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Abstract: The bioactive lipid lysophosphatidylcholine (LPC), a major phospholipid component of
oxidized low-density lipoprotein (Ox-LDL), originates from the cleavage of phosphatidylcholine by
phospholipase A2 (PLA2) and is catabolized to other substances by different enzymatic pathways.
LPC exerts pleiotropic effects mediated by its receptors, G protein-coupled signaling receptors, Toll-
like receptors, and ion channels to activate several second messengers. Lysophosphatidylcholine
(LPC) is increasingly considered a key marker/factor positively in pathological states, especially
inflammation and atherosclerosis development. Current studies have indicated that the injury of
nervous tissues promotes oxidative stress and lipid peroxidation, as well as excessive accumulation
of LPC, enhancing the membrane hyperexcitability to induce chronic pain, which may be recognized
as one of the hallmarks of chronic pain. However, findings from lipidomic studies of LPC have
been lacking in the context of chronic pain. In this review, we focus in some detail on LPC sources,
biochemical pathways, and the signal-transduction system. Moreover, we outline the detection meth-
ods of LPC for accurate analysis of each individual LPC species and reveal the pathophysiological
implication of LPC in chronic pain, which makes it an interesting target for biomarkers and the
development of medicine regarding chronic pain.

Keywords: chronic pain; lysophosphatidylcholine; metabolism; lipidomics; biomarkers; G protein-
coupled receptors; Toll-like receptors; ion channels

1. Introduction

Chronic pain is a common, complex, and distressing problem [1], which is character-
ized by persistent pain even after the initial irritating injury/event has subsided [2], and
it has significant societal and personal implications [1]. It affects more than 20% of adults
in developed nations. In the U.S. alone, the direct and indirect costs exceed $600 billion
annually. Additionally, the experience of chronic pain begins early; as many as 38% of
children and adolescents in the community sample have reported chronic pain [3]. It is
usually caused by injury or disease; however, it is a separate condition in its own right,
not just a symptom accompanying other diseases [1]. Poor management of severe chronic
pain, possibly due to an imbalance between analgesics and tolerability, is a burden for
patients, with side effects that often lead to discontinuation of treatment [4]. In recent
years, interventions for chronic pain are still not completely satisfactory, probably due
to the variety of persistent pain conditions with different pathological processes, such
as musculoskeletal [5], neuropathic [6], visceral [7], and cancer-related [8] pain, whose
pathophysiological mechanisms have not been completely explored.

One mechanism underlying the development and maintenance of chronic pain is ox-
idative stress [9]. Reactive oxygen species (ROS) have been identified as key factors in nearly
all human diseases, including chronic and acute diseases such as atherosclerosis, chronic
pain, and acute lung/liver/kidney injuries [10]. The initiation of lipid peroxidation begins
with the interaction between polyunsaturated fatty acids and reactive oxygen species [10].
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Increased ROS and especially lipid peroxidation are implicated in the pathogenesis of
several chronic pain diseases. In the fibromyalgia model, animals were accompanied by
increased oxidative stress and lipid peroxidation [11]. Oxidative stress damage was shown
to be one of the important factors that induced neuropathic pain [12]. Rats with osteoarthri-
tis had a high level of malonaldehyde (MDA) (lipid peroxidation marker) production [13].
Reactive oxygen species and lipid peroxidation inhibitors reduced mechanical sensitivity
in chronic pain models [14]. Compounds such as Apocynin, an NADPH oxidase inhibitor,
limited the production of ROS precursor superoxide to reduce ROS, which inhibited in-
flammation in animal models of nerve tissue damage. The efficacy of 4-oxo-tempo may be
related to the effects of the direct scavenging of oxidative radicals in animals with a chronic
neuropathic pain model [15]. Antioxidants (N-acetylcysteine and Tempol) significantly
reduced oxidative stress in the serum (assessed by MDA and H2O2 levels) of mice with
stress-related chronic pain disorders [16]. Importantly, lysophosphatidylcholine (LPC) is an
endogenous product derived from peroxidation during oxidative stress [17]. In response
to lipid peroxidation from inflammation and tissue injury, phospholipids undergo lipid
peroxidation to LPC [18]. Exposure to endogenous and exogenous LPC has emerged as
a key contributor to cellular and tissue biology, such as inflammatory cascades [19] in
chronic disease states—for example, diabetes, cancer, cardiovascular diseases, or neurode-
generation [20–23]. The development and maintenance of human chronic pain diseases
have possibly established a causal link with specific LPC [24]. Although the clinical and
pathological manifestations of chronic pain are broad, inflammation covers all stages of the
disease, and various bioactive lipids have been implicated in such inflammation in various
cells, highlighting their involvement in the pain transduction process [25]. Following
inflammation, the excitatory neurotransmitter substance P and glutamate are released from
primary afferent neurons, promoting the synthesis of lysophosphatidylcholine (LPC) [26].
In addition, injury to nervous tissue leads to an increase in reactive oxygen species (ROS)
and promotes the synthesis of LPC, which enhances the membrane hyperexcitability to
induce chronic pain. Antioxidants also effectively prevent the synthesis of lipid LPC and
alleviate the symptoms of chronic hyperalgesia in animal models [16]. The purpose of this
article is to summarize what is known about LPC, including its function and related signal
regulation pathways in chronic pain diseases.

2. Lysophosphatidylcholine (LPC)
2.1. The Metabolism and Species of LPC

LPC, an important lipid molecule in mammalian tissues, belongs to a group of bioac-
tive lysophospholipids [27]. Molecular species of LPC are identified by the lengths and sat-
uration of their acyl chains. LPCs are produced from cell-membrane-derived phosphatidyl-
choline (PC) as a result of hydrolysis by phospholipases [28,29] (Figure 1). Two phospholi-
pases have been studied, namely secretory PLA2 (sPLA2) and lipoprotein-associated PLA2
(Lp-PLA2) [30]. sPLA2 is Ca2+-dependent and hydrolyzes the sn-2 acyl group of the glyc-
erophospholipids in lipoproteins and cell membranes to yield LPC and free fatty acids. In
contrast to sPLA2, Lp-PLA2, also known as platelet-activating factor (PAF)-acetylhydrolase
(PAF-AH) is Ca2+-independent, and it is specifically for short acyl groups at the sn-2 posi-
tion of the phospholipid substrate. Lp-PLA2 can also hydrolyze oxidized phospholipids to
generate LPC and oxidized fatty acids. LPC is usually present in very small concentrations
because of LPC catabolism through different pathways mediated by separate enzymes:
(1) after synthesized, LPC is secreted outside the cell and hydrolyzed to lysophosphatidic
acid (LPA) and choline by autotaxin (ATX) [31]; (2) LPC is converted back to PCs by the
enzyme lysophosphatidylcholine acyltransferase (LPCAT) in the presence of Acyl-CoA [32];
(3) LPC molecules catalyzed by cytosolic lysophospholipase-transacylase (LPTA) to form
PC and glycerophosphorylcholine (GPC) [33] (Figure 1). The accumulation of LPC reflects
increased PLA2-catalyzed PC hydrolysis or decreased LPC catabolism or a combination of
both processes [34].
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Figure 1. The enzymatic pathways of lysophosphatidylcholine (LPC) synthesis and catabolism. The
production of LPC is the result of the fragmentation of the sn-2 residues of phosphatidylcholine (PC)
hydrolyzed by PLA2. Three catabolism pathways of LPC are listed. LPC catabolism occurs through a
disproportionation reaction involving two LPC molecules catalyzed by cytosolic lysophospholipase-
transacylase (LPTA) to form PC and glycerophosphorylcholine (GPC). A hydrolytic pathway is
catalyzed by autotaxin (ATX) to yield lysophosphatidic acid (LPA) and choline, and a reacylation
pathway to form PC is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT).

In recent years, research has begun to focus on the accurate analysis of each individual
LPC species. Various LPC species have been identified by specific detection methods accord-
ing to carbon chain length and number of double bonds [35], including LPC(14:0), LPC(15:0),
LPC(16:0), LPC(16:1), LPC(17:0), LPC(18:0), LPC(18:1), LPC(18:2), LPC(18:3), LPC(20:0),
LPC(20:2), LPC(20:3), LPC(20:4), LPC (22:6), LPC(26:0), LPC(28:1), and so on [36–40]. As a
pro-inflammatory lipid, abnormal levels of LPC in body fluids such as blood, urine, synovial
fluid, cerebrospinal fluid, and tissues are closely related to pathological states.

2.2. Detection Methods of LPC

The detection of LPC relies on the rise of lipidomics [16,41]. Lipidomics is a branch of
metabolomics, and it is generally believed that lipidomics is a discipline that focuses on
the qualitative and quantitative screening of metabolites in an organism and their roles in
protein expression and gene regulation [42]. Lipidomic analyses have emerged based on
existing omics disciplines and have developed rapidly in recent years [43] (Figure 2).

Lipidomics can assay metabolite compositions through various targeted and non-
targeted techniques [44,45]. Prevailing technological advances have made accurate profiling
of LPC in biological samples, such as nuclear magnetic resonance (NMR) spectroscopy [46–49],
liquid chromatography coupled with mass spectrometry (LC-MS) [50–52], gas chromatogra-
phy coupled to mass spectrometry (GC-MS) [51,53], high- or ultra-high-performance liquid
chromatography coupled to UV or fluorescent detection (HPLC/UPLC) [54,55], and matrix-
assisted laser desorption/ionization mass spectrometry (MALDI-MS) [56]. Each analytical
platform has its own advantages and disadvantages (Table 1).
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2.2.1. NMR Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy, a technique for detecting the chem-
ical environment of an atomic nucleus by absorbing radio frequency electromagnetic
radiation [57], is an unbiased, nondestructive, and easily quantifiable form of sample pro-
cessing, requiring little or no chromatographic separation and allowing for the routine
identification of novel compounds. In addition, NMR is highly automatable, has extremely
high reproducibility, and is feasible for high throughput [58]. NMR covers a wide range of
applications, not limited to the analysis of biological fluids or tissue extracts. The nuclei best
suited for NMR spectroscopy in biological systems include 1H, 19F, 31P, 13C, and 15N [59].
(1H) NMR spectroscopy (1H NMR) is commonly used in the profiling of LPC [60]. However,
NMR spectroscopy has lower sensitivity and is suitable for the quantification of metabolites
present in relatively high concentrations [57].

2.2.2. LC-MS

Liquid chromatography coupled with mass spectrometry (LC-MS) is a combination
of liquid chromatography and mass spectrometry [61]. LC-MS combines the separation
capabilities of LC with the mass analysis power of MS [62]. The LC-MS detection method has
the advantages of excellent resolution and sensitivity, small sample volumes, and relatively
low costs, making it the most powerful analytical tool for metabolites today [63–67].

2.2.3. GC-MS

Gas chromatography coupled with mass spectrometry (GC-MS) is also a commonly
used platform for metabolomic research [68]. GC-MS was the first instrument used for
metabolite profiling of human blood and urine by Horning in 1971 [69]. Apart from the high
sensitivity and throughput [70,71], due to its longer use in clinical chemistry practice, GC-
MS also possesses a higher chromatographic resolution and larger databases of identified
peaks compared to the LC-MS. To some extent, GC–MS avoids the common problems of
LC–MS, such as matrix effects and ion suppression by co-eluting compounds [72,73].
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2.2.4. HPLC/UPLC

The history of high-performance liquid chromatography (HPLC) can be traced back
to the early 20th century [74]. Over the years, HPLC has made great progress in terms
of speed, convenience, high sensitivity, choice of column stationary phase, suitability for
various sample matrices, and the combination of chromatographic methods with spectral
detectors [75,76]. It suffers from limitations such as low throughput, lack of high efficiency,
inability to observe non-electrochemically active species, and difficulties associated with
metabolite identification [77,78]. Ultra-performance liquid chromatography (UPLC) makes
full use of chromatographic principles for separation, using short columns packed with
smaller particles (sub-2 lm). Reduced analysis time, increased peak efficiency (peak width),
better resolution, and reduced solvent usage are observed compared to conventional
HPLC [79].

Table 1. Advantages and disadvantages of metabolomics techniques.

Method Advantages Disadvantages References

NMR spectroscopy

Great range of detectable
molecular species;

Simple sample preparation;
Excellent reproducibility;

High automation

Low sensitivity;
Quantification of relatively high concentrations of

metabolites/extensive
[57,58]

LC-MS

High sensitivity;
Small sample volumes;

Relatively low costs;
Superior resolution

Matrix effects and ion suppression by co-eluting compounds;
Limitation of detectable metabolites [63–67]

GC-MS

High chromatographic resolution;
Large databases of identified peaks;

High sensitive;
High throughput

A large number of unidentified peaks;
Require additional analytical steps;

Separate and identify low molecular weight
[70–73]

HPLC Robustness; Convenience;
Good selectivity; High sensitivity

Low throughput;
Inability to observe non-electrochemically active species;

Difficulties of metabolite identification;
Lack of high efficiency

[75–78]

UPLC

Short analysis time;
Improved peak efficiency;

Better resolution;
Decreased use of solvents

Less time life of columns [79]

MALDI-MS

Suitability for solid samples;
High sensitivity;

Easy sample handling;
Salt tolerance; High speed

Limitation of detectable metabolites [43]

2.2.5. MALDI Mass Spectrometry

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a
powerful method for the simultaneous detection and identification of many molecules
directly from biological samples of animals or humans. MALDI-MS can detect a variety of
biomolecules, from small to large. Due to the broad applicability of this method, MALDI-
MS is widely used in lipidomics or metabolomics studies [80]. The advantages of MALDI
mass spectrometry include high sensitivity, easy sample handling, salt tolerance, rapid
speed, and suitability for solid samples. However, it is selective for the detected lipid
metabolites [43].

3. Lysophosphatidylcholine and Chronic Pain Diseases

From numerous reports, it has been clarified that the level and metabolism process
of LPC in the body fluid or tissues of animals or humans are elevated in various chronic
pain states, such as chronic inflammatory pain [81], chronic joint pain [82,83] neuropathic
pain [29,39,84], fibromyalgia [16], and multisite musculoskeletal pain [38] (Table 2). In this
section, we summarize these LPC-induced responses and cellular mechanisms in detail.
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3.1. Inflammatory Pain

Inflammatory pain is the most important clinical symptom of inflammatory diseases.
The skin and joints are systems that are particularly susceptible to the formation of in-
flammatory pain. The common pathogenesis is that pro-inflammatory mediators such
as chemokines, cytokines, growth factors, neuropeptides, and proteases are released at
sites of inflammation and subsequently sensitize peripheral pain-sensing neurons [85].
In addition to the above molecules, lipids can also act as inflammatory modulators to
induce inflammatory pain. Katelyn E Sadler et al. used LC-MS techniques to confirm that
LPC was markedly elevated in mice with CFA-induced inflammatory pain in the skin;
the content of LPC in the paw tissue of CFA-injected mice reached 130 µM, twice that of
the vehicle-treated group. However, circulating LPC concentrations were unchanged in
CFA-injected animals, suggesting that the excess lipid was derived from cells localized
to the injured tissue. Furthermore, wild-type mice developed mechanical allodynia after
dural injection of LPC [81], which reflected the correlation between LPC and CFA-induced
inflammatory pain.

3.2. Chronic Joint Pain

Chronic joint pain is the main reason for patients to seek medical treatment for chronic
pain; it seriously affects the quality of life of patients, resulting in disability and psychologi-
cal distress [82]. Rheumatoid arthritis (RA) and osteoarthritis (OA) are associated with a
risk of developing persistent chronic joint pain [83]. Florian Jacquot et al. demonstrated that
LPC correlated with pain outcomes in a cohort of chronic joint pain patients. The synovial
fluid levels of LPC in the 50 patients (32 women and 18 men) were evidently elevated,
especially the LPC (16:0) species, compared with control subjects via high-definition mass
spectrometer (HDMS). Intra-articular injection of LPC (16:0) resulted in persistent pain
and anxiety-like behavior in mice, suggesting that LPC (16:0) could be considered a trigger
for chronic joint pain in male and female mice [82]. Moreover, it has been demonstrated
that mice injected with B02/B09 monoclonal antibodies (mAbs) isolated from B cells of
patients with RA developed a long-term mechanical hypersensitivity accompanied by bone
erosion and elevated LPC (16:0). In addition, elevated levels of LPC and sPLA2, a family of
enzymes required for LPC synthesis, have been verified in the plasma and synovial fluid of
patients with RA and OA, as well as those with joint pain. Consequently, it was possible
that LPC was regarded as a biological target for predicting chronic joint pain in rodents or
humans, especially LPC (16:0) (Figure 3) [83].

3.3. Fibromyalgia and Multisite Musculoskeletal Pain (MSMP)

Fibromyalgia (FM) is characterized by chronic widespread musculoskeletal pain
and associated fatigue, memory problems, and sleep disturbances [86,87]. Most of the
lipidomics studies identified by our search were on this type of chronic pain. Chih-Hsien
Hung et al. utilized untargeted lipidomic analysis and QqQ MS, respectively, to identify
the serum and plasma of C57BL/6J mice and 31 fibromyalgia patients and 30 healthy
controls at different time points. The identified lipids were mainly LPCs. LPCs (16:0) in
the fibromyalgia mouse model were upregulated by 1.37-fold of the basal status in mice.
It has also been proposed that central sensitization occurs after repeated intramuscular
injections of LPC (16:0) in mice, which resulted in the activation of c-fos and pERK in spinal
dorsal horn neurons [16]. Increased LPC (16:0) expression in FM patients also correlated
with pain symptoms [16]. In addition to LPC (16:0), LPC (18:1) was also increased in
the fibromyalgia mouse model. This may partly explain the increasing prevalence of fi-
bromyalgia in the female population [88]. Wei-Hsiang Hsu et al. revealed several potential
biomarkers of FM mice, some not previously described, such as LPC (20:3) in serum via
1HNMR-and LC-MS-based metabolomics profiling [50]. In addition, LPC (16:0) in the
serum was also upregulated, which was the same result as in the study of Chih-Hsien
Hung. Pierluigi Caboni et al. showed, using a metabolomics approach combining liquid
chromatography-quadrupole-time of flight/mass spectrometry (LC-Q-TOF/MS) with mul-
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tivariate statistical analysis, that lipid compound LPCs were elevated in the plasma of
22 females affected by FM and 21 controls [89]. In addition, in a large targeted metabolic
profiling study, the metabolites were measured in the plasma of 122 non-multisite mus-
culoskeletal pain (MSMP) and 83 MSMP patients. This study demonstrated that two
lysophosphatidylcholines, LPC (26:0) and LPC (28:1), were significantly upregulated and
positively associated with MSMP [38].
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Table 2. The Application of LPC in Chronic pain.

Year Author Disease Samples Method Observations References

2021 Katelyn E Sadler et al.

CFA-induced
inflammatory pain;

skin incision-induced
pain;

chemotherapy-induced
peripheral neuro-

pathic pain

Mice hindpaw
skin LC-MS

CFA induced
inflammatory pain, skin

incision, and
chemotherapy-induced

peripheral neuropathy, all
of which were

characterized by elevated
concentrations of LPC.

[81]

2022 Florian Jacquot et al. Chronic joint pain
Synovial fluids from

50 patients (32
women and 18 men)

HDMS

The synovial fluid levels
of LPC were significantly
elevated, especially the

LPC (16:0) species,
compared with

postmortem control
subjects.

[82]

2021 Alexandra Jurczak et al. B02/B09-induced pain
Bone marrow

extracts of
B02/B09-treated

mice
HDMS

LPC (16:0) was the most
abundant and

significantly increased in
the B02/B09 group

compared with control.

[83]

2020 Chih-Hsien Hung et al. Fibromyalgia

Serum from RISS
mice; plasma from 31
fibromyalgia patients

and 30 healthy
controls

Untargeted
lipidomic

analysis/QqQ MS

LPC (16:0) in
fibromyalgia mouse and

patients were
upregulated.

[16]

2019 Wei-Hsiang Hsu et al. Fibromyalgia Mice serum
1H NMR and

LC-MS

Impactful metabolites in
the FM model including
LPC (16:0), LPC (20:3) in

serum.

[50]

2014 Pierluigi Caboni et al. Fibromyalgia
Plasma from 22

females FM patients
and 21 controls

LC-MS

Plasma of FM patients
identified many lipid
compounds, mainly

including LPC.

[89]

2021 Ming Liu et al.
Multisite

musculoskeletal pain
(MSMP)

Plasma of 122
non-MSMP and 83

MSMP patients

Biocrates
AbsoluteIDQ

p180 kit

LPC (26:0) and LPC (28:1)
are associated with

MSMP.
[38]

2021 Baasanjav Uranbileg et al. Cauda equina
compression

CSF and plasma
from CEC rats; CSF
from lumbar spinal

canal stenosis
patients and controls

LC-MS/MS;
UHPLC-MS/MS

Lots of LPC species were
significantly increased,
especially LPC (16:0),

LPC (18:2), LPC (20:4).

[39]

2020 Vittoria Rimola et al. Oxaliplatin-induced
Peripheral Pain

Mice sciatic nerve,
DRG, dorsal spinal

cord
LC-MS/MS

LPC (18:1) and LPC (16:0)
were significantly

increased after oxaliplatin
treatment.

[29]

2011 Jun Nagai et al. Partial sciatic nerve
injury (SCNI)

Mice spinal cord and
dorsal root NALDI-MS

The levels of LPC (16:0),
LPC (18:0) and LPC (18:1)

were increased after
SCNI.

[84]

HDMS: High-Definition mass spectrometer: LC-MS: Liquid chromatography mass spectrometry; 1H NMR:
1H-nuclear magnetic resonance; NALDI-MS: Matrix-assisted laser desorption/ionization mass spectrometry.

3.4. Neuropathic Pain

Neuropathic pain caused by a lesion or disease of the somatosensory nervous system
is a common chronic pain condition and brings a lot of problems to humans [90]. The
efficacy of current therapeutic drugs is limited, and it is essential to develop novel targets
that permanently reduce or eliminate neuropathic pain [91]. In recent years, studies have
demonstrated that metabolites are involved in the occurrence and development of neuro-
pathic pain [92], and lipid LPCs are screened out. This is due to the fact that, following
a nerve injury, the excitatory neurotransmitters substance P and glutamate are released
from primary afferent neurons, or the increase in reactive oxygen species (ROS) leads to the
upregulated synthesis of LPC [26]. Currently, pain induced by LPC injected into the median
nerve has been regarded as a neuropathic pain model in many articles owing to pathological
mechanisms of LPC-induced demyelination of the nervous system, which is inconsistent
with the mechanism of LPC-mediated chronic joint pain [93–95]. Local LPC application
results in the focal demyelination of afferent A fibers without axonal damage or loss of neu-
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rons in the dorsal root ganglia (DRG) [96]. In the central nervous system (CNS), LPCs also
trigger a rapid demyelination without damage to adjacent cells and axons. This was thought
to be a key role of immune cells in LPC-induced demyelination [97]. Peripheral macrophage
and central microglia, as resident macrophages, contribute to maintaining homeostasis in
the nervous system. Macrophages or microglia are activated in response to noxious stimuli
such as nerve injury. Activated macrophages or microglia result in the production and re-
lease of pro-inflammatory mediators, which lead to the development of chronic pain [98,99].
LPC induced macrophage and microglia recruitment and activation in the mouse spinal
cord [100–102]. In the LPC-induced model of demyelination, macrophages and microglia
were detected at 48 h, when clear evidence of demyelination was observed [101,103]. Inter-
estingly, the application of LPCs in the early presented a rapid but brief influx of T cells,
and neutrophils, T cells, and neutrophils were seen in the spinal cord for 6–12 h [103]. This
is because LPC caused rapid and extensive disruption of the blood–brain barrier, which
induced early and transient T cell and neutrophil responses in the spinal cord. These cells
likely promote a rapid influx of monocytes, followed by the activation of macrophages from
monocytes and microglia to mediate demyelination [101,103]. In addition, LPC-induced
demyelination induces mechanical allodynia and thermal hyperalgesia, which persists for
at least 7 days (Table 3) [104,105]. LPC injection increased the levels of pain-related proteins,
including neuropeptide Y (NPY), Nav 1.3, Nav 1.8, chemokines, and their receptors, in
the DRG or spinal cord [93]. In the mice model of chemotherapy-induced peripheral pain,
LPC (16:0) and LPC (18:1) were significantly increased in the sciatic nerve and DRG tissue,
as revealed by untargeted and targeted lipidomics. Importantly, pain-like performance
induced by LPC (16:0) and (18:1) was dependent on Ca2+ transients in primary sensory
neurons [29]. Jun Nagai et al. developed a quantitative mass spectrometry assay to simul-
taneously analyze several species of LPCs in the SCNI. They found that the levels of LPC
(16:0), LPC (18:0), and LPC (18:1) in the spinal cord and DRG were maximally increased [84].
Cauda equina compression (CEC) is a major cause of neurogenic claudication and pro-
gresses to neuropathic pain [39]. A study utilizing LC-MS/MS and UHPLC-MS/MS in rats
and patients demonstrated that many LPC species were significantly elevated in the CSF
and plasma of CEC model rat or CSF of patients with lumbar spinal canal stenosis (LSS),
especially LPC (16:0), LPC (18:2), and LPC (20:4) (Figure 3). However, LPC levels in the
spinal cord tissue samples of rats did not change dramatically [39].

3.5. The Enzymatic Pathways of Lysophosphatidylcholine (LPC) and Chronic Pain

In addition to the accumulation of LPC causing pain symptoms, molecules in the
enzymatic pathways of LPC synthesis and catabolism, such as lysophosphatidic acid (LPA),
autotaxin (ATX), and lysophosphatidylcholine acyltransferase (LPCAT), also play an im-
portant role in chronic pain. Accumulating evidence has revealed that LPC regulates the
participation of platelet-activating factor (PAF)/PAF receptor (PAFr) in pain signal trans-
duction [106]. LPC is hydrolyzed by autotaxin into LPA and acts through LPA receptors
present on nociceptors. LPA, a potent bioactive lipid mediator, induces neuropathic pain
as well as demyelination and pain-related protein expression changes via LPA receptor
signaling [104]. Direct intrathecal administration of LPA was able to induce chronic pain
responses in rodents [107,108]. LPA altered the density and activity of Ca11, K1, and TRP
ion channels in microglia and neurons, causing allodynia and hyperalgesia, which played a
central role in the initiation and maintenance of neuropathic pain [38]. Autotaxin mediated
LPC to produce LPA, a bioactive lipid mediator that signals the activation of six GPCRs
(LPA receptors 1-6). Autotaxin levels in synovial fluid and plasma correlated with disease
severity in patients with knee OA [108]. Intrathecal LPC-induced mechanical allodynia and
thermal hyperalgesia were significantly reduced in autotaxin heterozygous animals, indi-
cating reduced conversion of LPC to LPA [104]. Moreover, ATX inhibition could ameliorate
neuropathic pain symptoms by using ATX inhibitor (ONO-8430506) [109]. In addition, a
recent study demonstrated that nerve injuries induced the production of LPA by convert-
ing LPC to LPA under the action of ATX, which was observed only in the spinal dorsal
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horn, but not in the spinal nerve, sciatic nerve, or DRG, for several hours. Furthermore,
injury-induced synthesis of LPC and subsequent conversion to LPA were both involved
in the development of neuropathic pain. However, injury-induced neuropathic pain and
LPA production were attenuated to approximately 50% in atx+/− mice and abolished in
Lpar1−/− mice, which was also observed in LPC-induced demyelination [110]. Therefore,
the conversion of LPC to LPA may also be an important target for the treatment of chronic
pain [111]. Of course, not all LPC will eventually be converted into LPA. The indications of
the increased expression of the LPC to LPA-converting enzyme autotaxin or LPA receptors
were not found in several chronic pain models [83]. This is because pathological pain is a
complex state that may be related to both the model and the time of onset. Apart from the
LPA, cyclic phosphatidic acid (cPA), produced from LPC using ATX, has a structure similar
to that of LPA [112,113]. Unlike the biological function of LPA, cPA has the potential for
use in the treatment of acute and chronic pain diseases because of its biological properties
of anti-inflammatory and neuroprotective activities [112]. The cPA and its stable analog
2-carba-cPA (2ccPA) inhibited chronic and acute inflammation-induced C-fiber stimulation.
The administration of 2ccPA significantly attenuated mechanical allodynia and thermal
hyperalgesia following the partial ligation of the sciatic nerve, whether pretreatment or
repeated post-treatments [114]. Intra-articular injection of 2ccPA also reduced the pain
response to OA and articular swelling [115]. LPC is hydrolyzed by autotaxin into LPA and
cPA, but the effects are completely opposite, suggesting that it may be related to the period
and condition of synthesis. It has been suggested that LPC could be converted into cPA by
HCl in a dose-dependent manner [116]. In addition, LPCAT is also promising as a novel
therapeutic target for newly classified analgesic drugs. Hideo Shindou et al. confirmed that
pain-like behaviors induced by partial sciatic nerve ligation (PSNL) were largely relieved
by the deficiency of LPCAT [117].

Table 3. The application of LPC in the construction of neuropathic pain models.

Year Author Administration Species Doses Observations References

2020 Chun-Ta Huang et al. Intraneural injection Sprague Dawley rats 4% LPC 2 µL

The rats developed
mechanical allodynia and
thermal hyperalgesia on

day 1 after LPC treatment.

[94]

2021 Yong Chen et al. Intrathecal injection C57BL/6J mice 15 µg LPC

Intrathecal injection of LPC
induced mechanical pain

via activation of
TRPV4-expressing DRG

sensory neurons.

[105]

2013 Hsin-Ying Wang et al. Intraneural injection Male Wistar rats 4% LPC 2 µL
LPC treatment caused

mechanic allodynia and
thermal hyperalgesia.

[93]

2008 M Inoue et al. Intrathecal injection Male mutant mice 15 µg/50 µg
LPC

A single injection of LPC at
15 µg showed significantly

but slightly weaker
mechanical allodynia on

days 2–7. However, a
higher dose of LPC (50 µg)

caused abnormal
behaviors.

[104]

2018 Hozo Matsuoka et al. Intraneural injection Wistar rats 2% LPC 5 µL

Paw withdrawal thresholds
were significantly higher in
the LPC group compared
with the Non-LPC group.

[95]

4. LPC-Related Receptor and Chronic Pain

As mentioned above, the biological effects of LPC have been studied in mice and
humans and are important in chronic pain. LPC acts as the ligand and can activate G
protein-coupled receptors (GPCRs), Toll-like receptors (TLRs), and several ion channels,
implicating the possible molecular mechanisms in the observed effects of LPC (Figure 4).
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4.1. LPC and G Protein Coupled Receptors

LPC is considered the ligand for GPCR, G2A (GPR132), and GPR4, with a signif-
icantly higher affinity for G2A than that for GPR4 [118,119]. LPC plays a key role in
the development of chronic inflammatory diseases through the role of the G2A receptor.
T cells overexpressing G2A exhibit chemotaxis to LPC; siRNA silencing in mouse T cell
hybridomas and retroviral overexpression of G2A demonstrated the requirement for G2A
in LPC-induced T cell migration [120]; G2A was also required for LPC-induced chemotaxis
of macrophages [121], both demonstrating the interaction between LPC and the G2A effect.
LPC led to an increase in intracellular calcium levels by acting on receptor G2A, resulting
in increased neuronal excitability and activation of ERK mitogen-activated protein kinase
(Figure 4). The signaling lipid receptor G2A and ERK mitogen-activated protein kinase
were upregulated in a spared nerve injury (SNI)-induced neuropathic pain model [122,123].
There are few studies focusing on both LPC and GPR4, and the involvement of this mech-
anism in chronic pain has not been confirmed. Previous research has shown that LPC
is associated with NLRP3 inflammasome and the release of IL-1β by GPR4 [124]. In the
neurodegeneration and demyelination states, LPC activates NLRP3 inflammasomes in
astrocytes and microglia [23], and NLRP3 inflammasome is involved in inflammatory
pain [125] (Figure 4). In fact, the direct or indirect effect of LPC and G2A or GPR4 is
controversial. In addition, the LPC derivative also targeted four other G protein-coupled
receptors, namely GPR40, GPR55, GPR119, and GPR120 [126,127]. Studies have indicated
that the stimulatory effect of isoprenoid derivatives of LPC on Ca2+ signaling in MIN6 cells
was GPR40-, GPR55-, GPR119-, and GPR120-dependent [127]. GPR40/GPR55 has been
implicated in inflammatory pain and neuropathic pain [128,129], but studies on LPC and
these receptors in chronic pain are lacking.

4.2. LPC and Toll-like Receptors

TLRs are an important family of receptors involved in complex intercellular signaling
networks that develop in the context of chronic pain [130,131]. TLRs can induce an innate
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immune response by recognizing various pathogen-associated molecular patterns (PAMPs),
and the receptors that recognize these molecular structures were named as pattern recogni-
tion receptors (PRRs) [132,133]. To date, there are ten known functional TLRs (TLR1-10)
in humans and twelve TLRs (TLR1-9, TLR11-13) in mice. TLR1-2, TLR4-6, and TLR10 are
located on the cell surface, and TLR3, TLR7-9, and TLR11-13 are observed in intracellu-
lar compartments [134]. In addition to innate immunity, TLRs are also expressed in the
periphery and in CNS cells, and are coupled with the activation of various non-neuronal
cells (microglia, schwann cells and astrocytes) and neurons, thus causing the release of
pro-inflammatory cytokines and thereby leading to the generation and maintenance of
chronic pain [135]. TLRs play a key role in OA [136], neuropathic pain [137], chronic pelvic
pain [138], opioid-induced hyperalgesia [139], and cancer pain [140]. TLR2, TLR4, TLR5,
TLR3, TLR7, TLR9, etc., have been reported to contribute to persistent pain [131]. Among
them, TLR2 and TLR4 have been proven to be major Toll-like receptors that to mediate LPC
function. LPC activated pain markers, such as NF-κB, p38 MAPK, and JUN and cytokine
production (IL-6, TNF-α) by combining the TLR2 and TLR4 receptors (Figure 4) [118].
Previous studies have reported that LPC (18:0) and LPC (18:1) were more potent than LPC
(16:0) and LPC (14:0) in promoting cytokine secretion from TLR-primed cells [141].

4.3. LPC and Ion Channels

Multiple ion channels are involved in sensing and transmitting nociceptive information
in the neurons of the peripheral and central nervous system [142]. LPC can also exert its
biological functions by binding to acid-sensing ion channels (ASICs) and transient receptor po-
tential (TRP) ion channels (Figure 4). Acid-sensing ion channels (ASICs) are proton-activated
cation channels that are expressed in a variety of neuronal and non-neuronal tissues, encoding
several subunits (ASIC1, ASIC2, ASIC3, and ASIC4). ASIC3, an important pain transducer,
can be activated by LPC and potentiated by many pro-inflammatory mediators [143,144]. A
recent study showed that certain LPCs, especially LPC (16:0), were able to directly activate
ASIC3 channels to mechanical stimuli, resulting in altered mechanoneuronal responses of pri-
mary afferent neurons [16]. In the fibromyalgia model, LPC-induced chronic hypersensitivity
was obviously inhibited in APETx2 (a selective ASIC3 antagonist)-treated mice. Similarly,
chronic hyperalgesic changes in WT animals were also robustly improved in Asic3-/- mice
after repeated LPC injections [16]. LPC (16:0) drove sufficient peripheral inputs to gener-
ate spinal sensitization process via ASIC3 channels in the mouse model of OA-induced
inflammatory pain [82,83].

In addition, LPCs, such as LPC (18:1), activated the ligand-gated calcium channels’
transient receptor potential V1 and M8 (TRPV1 and TRPM8) in primary sensory neurons
to induce mechanical hypersensitivity in mice, which stimulated chemotherapy-induced
peripheral pain [29]. Lipid mass spectrometry indicated tissue-specific increases in LPC in
pain models, accompanying mechanical allodynia, neuronal mechanical hypersensitivity,
and spontaneous pain, which could be inhibited with transient receptor potential canonical
5 (TRPC5) inhibitors. TRPC5 is also a target of LPC-induced chronic pain [81]. TRPC5
inhibitors have demonstrated analgesic effects in all of the following conditions with
elevated LPC: fibromyalgia [89], rheumatoid arthritis [145], osteoarthritis [146], lumbar
spinal stenosis [89,147], diabetes [148], and migraine [149]. In addition, TRPV4 in DRG
sensory neurons was essential for intrathecally LPC-induced chronic pain [105]. The above
findings provide new molecular insights into the mechanism by which LPC may affect
the activation of cellular signaling pathways in chronic pain. G protein-coupled receptors
(GPCRs), ion channels, and Toll-like receptors are involved in nociceptive signaling and are
considered important pharmacological targets for existing or potential drugs. Apart from
GPCRs, TLRs, and several known ion channels, there are other receptors that may directly
bind to LPC or some molecules that indirectly interact with LPC. Therefore, future research
should continue to focus on physiological and therapeutic approaches to inhibit the LPC
signaling cascade.
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5. Conclusions

By and large, the studies on LPC and chronic pain have been scant as compared to
studies on other pathological states. The current findings have highlighted the critical
contribution of LPC in CFA induced-inflammatory pain, chronic joint pain, neuropathic
pain, fibromyalgia, and multisite musculoskeletal pain, including total LPC and LPC species
and rodents and humans (Table 2). We found that LPC (16:0), LPC (18:0), and LPC (18:1)
were currently the three most detected LPC species in chronic pain, among which LPC
(16:0) was involved in the chronic pain caused by osteoarthritis and fibromyalgia, while
LPC (18:1) was more studied in nerve-injury-induced neuropathic pain. This suggests that
specific LPC species may reflect some chronic pain diseases; after all, the mechanisms of
chronic pain are complex and different. At present, the accurate detection of LPC relies on
metabolomics or lipidomics technology, which provides assays for exploiting the role of LPC
in chronic pain. Apart from chronic pain, LPC or LPC species in body fluids such as blood,
urine, cerebrospinal fluid, and tissues are uniquely or collectively related to cancer [150–152],
diabetes [153–156], coronary atherosclerosis [157], Alzheimer’s disease [158,159], rheumatoid
arthritis [83], COVID-19 [160], liver and kidney damage [161,162], etc. Whether LPC is
necessary for other chronic pain conditions, such as cancer pain, has not been confirmed.
In addition, LPC-related metabolites, such as ATX, PLA2, cPA, and LPA, also serve as
therapeutic targets of chronic pain. As an inflammatory lipid, LPC can activate downstream
signaling pathways by binding to G protein-coupled receptors, Toll-like receptors, and
several ion channels. It is also necessary to further explore new receptors for LPC in
the future.
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