.; Schaf̈er, B.; Tufar, P.; Corbeski, I.; Güntert, P.; et al.
Molecular Crowding Drives Active Pin1 into Nonspecific Complexes
with Endogenous Proteins Prior to Substrate Recognition. J. Am.
Chem. Soc. 2013, 135, 13796−13803.
(15) Senske, M.; Tork, L.; Born, B.; Havenith, M.; Herrmann, C.;
Ebbinghaus, S. Protein Stabilization by Macromolecular Crowding
through Enthalpy rather than Entropy. J. Am. Chem. Soc. 2014, 136,
9036−9041.
(16) Cohen, R. D.; Pielak, G. J. Electrostatic Contributions to Protein
Quinary Structure. J. Am. Chem. Soc. 2016, 138, 13139−13142.
(17) Monteith, W. B.; Cohen, R. D.; Smith, A. E.; Guzman-Cisneros,
E.; Pielak, G. J. Quinary Structure Modulates Protein Stability in Cells.
Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1739−1742.
(18) Sarkar, M.; Pielak, G. J. An Osmolyte Mitigates the Destabilizing
Effect of Protein Crowding. Protein Sci. 2014, 23, 1161−1164.
(19) Sarkar, M.; Lu, J.; Pielak, G. J. Protein Crowder Charge and
Protein Stability. Biochemistry 2014, 53, 1601−1606.
(20) Wang, Y.; Sarkar, M.; Smith, A. E.; Krois, A. S.; Pielak, G. J.
Macromolecular Crowding and Protein Stability. J. Am. Chem. Soc.
2012, 134, 16614−16618.
(21) Benton, L. A.; Smith, A. E.; Young, G. B.; Pielak, G. J.
Unexpected Effects of Macromolecular Crowding on Protein Stability.
Biochemistry 2012, 51, 9773−9775.

(22) Miklos, A. C.; Sarkar, M.; Wang, Y.; Pielak, G. J. Protein
Crowding Tunes Protein Stability. J. Am. Chem. Soc. 2011, 133, 7116−
7120.
(23) Inomata, K.; Ohno, A.; Tochio, H.; Isogai, S.; Tenno, T.;
Nakase, I.; Takeuchi, T.; Futaki, S.; Ito, Y.; Hiroaki, H.; et al. High-
Resolution Multi-Dimensional NMR Spectroscopy of Proteins in
Human Cells. Nature 2009, 458, 106−111.
(24) Sakakibara, D.; Sasaki, A.; Ikeya, T.; Hamatsu, J.; Hanashima, T.;
Mishima, M.; Yoshimasu, M.; Hayashi, N.; Mikawa, T.; Walchli, M.;
et al. Protein Structure Determination in Living Cells by In-Cell NMR
Spectroscopy. Nature 2009, 458, 102−105.
(25) Gnutt, D.; Gao, M.; Brylski, O.; Heyden, M.; Ebbinghaus, S.
Excluded-Volume Effects in Living Cells. Angew. Chem., Int. Ed. 2015,
54, 2548−2551.
(26) Harada, R.; Sugita, Y.; Feig, M. Protein Crowding Affects
Hydration Structure and Dynamics. J. Am. Chem. Soc. 2012, 134,
4842−4849.
(27) Tanizaki, S.; Clifford, J.; Connelly, B. D.; Feig, M. Conforma-
tional Sampling of Peptides in Cellular Environments. Biophys. J. 2008,
94, 747−759.
(28) King, J. T.; Arthur, E. J.; Brooks, C. L.; Kubarych, K. J.
Crowding Induced Collective Hydration of Biological Macromolecules
over Extended Distances. J. Am. Chem. Soc. 2014, 136, 188−194.
(29) Lu, C.; Prada-Gracia, D.; Rao, F. Structure and Dynamics of
Water in Crowded Environments Slows Down Peptide Conforma-
tional Changes. J. Chem. Phys. 2014, 141, 045101.
(30) Qi, H. W.; Nakka, P.; Chen, C.; Radhakrishnan, M. L. The
Effect of Macromolecular Crowding on the Electrostatic Component
of Barnase−Barstar Binding: A Computational, Implicit Solvent-Based
Study. PLoS One 2014, 9, e98618.
(31) Kim, Y. C.; Mittal, J. Crowding Induced Entropy-Enthalpy
Compensation in Protein Association Equilibria. Phys. Rev. Lett. 2013,
110, 208102.
(32) Zhang, N.; An, L.; Li, J.; Liu, Z.; Yao, L. Quinary Interactions
Weaken the Electric Field Generated by Protein Side-Chain Charges
in the Cell-like Environment. J. Am. Chem. Soc. 2017, 139, 647−654.
(33) Ando, T.; Yu, I.; Feig, M.; Sugita, Y. Thermodynamics of
Macromolecular Association in Heterogeneous Crowding Environ-
ments: Theoretical and Simulation Studies with a Simplified Model. J.
Phys. Chem. B 2016, 120, 11856−11865.
(34) Kondrat, S.; Zimmermann, O.; Wiechert, W.; von Lieres, E. The
Effect of Composition on Diffusion of Macromolecules in a Crowded
Environment. Phys. Biol. 2015, 12, 046003.
(35) Ellis, R. J.; Minton, A. P. Cell Biology - Join the Crowd. Nature
2003, 425, 27−28.
(36) Gershenson, A. Deciphering Protein Stability in Cells. J. Mol.
Biol. 2014, 426, 4−6.
(37) Cedeño, C.; Pauwels, K.; Tompa, P. Protein Delivery into Plant
Cells: Toward in vivo Structural Biology. Front. Plant Sci. 2017, 8, 519.
(38) Pastore, A.; Temussi, P. A. The Emperor’s New Clothes: Myths
and Truths of In-Cell NMR. Arch. Biochem. Biophys. 2017, in press.
DOI: 10.1016/j.abb.2017.02.008.
(39) Han̈sel, R.; Luh, L. M.; Corbeski, I.; Trantirek, L.; Dötsch, V. In-
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