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Multiple myeloma remains an incurable disease despite numerous novel agents being
approved in the last decade. Furthermore, disease behavior and susceptibility to current
treatments often vary drastically from patient to patient. To date there are no approved
therapies in myeloma that are targeted to specific patient populations based on genomic
or immunologic findings. Precision medicine, using biomarkers descriptive of a specific
tumor’s biology and predictive of response to appropriate agents, may continue to push
the field forward by expanding our treatment arsenal while refining our ability to expose
patients to only those treatments likely to be efficacious. Extensive research efforts have
been carried out in this endeavor including the use of agents targeting Bcl2 and the RAS/
MAPK and PI3K/AKT/mTOR pathways. Thus far, clinical trials have yielded occasional
successes intermixed with disappointments, reflecting significant hurdles which still
remain including the complex crosstalk between oncogenic pathways and the nonlinear
genetic development of myeloma, prone to cultivating sub-clones with distinctive
mutations. In this review, we explore the landscape of precision therapeutics in multiple
myeloma and underscore the degree to which research efforts have produced tangible
clinical results.

Keywords: precisionmedicine, targeted therapy, multiple myeloma, novel therapies, RAS/MAPK signaling pathway,
PI3K - AKT pathway, Bcl-2 inhibitor, p53
INTRODUCTION

Over the last two decades, the additions of proteasome inhibitors (PIs), immunomodulating agents
(IMiDs), and anti-CD38 antibodies to the multiple myeloma treatment arsenal have improved
survival materially (1). In recent years, further incremental gains have been made through agents
with novel mechanisms, such as panobinostat, selinexor, belantamab mafodotin, and idecabtagene
vicleucel. Although treatment approaches can be adjusted to patients’ comorbidities, cytogenetic
risk, functional status, and response, the individual drugs that constitute current standard of care are
agnostic to molecular characteristics and biomarkers. In spite of the remarkable advances, depth
and duration of responses to current agents can vary widely and unpredictably due in large part to
extensive intertumor and intratumor genetic variability (2). Drug-refractory relapse remains an
inevitability in the vast majority of patients and each successive line of therapy produces shorter
responses (3). In this context, the field has seen a renewed push for agents targeted to disease-
specific characteristics.
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Precision medicine approaches already have become
indispensable in several other cancers, from trastuzumab in
HER-2-mutated breast cancer to cetuximab in EGFR-mutated
non-small cell lung cancer (4). Despite actionable mutations being
identified in over three quarters of relapsed multiple myeloma
patients, precision medicine has not been incorporated into
standard myeloma treatment (5). The advent of genome
sequencing technology has facilitated analysis of the tumor
genotype with unprecedented resolution. Using these techniques,
researchers have been able to compare myeloma samples to
normal tissue to identify recurrently mutated pathways that may
serve as additional therapeutic targets (2). Furthermore, the use of
so-called “umbrella” trials, in which patients with the same cancer
but different targetable biomarkers receive different treatments
matched to their specific biomarker, and “basket” trials, in which
patients with a variety of malignancies sharing a common
biomarker are treated with a targeted treatment, has the
potential to accelerate discovery of promising precision medicine
candidates. The multi-armed MyDRUG protocol is one notable
umbrella study in which enrolled patients are screened for
targetable mutations and, if identified, are assigned to drug
combinations featuring appropriate targeted agents, allowing
simultaneous evaluation of multiple targeted approaches that
may warrant further exploration (NCT03732703).

Precision medicine approaches hold the promise of finally
incorporating this valuable genomic data to target appropriate
aspects of each individual’s underlying disease biology.
Actionable mutations are now regularly identified in multiple
myeloma, with such abnormalities as KRASmutations, t(11;14), t
(4;14), and CDKN2C loss being found in approximately 29%,
20%, 20%, and 15% of cases, respectively (6–9). Here we review
progress made in developing agents tailored to disease-specific
biology with a focus on dissecting the degree of clinical
success observed.
PREVIOUS CLINICAL PURSUITS:
TARGETED APPROACHES SHOW MIXED
CLINICAL RESULTS

RAS/MAPK Pathway Inhibition
The mitogen activated protein kinase (MAPK) pathway is
commonly mutated in multiple myeloma and is found in over
50% of patients (7). KRAS, NRAS, and BRAF mutations are
generally mutually exclusive with rates of up to 29%, 24%, and
12% respectively (7, 10). MAPK pathway mutations can enhance
proteasome activity, reduce cellular stress induced by PIs, and
can confer resistance to PIs (11, 12). Myeloma cell lines treated
with MAPK inhibitors are sensitized to the effects of PIs (12).

The V600E activating BRAF mutation is a poor prognostic
sign, with patients harboring the mutation having a propensity
for extramedullary disease (13). BRAF-mutated tumors such as
melanoma and colorectal cancer have been successfully treated
by inhibition of BRAF and the downstream MAPK kinase
(MEK) (14, 15). In case reports, heavily pretreated BRAF
V600E-mutated multiple myeloma patients experienced
Frontiers in Oncology | www.frontiersin.org 2
durable responses with either the BRAF inhibitor vemurafenib
alone and vemurafenib plus the MEK inhibitor cobimetinib and
served as proof-of-concept for the efficacy of BRAF inhibition in
multiple myeloma (13, 16). Anecdotal activity was also noted
with the combination of the BRAF inhibitor dabrafenib and
MEK inhibitor trametinib (17, 18). The VE-BASKET study,
which treated multiple BRAF V600-mutated tumors with
vemurafenib monotherapy, observed a 33% response rate
among the 9 multiple myeloma patients included (19). While
these early findings show promise, whether vemurafenib efficacy
can be improved by means of combination treatment or by
introduction as an earlier line of therapy remains to be seen. The
phase 2 CAPTUR study will treat a variety of tumor types,
including multiple myeloma, according to targetable genetic
abnormalities with BRAF V600-mutated disease receiving
vemurafenib plus cobimetinib (NCT03297606). See Table 1 for
an overview of trials with agents that may favor particular
cytogenetic or molecular profile-defined subgroups.

Cobimetinib is also being investigated independently from
vemurafenib. In a preliminary report of a phase Ib/II study of
relapsed/refractory multiple myeloma (RRMM), cobimetinib
monotherapy demonstrated no efficacy among the 6 treated
patients, but showed activity with venetoclax both with and
without atezolizumab (20). The authors will be tracking the
effects of t(11;14) and RAS mutations on response. Cobimetinib
in combination with ixazomib and pomalidomide is also being
further investigated in the MYDRUG umbrella protocol in
NRAS, KRAS, and BRAF-mutated myeloma.

Single agent trametinib foundearly success in isolated individuals,
including one KRAS-mutated patient with multiply relapsed
myeloma and extramedullary disease who attained an impressive
response with single agent trametinib (21). Subsequently, a
retrospective analysis identified 58 trametinib-treated RRMM cases
of which 51 harbored KRAS, NRAS, or BRAF mutations (21).
Heterogeneous in both disease characteristics and treatment
approach, these real-world patients with a median of 5 lines of
prior therapy were treated with trametinib monotherapy,
combination therapy, or in some cases monotherapy with
additional agents later added. Treatment was well tolerated and
produced partial responses or greater in 16 patients, with the 4
occurring on single agent trametinib further confirming its activity in
this population. Still, prospective studies investigating trametinib use
thus far have been sparse. Due to extensive cross-talk between the
MAPKpathwayandPI3K/AKTpathways, inhibitionof onepathway
can activate the other suggesting dual inhibition as a promising
therapeutic approach (22, 23).Unfortunately, preliminary results of a
phase II trial using trametinib in RRMM with addition of the AKT
inhibitor uprosertib (GSK2141795) in non-responders reported an
ORR of only 8% inKRAS,NRAS, or BRAF-mutated patients, and no
responses among the 12 wild-type patients with trametinib alone
(24). Addition of uprosertib increasedORR of study patients to 27%,
but in the absence of further published results since this 2016 report,
trial-based experience with trametinib remains limited (24).

PI3K/AKT/mTOR Pathway
Multiple myeloma depends heavily on the bone marrow
microenvironment for survival and proliferation. Interactions
January 2022 | Volume 11 | Article 819127
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with stromal cells produce cytokines like IL-6, VEGF, and IGF-1
which activate the PI3K/AKT/mTOR pathway in multiple
myeloma patients, initiating a signaling cascade which
promotes resistance to chemotherapy and cancerous
progression (25, 26). Although somatic mutations in the PI3K/
AKT pathway are frequently seen in other malignancies, in
multiple myeloma no activating mutations in PI3K/AKT genes
have been identified (27–29). Similarly, mutations or deletions in
the tumor suppressor, PTEN, which can disinhibit the pathway
can sensitize tumors to mTOR inhibition are uncommon in
multiple myeloma (30, 31). In the absence of targetable
mutations, biomarkers that could predict susceptibility
pathway inhibition are being actively sought and thus far trials
of agents targeting the pathway have yet to adopt a
precision approach.

Preclinical studies of PI3K/AKT/mTOR pathway inhibitors
in multiple myeloma have long demonstrated therapeutic
potential (31–35). However, initial clinical trials, many of
which targeted mTOR with rapalogs such as temsirolimus and
Frontiers in Oncology | www.frontiersin.org 3
everolimus, showed muted single agent activity in multiple
myeloma patients (36, 37). Everolimus plus lenalidomide, a
combination which had demonstrated preclinical synergy,
achieved PR or better in 21% of patients in a phase 1 study
(38). Notably, a retrospective analysis found that gene expression
profiles of responding myeloma patients were characterized by
higher baseline expression of mTOR pathway genes (38). These
findings suggest that use of microarray to identify patients with
favorable gene expression profiles may represent a precision
approach for future studies targeting the PI3K pathway. A
phase 2 study combined temsirolimus with bortezomib in
RRMM with 33% of the 43 patients responding (39). A
feedback loop whereby mTOR inhibition increases IGF-1
signaling and activation of AKT may be an important
mechanistic explanation for the thus far limited activity of
rapalogs (40).

Rapalogs primarily inhibit mTOR’s function as a member of
the multiprotein complex, TORC1. Importantly, mTOR also
contributes to the function of a second complex, TORC2,
TABLE 1 | Overview of multiple myeloma trials targeting pathways and relevant subgroups.

Targeted
pathway

Drugs Phase of study
(Stage)

Treatment group - Planned Subgroup Analysis NCT

RAS/MAPK Vemurafenib, cobimetinib Phase 2 (Ongoing) BRAF V600 mutated malignancy NCT03297606 (Group 12)
Cobimetinib +/- venetoclax, +/- atezolizumab Phase 1b/2

(Ongoing)
RRMM - t(11;14), RAS-mutated NCT03312530

Trametinib +/- GSK2141795 Phase 2 (Ongoing) RRMM - KRAS, NRAS, BRAF-mutated NCT01989598
PI3K/AKT/
mTOR

Uprosertib (GSK2141795), trametinib Phase 2 (Ongoing) RRMM - NRAS, KRAS, BRAF-mutated NCT01989598

ONC201 Phase 1
(Completed)

Advanced solid tumors and myeloma NCT02609230

ONC201, dexamethasone Phase 1 (Ongoing) RRMM NCT02863991
PD-1/PD-L1 Nivolumab plus ipilimumab Phase 2 (Ongoing) High mutational burden malignancy NCT03297606 (Group 6)
Bcl2 Venetoclax, bortezomib, dexamethasone Phase 3

(Completed)
RRMM - t(11;14) and high BCL-2 expression NCT02755597

Venetoclax, carfilzomib, dexamethasone Phase 2 (Ongoing) RRMM - t(11;14) NCT02899052
Venetoclax, daratumumab, dexamethasone Phase 1 (Ongoing) t(11;14)-RRMM (Part 1, 3), all RRMM (Part 2) NCT03314181
Venetoclax, pomalidomide, ixazomib,
dexamethasone

Phase 1/2 (Ongoing) t(11;14)-RRMM NCT03732703
(Subprotocol E1)

Lisaftoclax (APG-2575) Phase 1 (Ongoing) Relapsed/refractory heme malignancy NCT03537482
LOXO-338 Phase 1 (Ongoing) Advanced heme malignancy NCT05024045

FGFR3 Erdafitinib, pomalidomide, ixazomib,
dexamethasone

Phase 1/2 (Ongoing) t(4;14) or FGFR3 amplified RRMM NCT03732703
(Subprotocol D1)

Dasatinib Phase 2
(Completed)

Relapsed or plateau-phase myeloma NCT00429949

AZD4547 Phase 2
(Completed)*

FGFR 1-3 mutated malignancy NCT04439240

EZM0414 Phase 1 (Planned) t(4;14)-RRMM (cohort 1), t(4;14)-negative RRMM
(cohort 2)

NCT05121103

CDK 4/6 Abemaciclib, pomalidomide, ixazomib,
dexamethasone

Phase 1/2 (Ongoing) CDK-activating mutation NCT03732703
(Subprotocol A1)

IDH2 Enasidenib, pomadlidomide, ixazomib,
dexamethasone

Phase 1/2 (Ongoing) IDH2-mutated RRMM NCT03732703
(Subprotocol B1)

MAPK, PI3K,
PKC

Larotrectinib Phase 2 (Ongoing) NTRK1, NTRK2, NTRK3 fusion-containing
malignancy

NCT02465060

Mcl1 AZD5991 +/- venetoclax Phase 1 (Ongoing) Rlapsed/refractory heme malignancy NCT03218683
S64315 Phase 1 (Ongoing) RRMM NCT02992483
AMG 176 Phase 1 (Ongoing) RRMM and AML NCT02675452

MDM2 KRT 232, carfilzomib, lenalidomide,
dexamethasone

Phase 1 (Ongoing) RRMM - RNA expression levels of TP53 pathway
genes

NCT03031730

Idasanutlin, ixazomib, dexamethasone Phase 1 (Ongoing) del(17p) or monosomy 17-RRMM NCT02633059
January 2022 |
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whose phosphorylation substrates include AKT (41). Many
newer mTOR inhibitors were rationally designed to inhibit
both TORC1 and TORC2 to prevent feedback activation of
AKT. Disappointingly, a phase 1 study of one such dual
TORC1/TORC2 inhibitor, TAK-228, produced only one
minimal response out of 26 multiple myeloma patients (42).
Similarly, a phase 1 study of CC-223, another dual TORC1/
TORC2 inhibitor, produced no responses out of 10 response
evaluable myeloma patients, though 2 patients experienced
prolonged SD (43).

Inhibition of Akt with perifosine was another approach with
efficacy in vitro and in mouse models (34). A phase I study of
perifosine, lenalidomide, and dexamethasone in RRMM
produced an encouraging 73% ORR and found that responders
had higher baseline bone marrow phospho-Akt levels,
identifying another potential biomarker for agents targeting the
PI3K/AKT pathway (44). A more recent phase III study,
however , randomized pat ients to bortezomib and
dexamethasone with or without perifosine but found no signal
towards improved response rates or progression-free survival
(PFS) at the first interim analysis and was discontinued (45). The
pan-Akt inhibitor afuresertib has also been clinically tested in
multiple myeloma, with initial monotherapy trials discontinued
due to limited single agent activity (46). A basket study of
afuresertib with trametinib was discontinued due to intolerable
toxicities including grade 3 transaminitis and hypokalemia (47).
Although the combination of afuresertib with bortezomib and
dexamethasone showed a ORR of 41% in RRMM from
preliminary phase 1 data, final results of the since completed
study have not been published and a subsequent study of
afuresertib and carfilzomib in RRMM has been discontinued
(48, 49). Ongoing studies of Akt inhibitors include uprosertib
with trametinib, with preliminary ORR of 27% (NCT01951495),
and ONC201 as monotherapy or with dexamethasone
(NCT02609230, NCT02863991).

PI3K inhibition has also been tested, although the
combination of the PI3K inhibitor BYL719 and pan-PIM
inhibitor LGH447 in RRMM was poorly tolerated in a phase 1
study, with 26.7% of patients experiencing grade 3 or 4
thrombocytopenia, prompting premature termination (50).
With most initial clinical trials hampered by lackluster efficacy
or intolerable toxicities, it remains to be seen whether the
preclinical promise of the PI3K/AKT/mTOR pathway can truly
be translated into tangible clinical results.

Checkpoint Inhibition
Myeloma cells are known to overexpress PD-L1 which
contributes to immune evasion (51). While preclinical evidence
supported checkpoint inhibitors as a promising treatment
approach, particularly when combined with IMiDs, clinical
studies have yielded disappointing results (52–54). Not only
have nivolumab and pembrolizumab demonstrated minimal
single agent activity in myeloma, in some cases the
combination of checkpoint inhibitors and IMiDs actually
increased mortality (53, 55–57).

It is now clear that a better understanding of myeloma biology
is required to guide checkpoint inhibitor therapy in multiple
Frontiers in Oncology | www.frontiersin.org 4
myeloma patients. In solid tumors, the issue of benefit versus
immune-mediated risk with checkpoint inhibitors has been
particularly favorable in tumors with high mutational burden.
Tumors with high mutational burden tend to be associated with
higher levels of neoantigens and tumor infiltrating lymphocytes,
an environment that can be exploited by checkpoint inhibition
(58). In multiple myeloma, apolipoprotein B mRNA editing
enzyme (APOBEC) is a source of increased mutational burden
and is associated with the MAF t(14;16) translocation (59, 60).
While t(14;16) and high mutation and neoantigen burden are
indicators of poor prognosis, this rationale supports the potential
for these patients to derive benefit from checkpoint inhibitors
(61). In the ongoing CAPTUR study, patients with high
mutational burden tumors will be assigned to nivolumab plus
ipilimumab (NCT03297606).
STANDOUT SUCCESS: THE AGENT
SEEING REAL-WORLD USE AS
TARGETED THERAPY

Venetoclax
Although there are currently no FDA-approved treatments for
mutationally defined subsets of multiple myeloma, one agent is
backed by a healthy degree of clinical trial data and has begun to
see real-world use: venetoclax. Venetoclax, an oral selective
inhibitor of anti-apoptotic protein BCL-2, has become a
prototypical precision drug in myeloma. Currently approved in
CLL and AML, venetoclax in multiple myeloma has
demonstrated particular efficacy in patients harboring t(11;14)
from preclinical to phase 3 trials (62). The BCL-2 gene is highly
expressed in human myeloma cell lines (HMCL) and is thought
to play a role in tumorigenesis (63). However, early treatment of
HMCLs noted venetoclax sensitivity primarily in the CCND1
subgroup, making the t(11;14) translocation an subgroup of
interest (64). Of note, t(11;14) is the most common
translocation in newly-diagnosed multiple myeloma (NDMM),
seen in about 20% of cases and is associated with increased BCL-
2 expression (65, 66). In primary plasma cell leukemia, a
particularly aggressive variant of multiple myeloma, t(11;14)
incidence is closer to 50% and case reports support venetoclax
efficacy among these patients (67–70). BCL-2 expression and
dependence is further increased by dexamethasone, offering an
attractive combination (71).

As with many myeloma-directed therapies with potential as
targeted therapy, early trials applied venetoclax more broadly to
assess for biomarker-independent activity. An initial phase 1 study of
venetoclax monotherapy in RRMM demonstrated overall response
ratesof20%(8).Notably,while46%ofparticipantsharbored t(11;14),
86% of responses were found among these t(11;14) patients (8).
Subsequently, the phase 3 BELLINI study randomized 291 RRMM
patients to bortezomib and dexamethasone plus either venetoclax or
placebo. In all-comers, the venetoclax arm improved median PFS of
22.4months versus 11.5months and achieved deeper responses with
more patients with MRD negativity. However, patients in the
venetoclax group had higher rates of grade ≥3 neutropenia (18%
January 2022 | Volume 11 | Article 819127
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vs. 7% in placebo) and pneumonia (16% vs. 9%). Ultimately, the
venetoclax arm experienced poorer overall survival (OS) due in large
part to treatment-related deaths from infectious complications,
prompting study discontinuation (72). Again, t(11;14) patients
benefitted the most from venetoclax addition. Patients harboring t
(11;14) or expressing high BCL2 treated with the venetoclax
combination attained deeper responses with a median PFS not yet
reached compared to 9.9 months with placebo without increased
mortality (72). An ongoing phase 2 study of venetoclax with
carfilzomib and dexamethasone has also demonstrated safety and
efficacy in RRMM, with an ORR of 75% in the 36 patients without t
(11;14) and 92% in the 13 patients with t(11;14) (73). Similarly,
preliminary phase 1 results in RRMM found that venetoclax,
daratumumab, and dexamethasone produced a 96% ORR (all ≥
very good partial response, VGPR) in t(11;14)-only population (n =
24), while the same three agents plus bortezomib produced a 92%
ORR (79% ≥VGPR) in cytogenetically unselected patients (74). The
BELLINI study along with other preliminary results have solidified
venetoclax’ role as an important combination treatment option in
appropriately selected patients.

Based on early efficacy data, venetoclax has begun to see off-label
use in the community. One single-center study found that providers
most commonly combined venetoclax with dexamethasone alone,
followed by triplet regimens with PI and dexamethasone or
daratumumab and dexamethasone (75). The 70 patients had a
median of 3 prior lines of therapy, the majority were t(11;14)
positive (86%), and the median PFS was an encouraging 13 months.
Even penta-refractory patients benefitted from a PFS of 7.2 months.
A different single-center study found that among 56 patients treated
with venetoclax outside of clinical trials, 75% had t(11;14) and the
agent was used as monotherapy or with only dexamethasone in 55%
of patients while the remainder received triplets or quadruplets (76).
Here, venetoclax was introduced later with a median of 6 prior lines
and produced a 44% ORR but a shorter 5.8 month PFS. Notably, t
(11;14) patients enjoyed longer PFS (9.7 vs. 4.2 months for t(11;14)
negative, p = 0.019) andOS (not reached vs. 10.9 months, p = 0.015)
(76). Another report found that between 7 Hungarian centers, 33
patients harboring t(11;14) were treated with venetoclax primarily
in combination with a PI and dexamethasone either in the relapsed
setting (mean 4.8 prior lines) or after suboptimal response to initial
pre-transplantation induction (17 patients) (77). The authors noted
that an astonishing 96% of patients responded (28% CR, 38%
VGPR, 30% PR), particularly impressive when considering the
refractoriness of the group. Median PFS was 15.5 months from
venetoclax initiation. However, doses utilized varied widely, as only
2 patients received the 800 mg utilized in BELLINI, 1 received 600
mg, and all others received 400mg or less (77). The efficacy observed
despite varied doses raises the questions of whether a reduced-
intensity venetoclax regimen could represent a viable approach to
improving tolerability while preserving efficacy.

A major observation from the BELLINI study was that at 800 mg
daily, venetoclaxwas associatedwith significantmyelosuppressionand
infectious, often life-threatening complications. A small recent
retrospective study specifically assessed low dose venetoclax (≤250
mg/day) in combination with daratumumab, bortezomib, and
dexamethasone in RRMM (78). While the 16 patient without t
(11;14) had an ORR of only 31%, the 5 patients with the
Frontiers in Oncology | www.frontiersin.org 5
translocation benefited from an 80% ORR. Importantly, despite
adding daratumumab to the three agents used in BELLINI, the high
rates of infectious complications seen in BELLINI were not observed
(no grade ≥3 pneumonia). Randomized clinical trials are needed to
clarify the truebenefit of reduced-dose venetoclax andwhether it could
represent an efficacious yet tolerable approach to precision medicine.

While the benefit of venetoclax todatehas beenmost pronounced
in t(11;14) orhighBCL-2 expressors,multiple ongoing trials continue
to investigate the agent in a cytogenetically agnostic fashion. In the
relapsed/refractory setting, venetoclax is being studied in
combination with carfilzomib and dexamethasone and with
daratumumab and dexamethasone with or without bortezomib;
aforementioned preliminary data show higher efficacy in t(11;14)
patients (NCT02899052, NCT03314181) (73, 74, 79). Venetoclax is
also being directly compared to pomalidomide in relapsed/refractory
t(11;14) positive patients (NCT03539744) andhas alsobeen included
in theMyDRUG trial (NCT03732703) (80). Looking forward, a first-
in-human phase 1 study of novel BCL-2 inhibitor lisaftoclax is
underway in multiple myeloma and other hematologic
malignancies with doses up to 1200 mg/day thus far being well-
tolerated (NCT03537482) (81). LOXO-338 is another BCL-2
inhibitor being tested in a phase 1 study in advanced hematologic
malignancies (NCT05024045).
LOOKING TO THE FUTURE: TARGETED
APPROACHES SHOWING PRE-CLINICAL
PROMISE

FGFR3 Inhibition
In multiple myeloma, the t(4;14)(p16.3;q32) translocation leads
to deregulation of FGFR3 and WHSC1/MMSET and is found in
up to 20% of newly diagnosed patients (9). Patients harboring
this translocation suffer from quicker relapses following
chemotherapy and transplant (82, 83). The abnormality
remains a poor prognostic marker even in the era of novel
agents, and thus identifying effective treatments for this high-risk
group remains a significant unmet need (84). FGFR3 inhibition
has proved to be an effective strategy among other tumor types
such as bladder cancer (85). In multiple myeloma, FGFR3
inhibition has shown preclinical promise as a form of targeted
therapy, inducing apoptosis selectively in t(4;14) positive
HMCLs and t(4;14) positive multiple myeloma xenografts in
mice (86–89). Comparatively, FGFR3 inhibition in the clinical
setting has to date been less active.

Clinically, FGFR3 has been targeted by both non-selective
multikinase inhibitors and highly selective FGFR inhibitors. In
multiple myeloma patients, dovitinib and nintedanib, two
multikinase inhibitors which inhibit FGFR, VEGFR, and
PDGFR, have demonstrated little more than a tolerable safety
profile and the potential to stabilize myelomatous disease (90,
91). Dasatinib, a multikinase inhibitor effective in CML, was
investigated in a phase II study of RRMM patients produced only
1 partial response out of 21 treated patients (NCT00429949).

Key to future successes of FGFR3-targeted therapies will be
appropriate patient selection. Previously mentioned studies have
January 2022 | Volume 11 | Article 819127
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investigatedpatients irrespective ofmutational status or stratifiedby t
(4;14) status. Importantly, FGFR3 is not upregulated in all cases of t
(4;14),andthetranslocationportendsapooroutcomeeveninpatients
without altered FGFR3 expression (92). Studies of the novel selective
FGFRinhibitors erdafitinibandAZD4547 look to targetpatientswith
alterations in the FGFR3 pathway specifically, though there are
currently no published results of these agents in multiple myeloma
patients. Although the subprotocol of the phase 2 MATCH basket
study looked to treat only FGFR3-amplified tumors with AZD4547,
no multiple myeloma patients were ultimately enrolled and the
subprotocol failed to meet its goal of a 16% response rate among
other cancers treated (93). Erdafitinib will be added to ixazomib and
pomalidomide in patients with FGFR3 activating mutations in the
ongoing MyDRUG protocol (NCT03732703).

CDK4/6 Inhibition
Cyclin-dependent kinases (CDK) 4 and 6 phosphorylate
retinoblastoma protein, increasing expression of transcription
factors which promote transition from G1 to S phase (94).
CDKN2C, located on chromosome 1p, encodes a CDK
inhibitor and when deleted in myeloma cells results in
increased proliferation (6). Loss of CDKN2C, seen in 15% of
myeloma cases, is associated with poorer OS (6, 95). The CDK4/6
inhibitor, abemaciclib, inhibits myeloma cell growth and exhibits
cytotoxicity in a dose-dependent manner (96). Abemaciclib also
induced regression of tumors in SCID models engrafted with
multiple myeloma cells in part by increasing cytokines involved
in NK cell recruitment and activation (97). In this model, CDK4/
6 inhibition showed synergistic tumor suppression when
combined with daratumumab. Patients enrolled in the
MyDRUG study with 1p31 (CDKN2C) loss will be treated
with abemaciclib in addition to ixazomib and pomalidomide.

Palbociclib is another CDK4/6 inhibitor which shows primarily
cytostatic effects in vitro with multiple myeloma cell lines but
enhances cytotoxicity when combined with immunomodulatory
drugs, bortezomib, and corticosteroids (98–100). Thus far, the agent
has only been applied in the clinical setting in a biomarker-
independent fashion. A phase 1/2 study of palbociclib with
bortezomib and dexamethasone in RRMM attained an ORR in 5
of 25 patients (20%) (101). Though an additional 44% achieved
stable disease, the study failed to meet the ORR ≥ 28% needed to
proceed to the next stage. A planned trial combining palbociclib
with lenalidomide and dexamethasone terminated due to low
enrollment (NCT02030483).

Mutant IDH Inhibition
Gain-of-function mutations in isocitrate dehydrogenase (IDH) 1
and 2 results in the metabolism of isocitrate to the oncometabolite
2-hydroxyglutarate rather than a-ketoglutarate. 2-hydroxyglutarate
inhibits both histone demethylase and TET2, causing an increase in
both histone and DNA methylation which blocks normal cell
differentiation (102). Although the use of IDH 1/2 inhibitors,
ivosidenib and enasidenib, have found success in AML among the
approximately 16% of IDH-mutated patients, in multiple myeloma
IDH mutations are only seen in 0.5% (103, 104). Still, as IDH 1/2
mutations represent a relatively recently discovered driver mutation
in myeloma, mutant IDH inhibition is now being investigated in
Frontiers in Oncology | www.frontiersin.org 6
humans, with IDH2-mutated patients in the MyDRUG protocol
receiving enasidenib-based combinations (105).

SETD2 Methyltransferase Inhibition
SETD2, a histone methyltransferase which catalyzes H3K36
trimethylation, performs a complex array of functions
including DNA repair, alternative splicing, and promotion of
transcriptional silencing (106). SETD2 is recurrently mutated in
a number of tumor types including multiple myeloma,
particularly in the relapsed and refractory setting (105, 107). In
other diseases, SETD2 is thought to serve as a tumor suppressor,
as mutations can hamper DNA repair mechanisms and increase
mutation rates (108, 109). However, CRISPR pooled screens
have found that myeloma cells are in fact dependent on SETD2
for survival (110). A small molecular inhibitor of SETD2 has
demonstrated preclinical efficacy by suppressing proliferation
both in myeloma cell lines and in vivo mouse xenografts (111).
The authors also state that the agent shows in vitro synergy with
general standard of care myeloma therapies. Clinical trials of
SETD2 inhibitors are currently being planned.

NTRK Inhibition
Fusions involving the neurotrophin receptor tyrosine kinase genes
(NTRK1, NTRK2, and NTRK3) recur in cancers like gliomas,
secretory breast cancer, and lung cancer (112). The oncogenic
fusion protein retains the TRK kinase domain but contain part of
a different gene product leading to ligand-independent constitutive
activation of downstream pathways such as MAPK, PI3K, and PKC
(113). The NTRK inhibitor larotrectinib has an impressive track
record, demonstrating consistent and durable responses across all
solid tumors harboring the fusions and has been approved for both
adult and pediatric solid tumors with NTRK fusions (114, 115).
Unfortunately, NTRK fusions are detected in less than 1% of
multiple myeloma cases (116). Still, the MATCH basket trial is
looking to enroll patients with both solid and liquid malignancies,
including multiple myeloma, harboringNTRK1,NTRK2, orNTRK3
gene fusions into the larotrectinib subprotocol (NCT02465060).

MCL1 Inhibition
Mcl-1 is an antiapoptotic protein known to play an essential role in
myeloma cell survival (117, 118). MCL-1 overexpression confers
resistance tochemotherapy,withratesofoverexpression increasingat
relapse (119, 120). TheMCL-1 gene is found on chromosome 1q21,
along with the gene for the IL-6 receptor, and gains or amplifications
of 1q21 seen in approximately 40% of multiple myeloma cases are
associated with significantly shorter survival (121). Preclinical data
has also demonstrated that myeloma cell lines harboring 1q21
amplifications are particularly sensitive to Mcl-1 inhibition (122).
As MCL-1 upregulation is a significant mechanism of venetoclax
resistance,whether co-inhibitionofMcl-1 andBcl-2 candemonstrate
clinical synergy is also of interest (66, 123).

Several Mcl-1 inhibitors are being tested in multiple myeloma in
various preclinical and early clinical stages. One agent, AMG 176,
induced apoptosis in hematologic malignancy cell lines and
demonstrating synergy with carfilzomib and dexamethasone
(124). A subsequent first-in-human phase 1 trial of AMG 176 in
RRMM is ongoing and has shown preliminary tolerability (125).
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Common treatment-emergent adverse events were cytopenias,
nausea, and vomiting. Of note, the combination of AMG 176 and
venetoclax showed preclinical synergy in AML, but a dose-finding
clinical trial of the combination in AML and lymphoma was
suspended over safety concerns (126). AZD5991 also showed
potent preclinical efficacy in multiple myeloma and AML, and a
phase 1 dose-escalation study of AZD5991 with or without
venetoclax is underway in relapse/refractory hematologic
malignancies (127).

MDM2 Inhibition
The enzyme mouse double minute 2 (MDM2) controls the
ubiquitination of the tumor suppressor p53 and promotes its
proteasomal degradation (128, 129). The expression of p53 can be
decreased in a number of ways, including MDM2 overexpression,
deletion of its chromosome, 17p, and inactivating p53 mutations
(seen in ~8% of newly-diagnosed patients) to promote proliferation
of myeloma cells (130–132). In multiple myeloma cell lines, the
MDM2 inhibitor nutlin increased p53 levels and promoted
apoptosis (133). Nutlin also showed preclinical synergy with
bortezomib with as both increase p53 levels, but was only effective
in myeloma with wild types p53 (134). As such, prolonged
treatment with MDM2 inhibitors can select for a resistance line
of p53 mutated cells (135, 136). In cases of p53 mutated myeloma,
exclusively seen in del(17p) patients, MDM2 inhibition may still
have some effect, though at higher drug concentrations (137, 138).

Deletion of 17p presents in about 10% of newly diagnosed
multiple myeloma cases and within these patients approximately
37% have a p53 mutation, whereas patients without the deletion
generally have wild-type p53 (138). Given the importance of
wild-type p53 for the MDM2 mechanism of action, it is not
surprising that the MDM2 inhibitor AMG 232, now called KRT-
232, was tested in p53 wild-type multiple myeloma and solid
tumors and specifically excluded del(17p) multiple myeloma
(139). This phase 1 dose finding study demonstrated safety of
the agent and found 240mg every 3 weeks to be the highest
tolerated dose, limited primarily by cytopenias, though no
responses were seen. An ongoing phase 1 study is now testing
the safety of KRT-232 in combination with carfilzomib,
lenalidomide, and dexamethasone in RRMM (NCT03031730).

Conversely, a phase I/II study of idasanutlin, another MDM2
inhibitor, in combination ixazomib and dexamethasone
specifically in RRMM patients harboring del(17p) or
monosomy 17 is also underway (NCT02633059).
DISCUSSION

Multiple myeloma treatment continues to evolve rapidly with
numerous groundbreaking treatments. In addition to the
incorporation of anti-CD38 antibodies into standard of care, CAR-T
cell therapy and bispecific T-cell engaging antibodies have emerged as
particularly promising treatments poised to define a new wave of
myeloma-directed therapeutics. Unfortunately, as of yet, there are no
signs these therapies are curative silver bullets; even patients who
respond well to the newest immunotherapy approaches ultimately
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relapse. However, across many tumor types precision medicine
approaches are often highly successful both as monotherapy and
when targeted agents are combined with therapeutics with
broad activity.

As our understanding of multiple myeloma becomes ever
more nuanced, precision medicine allows us to provide therapy
which reflects the heterogeneity we have long recognized in
multiple myeloma with treatments increasingly tailored to each
patient’s disease biology. We have transitioned from the original
approach of classical chemotherapeutics to novel agents and now
to immune-based approaches. We know that a key pathway to
maximizing outcomes is to obtain deep responses through
eradication of as many sub-clones as possible. As genetic
drivers of myeloma are oftentimes sub-clonal, combining
immune-based therapies to control bulk disease along with
targeted agents to eliminate residual aberrantly driven cancer
could be a conceivable pathway to cure!

The ideal precision therapies of the future should be highly
efficacious in a subset of myeloma patients, have a readily
measurable biomarker predictive of response, and target a
mutation or other biomarker with a reasonably high incidence so
as to make a significant clinical impact. Venetoclax has seen
consistent success in patients with the commonly seen t(11;14) and
could represent the first of conceivably many future precision
medicine treatments. Agents targeting the RAS/MAPK pathway
are well-positioned for clinical investigation given the frequency of
NRAS andKRASmutations inmultiplemyeloma and early examples
of single agent and combination activity. The results of the respective
RAS/MAPK-targeting arms of the MyDRUG and CAPTUR studies
are eagerly awaited. Conversely, targeting biomarkers like mutant
IDH and NTRK fusions, each seen in <1% of myeloma cases, are
unlikely to affect the vast majority of patients even if proven useful.
However, with almost 200,000 patients in the U.S. living with
multiple myeloma in 2022, even low frequency regimens may
provide optimal treatment for a meaningful number of patients.

At this time, many additional drugs that hold precision medicine
potential are still between preclinical and first-in-human phases and
the field as a whole is in its infancy. The future of precisionmedicine
in multiple myeloma does face multiple challenges, foremost among
them being myeloma’s extensive intratumoral heterogeneity. The
development of this heterogeneity occurs early in myelomagenesis,
even preceding clinical symptoms. In addition, this complex genetic
makeup is known to change frequently over the disease course (140,
141). The success of future precision approaches will likely depend
upon the use of appropriately selected combinations of both
targeted and non-targeted agents, the continued use of molecular
profiling to identify biomarkers, and an improved understanding of
the pathways driving this disease.
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