
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Informatics in Medicine Unlocked 30 (2022) 100941

Available online 6 April 2022
2352-9148/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A novel explainable COVID-19 diagnosis method by integration of feature 
selection with random forest 

Mehrdad Rostami a,*, Mourad Oussalah a,b 

a Centre for Machine Vision and Signal Processing, Faculty of Information Technology, University of Oulu, Oulu, Finland 
b Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Finland   

A R T I C L E  I N F O   

Keywords: 
Explainable artificial intelligence 
Human-computer interaction 
Disease diagnosis 
COVID-19 
Decision forest 
Feature selection 

A B S T R A C T   

Several Artificial Intelligence-based models have been developed for COVID-19 disease diagnosis. In spite of the 
promise of artificial intelligence, there are very few models which bridge the gap between traditional human- 
centered diagnosis and the potential future of machine-centered disease diagnosis. Under the concept of 
human-computer interaction design, this study proposes a new explainable artificial intelligence method that 
exploits graph analysis for feature visualization and optimization for the purpose of COVID-19 diagnosis from 
blood test samples. In this developed model, an explainable decision forest classifier is employed to COVID-19 
classification based on routinely available patient blood test data. The approach enables the clinician to use 
the decision tree and feature visualization to guide the explainability and interpretability of the prediction 
model. By utilizing this novel feature selection phase, the proposed diagnosis model will not only improve 
diagnosis accuracy but decrease the execution time as well.   

1. Introduction 

In the first four months following the outbreak, the pandemic disease 
caused by the SARS-CoV-2 virus called COVID-19 has infected between 
3 and 5 million people and caused at least 200,000 deaths in more than 
200 countries of the world. As a result of the outbreak of COVID-19, 
governments throughout the world have taken drastic measures like 
quarantining hundreds of millions of residents [1,2]. 

Coronavirus is still a worldwide health concern; by 1st March 2022, 
there had been 438 million positive cases and 5.9 million deaths [3]. 
Among the essential factors contributing to the increase in deaths caused 
by COVID-19 infection, one shall mention social disparities in accessing 
to early diagnosis tests, and shortage of hospital equipment for clinical 
critically cases. 

Currently, more than two years after the COVID-19 pandemic onset, 
a number of vaccines have been developed, and the vaccination pro
cedure is proceeding at a promising but heterogenous pace between 
countries. While developed countries are more likely to have access to 
vaccines, other countries face multiple obstacles to vaccination, such as 
not having enough vaccine doses to protect vulnerable groups. Addi
tionally, there are no confirmed medications to cure patients infected 
people. As a result, it remains important to screen patients suspected of 

being infected with COVID-19. 
A primary and trustworthy diagnosis of positive COVID-19 patients is 

essential to prevent and limit of its prevalence [4]. Reverse transcription 
polymerase chain reaction, referred RT-PCR, is currently the gold 
standard for COVID-19 screening and is uniquely recommended by 
World Health Organization (WHO); but it has main defects as well: delay 
on turnaround times [5], a deficiency of reagents [6], suffers from a low 
sensitivity (60–71%) [7], longer waiting time for the results [6,8], a high 
false-negative rate of 15–20% [6], the need for certified laboratories [6], 
costly equipment [9], and requiring specialist staff [6]. For these rea
sons, scientists are looking for alternative faster, more accessible, and 
affordable diagnosis techniques. 

Impressive improvements in machine learning models are rejuve
nating the application of Artificial Intelligence (AI) in healthcare that 
basically started over half a century ago [10]. In the field of COVID-19 
disease diagnosis, the utilization of chest X-ray and CT-scan imaging is 
already populated in many developing countries such as India, Africa, 
South- America due to insufficient number of RT-PCR test-kits, and the 
established link between the ground-glass opacity occurrence in the 
periphery of lungs and SARS-Cov-2 [11–15], although with some limited 
success [16]. At limited scale, cough sound analysis has been suggested 
to discriminate COVID-19 patients [17]. Finally, laboratory data 
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including blood test have also been advocated in Ref. [18] because of the 
identified correlation between parameters such as white blood cells, 
neutrophils, lymphocytes, basophils, monocytes and others with 
COVID-19 patients [6]. In essence, the prospect of prognostic bio
markers toward earlier and more targeted treatment has been recog
nized, especially since some patients with COVID-19 develop intense 
status, which is associated with a higher risk of hospitalization [19]. 

Many of the above developments are to a large extent attributed to 
the development in Artificial Intelligence and availability of relevant 
large scale clinical dataset related to COVID-19 patients. Indeed, the 
improvements in computer systems and data storage technologies have 
substantially increased the accumulation of COVID-19 data, which of
fers physicians and researchers a unique opportunity to explore simul
taneously factors influencing patient diagnosis and comprehend various 
types of COVID-19, as well as developing new early testing technology 
for COVID-19 detection. Although, handling such large-scale datasets 
raises extra challenge of designing effective data processing and anal
ysis, which are computationally appealing, theoretically sound, and 
easily interpretable [20,21]. Nevertheless, AI is already utilized in 
COVID-19 decision support systems to aid physicians make diagnosis 
and prognosis decisions as pointed out in review papers in Refs. [22–24]. 
Especially, AI can i) improve the quality of physicians’ decision-making 
through augmented visualization tools and expert system like (aid) to 
decision-making systems; ii) decrease the risk of physicians’ tiredness 
caused by the overload number of consultations and their criticality, and 
iii) reduce the problem of simultaneous availability of various clinicians 
[25–27]. 

Furthermore, the interpretability and explainability issues relating to 
the modern AI-based tools should be taken into account, since these 
could further impede their implementation in healthcare applications. 
Within machine learning techniques, deep-learning approaches, due to 
their ability to automatically extract representations from the learning 
data that are relevant to their predictions, achieved state-of-the-art re
sults in many areas, e.g., computer vision [28,29], speech recognition 
[30,31], and signal processing [32,33]. This motivated researchers to 
extend such approach to COVID-19 detection and prediction where it is 
commonly it is acknowledged that complex machine-learning models 
such as deep learning and XGBoost perform better than simple models 
such as logistic regression in the COVID-19 diagnosis [16,34]. Despite 
their acknowledged performance, the widespread employ of deep 
learning models is halted by the capacity of such models to provide 
explanations to their findings, in a way to promote transparency, re
sponsibility and ethical considerations when comprehending the out
comes of such models, especially in the light of the new data protection 
EU directive on the “right of explanation” [35]. This demand is even 
more stressed in healthcare sector where any diagnostic error can have 
fatal consequences on patient life. This raises the need to equip the 
complex deep-learning black-box models with explanatory modules to 
accommodate this new need. For example, a physician should under
stand why a machine learning model provides a given diagnosis and be 
able to explain it to the patients. This explains why most of 
deep-learning models implemented in healthcare field rather act as 
protypes and for aid to decision-support only, offering the possibility to 
the clinician to bypass the model output or seeking an alternative 
measurement strategy prior to make clinical decision. This renders 
several physicians reticent to utilize machine learning and artificial 
intelligence-based models that are not straightly explainable, inter
pretable and reliable. Nevertheless, enforcing explainability and trans
parency in deep-learning models often comes at the expense of increased 
time complexity and, sometimes, even system accuracy. How to balance 
accuracy, explainability, and other factors of artificial intelligence in 
medical applications remains a challenge today. As a result, not only it is 
necessary to develop complex and efficient model to process such 
COVID-19 medical data, but also to be able to explain and interpret their 
decisions. Research in eXplainable AI (XAI) [36–38] aims to provides 
tools and method for explaining deep-learning models through model 

approximation, enhanced feature contribution visualization, rule-based 
generation, among others, enabling either local or global explanation of 
the model outcome. 

In this medical context, XAI framework proposes generating a series 
of machine learning models that 1) Generate more explainable tech
niques while preserving a high rate of diagnosis accuracy, and 2) Pro
vide a model for physicians to explain, understand, trust, and effectively 
manage decisions. 

This paper contributes to XAI research in medical context by pro
posing a new Explainable Random Forest (FSXRF) method that exploits 
social network graph analysis for feature visualization and optimization 
for the purpose of COVID-19 detection from blood test samples. The 
proposed model includes four principal steps. First, the original features 
of COVID-19 dataset are shown as a graph where each feature is indi
cated by a node and the links show the similarities between the corre
sponding features. In the next step, a novel scoring mechanism is 
proposed for feature importance calculation. The aim of this step is to 
rank different features based on filtering feature weighting. In the next 
step, an iterative search mechanism is proposed to choose final features. 
Therefore, the proposed features selection mechanism while removing 
redundant features, will also eliminate irrelevant features with the label 
of COVID-19 dataset. After selecting the final features, in the fourth step, 
the ensemble Decision Forests classifier is employed to COVID-19 
screening in routine blood tests. The proposed strategy has several in
novations compared with the previous intelligent COVID-19 prediction 
approaches:  

1 In contrast to relatively demanding RT-PCR method, this study uses 
blood tests, which are faster, more accessible, and less expensive 
than PCR testing. Therefore, blood tests can potentially provide an 
alternative tool for the rapid diagnosis of infected cases and 
compensate for the lack of RT-PCR and CT scan by serving as an early 
detection tool. 

2 An explainable artificial intelligence decision system based on De
cision Tree (DT) that can support physicians in the COVID-19 diag
nosis with a number of simple and explainable rules is developed and 
put forward.  

3 Unlike black-box deep learning-based COVID-19 diagnosis models, 
which are difficult to explain to physicians, the proposed prediction 
model is based on DT that physicians can trust due to its acknowl
edged explainability and transparency.  

4 Many of previous prediction model for COVID-19 diagnosis use a 
single classifier for final prediction, which reduces their generaliza
tion capabilities. In contrast, our model uses a novel Ensemble 
Learning-based prediction model, which offered increased predic
tion accuracy.  

5 Although, previous explainable machine learning models focused on 
sample-wise (local) explanations, our method focuses on explaining 
the entire dataset (global explanation) via a single model. In this 
study, an individual explanation in a graph representation is pro
vided that shows the relative importance of each feature and their 
interactions.  

6 The developed approach uses a novel graph mining strategy to find 
similar features and discard redundant feature, which automatically 
comprehends the number of relevant feature unlike other clustering 
methods such as k-means [39] and fuzzy clustering [40] where some 
prior-knowledge is required.  

7 Our model uses a novel graph-based technique to measure feature 
score and feature similarities, while traditional models only measure 
feature relevance in their feature selection procedure.  

8 The developed model employs a social network-based technique and 
the node centrality measure to propose a heuristic search method. In 
comparison with nature-inspired methods such as [41], the proposed 
method is enough fast and more accurate and can be applied to 
medical dataset. The proposed method calculates feature similarities 
and then applies a scoring mechanism to allocate an importance 
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weight to each feature. Therefore, the developed method satisfies 
both objectives of feature relevance and feature redundancy in a 
multi-objective function. Unlike other multi-objective models that 
choose a set of non-dominated feature in their optimization phase 
[42,43], the developed search mechanism seeks the optimal feature 
set in a reasonable amount of time. 

The rest of this paper is structured as below: Section 2 reviews the 
previously artificial intelligence-based model for COVID-19 disease 
diagnosis as well as discusses the concept of explainable artificial in
telligence. The proposed diagnosis model is detailed in Section 3. The 
experimental results on COVID-19 dataset are described in Section 4 and 
finally, Section 5 explain the conclusion and future works. 

2. Background 

2.1. Machine learning for Covid-19 detection 

Artificial intelligence-based models are the promising approaches 
employed to aid physicians in the early screening of COVID-19 positive 
cases. Moreover, these models decrease the workload of the physicians, 
increase the accuracy prediction, gives a timely response and precise 
treatment for the COVID-19 positive cases. Artificial intelligence-based 
models are used to prevent and mitigate COVID-19 pandemics by 
screening, identifying viruses, and disease diagnosis, repurposing or 
repositioning drugs, and predicting and forecasting their future spread. 
In the area research of medical prediction of COVID-19, intelligent and 
machine learning-based models grounded on biomarkers can help 
optimize the screening of patients with severe disease, minimizing 
mortality and hospitalization, and decreasing care delays [44]. 

Deep learning and machine learning are the two major branches of 
artificial intelligence. The following subsections discuss the applications 
of machine learning and deep learning models to combat and mitigate 
the COVID-19 outbreak. Fig. 1 demonstrates the schematic diagram of 
artificial intelligence approaches for related COVID-19 outbreak tasks. 

These approaches were promising areas of research and development 
for the decision-making process related to COVID-19 and many studies 
are performed to review them as extensively reviewed in several review 
papers, e.g., Refs. [16,45]. We therefore focus herein on works that 

tackle the issue of feature selection and optimization in machine 
learning for COVID-19 detection and prediction, which seems to be 
overlooked in previous reviews. 

For the early prediction and diagnosis of COVID-19 positive, the 
authors of [46] proposed a method based on SVM classifier utilizing 
X-ray patient data. There are 40 lungs X-ray images in this dataset, 15 of 
which are normal lung images and the remaining 25 are COVID-19 
infected chest X-ray images. The developed method has high effi
ciency (sensitivity = 95.76%, specificity = 99.7%, and accuracy =
97.48%), indicating the SVM-based method can be utilized efficiently 
for the diagnosis of COVID-19 cases. 

During the past few years, Decision Tree’s reputation has increased 
in the medical research and health sector. For example in Ref. [47], a 
model-based decision tree is proposed for the severity identification of 
COVID-19 in children. They obtained reports on 105 children who were 
infected between February 1 and March 3 of 2020 from the Chinese 
hospital. There were 105 positive children among the 105, including 41 
girls and 64 boys. The developed method has high performance. 

Too et al. [48] presented a new feature selection method using Hyper 
Learning Binary Dragonfly Algorithm search strategy for predicting the 
condition of COVID-19 patient with a decreasing number of selected 
features with high performance accuracy. 

Using time-dependent parameters, the authors of [49] proposed a 
novel approach for forecasting the dynamic spread of COVID-19. Their 
approach advocates an epidemiologic model in time domain to develop 
the nonlinear model for dynamic approximation of COVID-19 
prevalence. 

Using an improved fuzzy clustering algorithm, a novel time series 
forecasting method is developed in Ref. [50] for the upcoming 
COVID-19 patients and deaths in India. Essentially, this technique con
sists of two steps. In the first step, an improved fuzzy clustering algo
rithm is used to create initial intervals, and then these initial intervals 
are updated in the second step in order to create new sub-intervals. This 
developed technique was evaluated using available COVID-19 and the 
results demonstrated that this method was superior to previous methods 
in terms of mean square error, root mean square error, and average 
forecasting error rate. 

In [51], different artificial intelligence-based techniques for predic
tion of COVID-19 positivity and severity where K nearest neighbor 

Fig. 1. Schematic diagram of artificial intelligence approaches for related COVID-19 outbreak tasks.  
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classifier, Neural Networks, Decision Tree and Partial Least Squares 
Discriminant Analysis techniques are compared. Their experimental 
results demonstrated that COVID-19 severity can be diagnosed and 
predicted using all these classifiers with acceptable accuracy. 

In [52], a machine learning-based model is proposed for future 
intubation prediction among positive COVID-19 cases where the model 
forecasts future probability of intubation based on prior vitals, labora
tory, and demographic patient information. The model uses a supervised 
prediction technique that employs a sliding-window technique to pre
dict the possibility of intubation 72 h after the end of the 24-h sampling 
period. 

Pahar et al. [53] uses AI model to classify COVID-19 cough using 
smartphone audio recordings where several machine learning models 
are compared. The authors showed that the residual neural networks 
classification model can differentiate between positive coughs and 
healthy coughs with an area under the ROC curve of 0.98. 

In [54], three machine learning models are proposed to forecast the 
likelihood of prolonged length of stay utilizing electronic health record 
data from COVID-19 patients and to help hospital systems prepare for 
bed capacity needs. 

Zhang et al. [55] analyzed the clinical features and outcome of 
different positive COVID-19 where nine mortality factors are identified 
utilizing a least absolute shrinkage and selection operator regression 
technique that are then tested by an artificial neural network algorithm. 

In [56], classic machine learning-based classification model for 
Sentiment Analysis on 72,000 COVID-19 related tweets is evaluated 
where several models are compared. The authors show that SVC, Per
ceptron, Passive Aggressive Classifier, and Logistic Regression can 
achieve higher than 98% prediction rate in Sentiment Analysis. 

Singh et al. [57] examined the performance of transfer learning 
technique for intelligent prediction of COVID-19. In this presented 
model, a deep learning-based approach is developed for COVID-19 CT 
image screening. This approach utilized VGG16 and PCA for feature 
extraction and feature selection from CT scan data, respectively. Addi
tionally, four classification models are evaluated in the prediction phase, 
including Convolutional neural networks, Extreme Learning, online 
sequential Extreme Learning Machine, and Bagging Ensemble with SVM. 
Finding of this paper indicated that the bagging ensemble and SVM had 
the highest prediction accuracy in the experiments. 

In [58], a novel Joint Classification and Segmentation (JCS) model 
was developed for real-time and explainable COVID- 19 diagnosis using 
chest CT images. 

Yang et al. [59] proposed a new model for analyzing clinical char
acteristics and predicting death outcomes in severe COVID-19 patients. 
The authors developed a clinically useful and easily interpretable 
DT-based model to help clinicians rapidly identify COVID-19 patients 
with high mortality risks. 

Using human respiratory sounds such as voice, dry cough, and 
breath, Lella and Pja [60] introduced a deep learning-based method to 
diagnose COVID-19 disease. The method employs multi feature channels 
to extract deep features from the patient data, which are fed to a Deep 
Convolutional Neural Network for final disease diagnosis after an initial 
preprocessing. 

In [61], a depth-wise deep learning method was proposed to reor
ganize of COVID-19 affected lungs regions. 

Roy et al. [62] investigated the application of deep learning-based 
model in the lung ultrasonography (LUS) images analysis of COVID-19 
patients where a new deep learning technique, extracted from Spatial 
Transformer Networks, that diagnoses the patient status intensity, was 
put forward. 

In [63], Convolutional Neural Networks (CNN)-based techniques 
were employed for deep feature extraction using chest X-ray and CT 
images. Then, these features are sent to transfer learning-based 
approach to diagnosis positive COVID-19 cases. 

In recent years, many researchers have suggested Long Short-Term 
Memory (LSTM) networks for COVID-19 detection, diagnosis, 

classification, prediction, and forecasting. In Ref. [64], a deep 
learning-based LSTM method was developed for COVID-19 prediction 
utilizing X-ray image data. In this method, Convolutional Neural Net
works was trained to select the deep features and based on these selected 
features, the deep model was trained for the final prediction of 
COVID-19. 

In [65], another CNN-based method was proposed to detect the 
COVID-19 positive cases based on X-ray images. This dataset includes 
X-ray images of 135 COVID-19 patient and 320 from viral and bacterial 
pneumonia cases. The reported result indicated that this developed 
method achieved an accuracy of 89.2%. 

Moreover Ahmadian et al. [66] developed a novel two-phase 
improved deep neuroevolution model to COVID-19 diagnosis from 
chest X-ray data. The deep neuroevolution algorithm developed in this 
paper is tested on a real-world dataset, and its performance was indi
cated by comparing different evaluation metrics. 

In Table 1, a selection of the main previous machine learning models 
employed for COVID-19 pandemic related tasks and their techniques, 
tasks, data types, accuracy and explainability are detailed. For 
Explainability categorization, we distinguished High Explainability 
models (e.g., Decision Tree, Random Forest), Medium Explainability 
models (e.g., KNN, Joint Classification) and Low Explainability models, 
which include Deep Learning, Neural network and other similar black 
box models. 

In overall, we noticed that in the diagnosis of COVID-19, complex 
machine-learning models such as deep learning perform better than 
simple models such as linear regression and decision trees. Nevertheless, 
the deep learning-based approaches proposed in previous works were 
indeed black boxes that did not explain their prediction in a manner a 
human could understand [67–70]. It is therefore important to endow the 
highly performing deep-learning models with explainability and inter
pretability ability to accommodate the new EU data protection directive 
and ensure their widespread adoption by healthcare authorities. More
over, in the next subsection previous XAI-based model are reviewed. 

2.2. Explainable artificial intelligence 

The lack of explainability and transparency of AI-based methods in 
medical environments is one of their major limitations. In many 
healthcare applications, it is necessary to know how the prediction 
model made a specific decision, allowing the healthcare stakeholders (e. 
g., physicians, specialists, patients, researchers and public) to trust the 
model. In healthcare domain, questions such as “What makes this pre
diction trustworthy?” or “How did this intelligent model achieve this 
result?” need to be responded for specialists and physicians to entirely 
embrace the application of artificial intelligence-based model in assist
ing them with early diagnosis. It is crucial that every model should also 
be able to provide a rationale for the diagnosis or recommendation it 
made. Although some prediction techniques like decision trees are 
transparent, the vast majority of artificial intelligence applications in 
medicine using deep learning techniques are black box in essence and 
have therefore no explanation for their prediction. This has led to the 
creation of several explainable AI methods in the past few years 
[70–72]. Accordingly, a new research area called Explainable AI aims to 
increase the explainability of black box models. 

Explainable AI refers to AI and machine learning approaches that can 
provide human-understandable explanation for their models’ behavior. 
XAI is a rapidly growing research area that is aimed at providing a 
justifiable, transparent, interpretable, trustable, and traceable intelli
gent model [73]. 

Explainable AI model can focus on several types of explanations. 
These types of explanations can be classified according to their scope, 
origin, and application. Depending on the scope of the explanations, 
they can be either global or local. While global explanations attempt to 
explain the whole model at once, local explanations focus on a small 
area around a specific sample. Explanations may have intrinsic origins 
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or be post-hoc. An explanation is inherent when the ML model is 
transparent and can be understood due to its simple structure (for 
example, Linear Regression or Decision Tree). Conversely, post-hoc 
explanation techniques attempt to obtain explanations from trained 
models. Moreover, an explanation artificial intelligence can be model- 
agnostic if it applies to different learning algorithms meeting several 
requirements, or it can be model-specific if it is crafted for a particular 
artificial intelligence model. 

As opposed to previous explainable artificial intelligence models that 
analyzed local and post-hoc explanations, our method explains the 
entire dataset (global explanation) through a single model. We propose a 
global XAI model for generating predication methods that increase the 
users’ trust in the diagnosis. Moreover, visual representations of the 
entire model provide a global explanation for the developed model. In 
the next section the detail of developed explainable artificial 
intelligence-based model for COVID-19 disease diagnosis are described. 

3. Proposed XAI-based model for COVID-19 diagnosis 

In this section, our explainable AI-model for COVID-19 diagnosis is 
developed by combining Feature Selection with Explainable Random 
Forest (FSXRF). The developed FSXRF method is grouped as a model 
explanation of the RF outcomes that i) calculates the nature of the 

dependency between different features of COVID-19 dataset, ii) ranks 
the importance of each feature, iii) discards redundant features to 
optimize the feature-space and reduce burden complexity and, iv) vi
sualizes the various dependency in a way to ease explanation with cli
nicians by providing a decision tree like analysis. 

The conceptual framework of the developed model is donated in 
Fig. 2. The developed XAI COVID-19 diagnosis model focuses on 
explaining the entire procedure of generating the prediction model and 
the result of the developed model is provided by a combination of the 
rules, numerical and visual information. 

The developed FSXRF achieves both explainability and feature 
optimization, which are known to enhance attractiveness in medical 
diagnosis. Indeed, irrelevant and redundant features in medical dataset 
have presented serious challenges to the existing artificial intelligence- 
based prediction model, impacting accuracy and prediction [74–77]. 
Irrelevant and redundant features also increase the probability of 
overfitting and increase the computational complexity [78–81]. As a 
result, our model adds a feature selection phase to the main phase of 
prediction for eliminating the redundant and irrelevant features. 

Moreover, Fig. 3 shows the overall flow diagram of the proposed 
FSXRF model. In overall, FSXRF consist of four main steps: (1) Graph 
representation of COVID-19 features, (2) Ranking COVID-19 features, 
(3) Identifying the final feature set and (4) Final COVID-19 diagnosis 

Table 1 
Outlining the reviewed machine learning-based models in COVID-19 pandemic related tasks.  

Paper Technique Task Data type Accuracy Explainability 

Mahdy et al. 
[46] 

SVM Covid-19 lung image 
classification 

X-ray image High Low 

Yu et al. [47], Decision Tree Severity detection of COVID-19 
paediatric cases 

Chest radiography and CT images Medium High 

Too and 
Mirjalili 
[48]. 

KNN Prediction of the death and 
recovery conditions 

The patients’ information (Gender, 
Age, Country, etc.) and their 
symptoms 

Medium Medium 

Song et al. 
[49] 

Time-dependent model parameters. forecasting the dynamic spread 
of COVID-19 

Daily reported cases in China and the 
United States 

High Low 

Kumar and 
Kumar [50] 

Fuzzy clustering and time series model Prediction of COVID-19 infected 
cases and deaths 

Daily reported cases in India Medium Low 

Cobre et al. 
[51] 

KNN, Neural Networks, Partial Least Squares 
Discriminant Analysis, etc. 

Diagnosis and prediction of 
COVID-19 severity 

Biochemical, hematological, and 
urinary biomarkers 

Medium Low 

Arvind et al. 
[52] 

Sliding-window approach Prediction of intubation among 
hospitalized patients 

laboratory and vitals data COVID-19+
patients 

Medium Low 

Pahar et al. 
[53] 

Residual neural networks Classification of COVID-19 
cough 

Coughing sounds recorded during or 
after the acute phase of COVID-19 

Medium Low 

Ebinger et al. 
[54] 

Logistic regression, SVM, KNN, etc. Prediction of duration of 
hospitalization in COVID-19 
patients 

Electronic health record data from 
COVID-19 patients 

Medium Low 

Zhang et al. 
[55] 

Least absolute shrinkage and selection operator 
regression and least absolute shrinkage and selection 
operator neural network models. 

Identification and validation of 
prognostic factors in COVID-19 
patients 

Demographic data including, clinical 
data including and outcome (28-day 
mortality) 

Medium Low 

Gulati et al. 
[56] 

Linear SVC, Perceptron, Passive Aggressive, Logistic 
Regression, etc. 

Sentiment classification of 
discussion related to COVID-19 
pandemic 

Tweets related to COVID-19 
pandemic 

Medium Low 

Singh et al. 
[57] 

Ensemble Support Vector Machine COVID-19 detection Lung tomography scan data High Low 

Wu et al. [58] Joint Classification and Segmentation COVID-19 diagnosis Chest CT images Medium Medium 
Yang et al. 

[59] 
Decision Tree Death outcome prediction Medical records (demographics, 

clinical characteristics, and 
laboratory test results) 

Medium High 

Lella and Pja 
[60] 

Deep Convolutional Neural Network Diagnosis of COVID-19 disease Human respiratory sounds such as 
voice, dry cough, and breath, 

High Low 

Qayyum et al. 
[61] 

Depth-wise deep learning Detection and diagnosis of 
COVID-19 infection 

Lungs X-rays images High Low 

Roy et al. [62] Spatial Transformer Networks-based Deep learning Classification and Localization of 
COVID-19 Markers 

Lung ultrasonography (LUS) images. High Low 

Shamsi et al. 
[63] 

Deep transfer learning Diagnosis of COVID-19 Chest X-ray and CT images High Low 

Islam et al. 
[64] 

Deep Convolutional Neural Network and LSTM Detection of COVID-19 X-ray images High Low 

Hall et al. [65] Deep Convolutional Neural Network Detection of COVID-19 Chest x-rays High Low 
Ahmadian 

et al. [66] 
Deep Neuroevolution Diagnosis of COVID-19 Chest x-rays High Low  
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using Explainable Random Forest and considering the selected features. 
The aim of the first step is to represent the features of COVID-19 diag
nosis problem as a network graph where each node corresponds to a 
given feature of COVID-19 dataset, and the edges demonstrates the 
feature similarities. In the next step of the FSXRF, all the original fea
tures of COVID-19 dataset are ranked by utilizing a filter-based feature 
weighting measure. The aim of the next step is to score different factors 
of COVID-19 diagnosis by employing a feature ranking technique. In the 
third step, to select non-redundant and relevant features, those of high 
scores and dissimilar feature are chosen using a novel feature selection 
strategy, while the remaining features are removed. Finally, in fourth 
step, an Explainable Random Forest-based classifier is used to diagnosis 
COVID-19 cases considering the selected features on the previous steps. 

This developed explainable prediction model has two main phases: 
the feature section (i.e., 1–3 steps) and the developed explainable 
random forest predication model (i.e., 4 step). In the first phase, the 
features of COVID-19 data are illustrated by a graph and a set of relevant 
and non-redundant of initial features is selected for final diagnosis 
phase, and then in the second phase, a novel approach to increase the 
interpretability of the random forest-based predictions is used and an 
effective artificial intelligence-based predictor for COVID-19 disease 
diagnosis is developed using routine blood tests. In the reminder of this 
section the details of these phases are described. Moreover, the 
nomenclature and parameters of the developed prediction model are 
provided in Table 2. 

3.1. Graph presentation 

To apply the proposed feature selection method, the feature of the 
COVID-19 data should be shown using a weighted graph. For this aim, 
the initial features are illustrated with a graph FG =< F,E >, where F =

{f1, f2, ..., fn} is a set of initial features in which each feature corresponds 
to a node in the graph, E = {(fi, fj) : fi, fj ∈ F} shows the set of edges of 
the graph, and wij denotes the similarity between two features fi and fj 
that are connected by the edge (fi, fj). In this paper, Pearson similarity 
criteria [82] is used for the feature similarities calculation. The simi
larity between the two features fi and fj is computed as follows: 

Simij =

⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑
P(FVi − FVi)

(
FVj − FVj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

P(FVi − FVi)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

P

(
FVj − FVj

)2
√

⃒
⃒
⃒
⃒
⃒
⃒
⃒

(1)  

where FVi and FVj denote the vectors of features fi and fj for all samples, 

Fig. 2. Explainable artificial intelligence approach for COVID-19 diagnosis.  

Fig. 3. Flowchart of the proposed model.  
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respectively. Variables FVi and FVj indicate the average of vectors FVi 

and FVj, over all of the COVID-19 samples (i.e. P set), respectively. If 
these two features are very similar, the Pearson criterion will be close to 
one, while if these two features are very dissimilar, the Pearson criterion 
will be close to zero. After similarity calculation, SoftMax normalization 
[83] is used to scale these values into a unit interval as below: 

Ŝimij =
1

1 + exp
(
−

Simij − Sim
σ

) (2)  

where, Simij is the similarity value between features fi and fj, Sim and σ 
are the average and variance for all calculated similarities, respectively, 
and Ŝimij shows the normalized similarity between features fi and fj. 

This similarity measure maps the feature space of a COVID-19 data 
into a fully weighted and connected graph. To make the graph sparser, 
the edges with associated weights lower than some threshold value θ are 
removed. θ is an adjustable parameter that takes values in the unit in
terval [0 1]. When θ value is small (resp. large), more (resp. fewer) edges 
will be considered in the next steps. 

3.2. Feature scoring 

The main goal of this step is to score the initial features of COVID-19 
dataset using a filter-based feature selection measure. In the proposed 
model, weights are assigned to features in each cluster according to a 
scoring mechanism. Therefore, removing both irrelevant and redundant 
features is achieved by the proposed method. In fact, the number of the 
high important and dissimilar features are selected, while the reminder 
features are removed. During this step, the Fisher Score (FS) and the 
Node Centrality (NC) are integrated to determine the score of each 
feature. The Feature Importance (FI) of k-the feature, i.e., FI(Fk) is 
measured as below: 

FI(Fk)=
FS(Fk) × NC(Fk)

∑N
i=1(FS(Fi) × NC(Fi))

(3)  

where FS(Fi) and NC(Fi) denote the Fisher Score and Node Centrality of 
feature Fi, respectively. Also, N shows the number of initial features. In 

this study, Fisher Score (FS) feature weighting measure is utilized for 
feature ranking. Fisher Score is used to identify the features that are 
most relevant to the target class. The Fisher Score scores feature ac
cording to their predictive and discriminatory power. Accordingly, this 
criterion assigns a higher value for features with higher separation 
characteristics. The Fisher Score of feature Fk is calculated as below: 

FS(Fk)=

∑
v∈V nv

(
FVv

k − FVk
)2

∑
v∈V nv(σv(FVk))

2 (4)  

where FVk is the mean value of all the samples regarding the feature fk, V 
is a set of all classes in the COVID-19 dataset (i.e. positive and negative), 
nv is the number of samples on the class v, and σ(FVk) and FVv

k indicates 
the variance and average of feature Fk on class v, respectively. 

Furthermore, in our developed feature selection method, as opposed 
to previous models [84–86] where only feature relevance is employed to 
select final features, a subset of features with high importance and rel
evancy will be chosen. In this developed feature selection method, the 
centrality of nodes is employed to calculate the influential features of the 
dataset. In the analysis of social networks, identifying the more influ
ential or “central” nodes has been an important challenge [87,88]. In 
many areas of social network analysis, detecting influential and more 
central nodes has been used to characterize network properties. Our 
model employs Laplacian Centrality (LC) [88] for node centrality 
calculation. 

3.3. Identifying the final feature set 

In most of the previous proposals for eliminating redundant features, 
only feature relevance has been used, but in this paper, we evaluate the 
correlation between features by integrating average similarity and node 
centrality. Specifically, all features are sorted according to their Feature 
Importance (FI) scores. First, feature with the highest FI score is added to 
the selected feature set as the first representative of original features. 
Then, the next feature with the highest FI is considered as the candidate 
feature, and the average similarity of this feature with the previously 
selected features is calculated using the Pearson similarity criterion. If 
the similarity of the candidate feature with one of the previously 
selected features was greater than the value of threshold δ, this feature is 
removed from the original feature graph FG, and the next feature with 
high importance value from the initial features is considered as the next 
candidate feature. This process continues until all the features have been 
checked and the reminding features in the graph FG are sent to Random 
Forest-based COVID-19 diagnosis. 

3.4. Final COVID-19 diagnosis 

In this subsection the details of the fourth step of developed method 
are described. A decision tree is a prediction algorithm that performs a 
set of test conjunctions where each test evaluates a feature score with a 
threshold value or a set of feasible values to decide whether to maintain 
or discard the underlined feature. In order to divide the dataset into 
disjoint subsets, test nodes are created starting from the root node. The 
recursive process repeats itself until no further division is necessary. 
Since each leaf corresponds to a combination of features, it is easy to 
interpret local decisions. These capabilities make DT widely employed 
for different applications that require a comprehension of both the 
model construction and its prediction. Although decision tree-based 
prediction models are highly interpretable, these intelligent decision- 
making models have limited prediction performance due to the near
sightedness characteristic of their induction models [89,90]. When 
complex interactions exist among input features, DT models usually fail 
to capture these, leading to essential biases. To deal with this issue, a 
decision forest, or ensemble of decision trees, is adopted in our 
approach. 

Table 2 
Nomenclature and parameters of the developed COVID-19 diagnosis model.  

Symbol Description 

F Feature node 
FV Feature vector 
FG Feature graph 
E Link between original features 
n Number of initial features 
Sim(i, j) Similarity between features f i and f j 
FVi Feature Vector f i 

FVi Average of feature vector FVi 

P Set of dataset samples 
Sim Average of all the calculated similarities 
σ Variance of all the calculated similarities 
IV(f i) Importance Value of feature f i 
FS(f i) Fisher Score of features f i 
NC(f i) Node Centrality of feature f i 
V Set of all classes in a dataset (i.e. Positive and Negative) 
nv Number of patterns on the class 
FVv

k Average of feature vector Fk on class v 
σ(FVk) Variance of feature vector Fk on class v 
EL Laplacian Energy 
f k Average value of all the samples related to the feature f k 

V Set of all classes in a dataset (i.e. Positive and Negative) 
nv Number of samples on the class v 
σ(f k) Variance and average of feature f k on class v 
f v

k 
Average of feature f k on class v 

T Decision tree 
φ Set of rules in Decision tree 
K Number of trees in decision forest  
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Decision Forest (DF) is a powerful ensemble learning algorithm for 
integrating the results of several machine learning algorithms into a 
single decision. 

Several factors motivate this choice. First, the risk of trapping local 
minima is reduced when several predictors are integrated. Further, 
when only a small amount of data is available, a single algorithm can 
choose an incorrect hypothesis, which provides additional ability to 
handle small-size data scenarios. Finally, the combination of different 
classifiers may also result in a wider search space, specifically in prob
lems where the optimal hypothesis lies away from individual models. 

In this work, decision forests that combine multiple decision trees 
towards providing a single decision is employed for final COVID-19 
diagnose. 

A new technique to convert a DF into a single DT is developed in this 
study. Based on the original decision forest, the resulting decision tree 
approximates its prediction accuracy and provides more explainable and 
faster classification. A tree decision model was chosen to be the 
outputted model since it can be explained both in terms of its graphic 
prediction structure as well as its separability. As compared to previous 
prediction models, the developed model can be applied to all sizes of 

Fig. 4. Flow pseudo-code of the developed model.  
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forests and does not need complicated hyperparameter setting. 
Suppose each datum xi = (i = 1 to n), where n is the total number of 

samples, is represented in a feature space of dimension m. Let yi be the 
output indicating the class label of the datum xi. Then, given the deci
sion set D = {(xi, yi)

⃒
⃒xi ∈ Rm, yi ∈ 1,…, c}, a DT classifier is defined as 

T(x,φ,F), where F denotes the used features in tree, φ contains a set of 
rules and x is an input sample. Moreover, a DF classifier is defined as 
{Tk(x,φk,Fk),k = 1, 2,...,K}, where K corresponds to the number of trees 
in the DF. 

In our proposed method, the Fk are limited to neighboring nodes in 
graph FG. Through this regularization, features that are functionally 
related are placed on the same Decision Tree. Therefore, the generated 
classifier using this tree is more trustable and explainable for physicians, 
and simultaneously is more generalizable. Therefore, the developed DF 
is defined as {Tk(x,φ, FG

k ), k = 1,2, ...,K}, where FG
k is a set of features 

specified using random walk on graph FG. In our proposed method, a 
greedy-based scenario is developed to transform a DF into an explain
able DT. For each greedy step t the performance for all k ∈ {1, ...,K}, DT 
is evaluated (see Line 22 of Algorithm 1). Here, the accuracy measure is 
utilized for evaluation and if the accuracy of k-th DT in iteration t is 
lower than the accuracy of the DT in the prior iteration, the suggested 
DT and its corresponding nodes are eliminated. On the other hand, if DT 
has a higher accuracy, a random walk on a subgraph, determined using 
the features in Fk[t] in the iteration i, is initialized. It should be noted that 
the depth of this walk has now reduced by one. Finally, after updating 
the DTs, a new set of K trees are sorted considering their accuracy in 
order to initialize a selection procedure. These repetitions continue until 
a specified number of iterations is reached. 

Fig. 4 indicates the pseudo-code of the developed COVID-19 diag
nosis model. 

4. Experimental results 

In this section, our experimental setup for COVID-19 disease diag
nosis is highlighted and the results are reported. The efficiency of the 
presented model is compared with some well-known prediction model 
including XGBoost [91], SVM, MLP together with the state-of-the-art 
COVID-19 prediction model that aims to propose understandable 
approach based on eXplainable Decision Trees (XDT) [92] for COVID-19 
diagnosis. The results are evaluated using a set of criteria: Accuracy, 
F1–score, Sensitivity, Specificity and AUROC. 

To ensure a more accurate and trustworthy validation, a 10-fold 
validation test is conducted. For this purpose, at each iteration, one 
set is considered as a test data while other sets were considered as train 
data. Then, we ran the experiment 30 times. Moreover, in all experi
ments both average and standard deviation values are recorded. 

For fair experiments, different models should be evaluated on the 
same training, validation and testing dataset. These experiments report 
the standard deviation of the accuracy in ten independent runs together 
with the average accuracy since train and test samples are randomly 
separated. 

In the reminder of this section, the detail of the used COVID-19 data, 
experimental results, sensitivity analysis, statistical analysis, and dis
cussion are explained. 

4.1. Dataset 

In this work, we used public COVID-19 dataset [93] to demonstrate 
the effectiveness and robustness of the developed COVID-19 diagnosis 
model.1 This dataset includes unknown data from patients who present 
COVID-19 symptoms and requested to accomplish the SARS-CoV-2 

RT-PCR and supplementary tests during their stay at the hospital. This 
COVID-19 dataset included 5644 patients and 111 features (includes 69 
Decimal features, 37 String features and 5 Universally unique identifier 
features) associated with blood tests (e.g. Red blood Cells, Red blood cell 
distribution width, venous blood gas analysis, lymphocytes, Mean 
corpuscular hemoglobin concentration, Urea, Proteina C reativa, 
Creatinine, Potassium, Sodium, etc.), urine (e.g. Esterase, Aspect, He
moglobin, Ketone Bodies, Density, Protein, Leukocytes, Red blood cells, 
Granular cylinders, etc.), and tests for the presence of other viruses (e.g. 
Influenza A, Influenza B, Parainfluenza 1, etc.). During the hospital visit, 
RT-PCR and DNA sequencing are used to diagnose Covid-19 positive 
cases. The dataset demonstrates the complexity of decision making 
during real healthcare problems, compared to what happens in more 
theoretical experiments. As a result data sparsity is to be expected. The 
dataset demonstrates the complexity of decision making during real 
healthcare problems, compared to what happens in more theoretical 
experiments. As a result data sparsity is to be expected. 

Since this dataset contains features with missing values, to handle 
these missing data in our experiments, we replaced each missing datum 
with the mean of the available data on the feature set [94]. 

4.2. Experimental results 

In first experiments, the performance of the developed prediction 
model is evaluated over COVID-19 dataset. Table 3 summarizes the 
average Accuracy, F1–score, Sensitivity, Specificity and AUROC over ten 
separate and autonomous runs of the different prediction model (i.e. 
XGBoost, SVM, MLP and XDT). In this table, the best average values are 
marked in boldface. The reported results of Table 3 show that in all cases 
the developed prediction model performs better than the other COVID- 
19 disease diagnosis models. For example, the reported results of this 
Table reveals that the average classification accuracy of the developed 
approach data was 89.97%, which is 1.56% higher than the average 
classification accuracy for the second-ranked method (i.e., XDT). 
Moreover, Table 3 shows that the developed model superior to the 
second-best model (i.e., XDT model) with a difference of 1.96%, 4.44%, 
1.97% and 2.19% for F1-Score, Sensitivity, Specificity and AUROC 
measures, respectively. Moreover, the boxplot of 10-fold validation of 
these independent runs is shown in Fig. 5. 

Moreover, based on 30 independent executions, Table 4 shows the 
number of times the best performance was achieved by different pre
diction models. The values of this table show that in most cases the 
developed COVID-19 diagnosis model achieved the highest performance 
compared to the other diagnosis models on the different measures. 

Moreover, in Table 5, the normalized confusion matrices per class 
are investigated. In this Table different COVID-19 diagnosis model are 
compared in terms of True-Negative (The actual class is Negative and 
predicted class is Negative), True-Positive, False-Negative, False- 
Positive. As it can be seen from this Table, the proposed model had 
the highest performance. The results of this Table show that the 

Table 3 
Average performance, standard deviation (shown in parenthesis) and p-value of 
different predications model based on 10-fold validation in 30 independent runs.  

Method Accuracy F1-Score Sensitivity Specificity AUROC 

XGBoost 87.71 
(1.34) 

71.45 
(1.42) 

67.52 
(1.38) 

90.82 
(1.26) 

89.36 
(1.24) 

SVM 84.79 
(1.31) 

72.48 
(1.71) 

67.01 
(1.36) 

88.96 
(0.67) 

87.69 
(1.31) 

MLP 85.25 
(1.29) 

69.92 
(1.37) 

62.21 
(1.03) 

88.17 
(1.43) 

88.38 
(1.36) 

XDT 88.41 
(0.59) 

76.17 
(0.67) 

67.21 
(0.82) 

91.02 
(0.69) 

90.62 
(1.03) 

Proposed 
Model 

89.97 
(1.08) 

78.13 
(1.21) 

71.65 
(0.76) 

92.99 
(0.82) 

92.81 
(1.06) 

P-value 0.0034218 0.0037548 0.003295 0.004606 0.004438  
1 The datasets and sourcecode are available from the corresponding author 

(Mehrdad Rostami, E-mail: Mehrdad.Rostami@oulu.fi) on reasonable request. 

M. Rostami and M. Oussalah                                                                                                                                                                                                                

mailto:Mehrdad.Rostami@oulu.fi


Informatics in Medicine Unlocked 30 (2022) 100941

10

differences between the obtained performance of the proposed predic
tion model in term of True-Negative and the second-best ones (XDT) and 
third-best ones (XGBoost) are calculated 1.61 (i.e., 92.99–91.38) and 
2.28 (i.e., 92.99–90.71), respectively. Furthermore, based on reported 
result of Table 5 and for the True-Positive (The actual class is Positive 
and predicted class is Positive) criterion, the developed model gained 
the first rank with an average True-Positive of 71.98, and the XDT and 
XGBoost prediction model were ranked second and third with an 
average True-Positive of 68.81 and 65.57, respectively. Moreover, in 
terms of False-Negative and False-Positive, respectively. Given that 
these two criteria are calculated based on false predictions, the lowness 
of this criterion indicates the superiority of that method. The reported 
results show that in both criteria, the developed prediction model was 
more accurate than the other COVID-19 diagnosis models. 

Moreover, Fig. 6 displays the average ROC curve acquired by the 
developed model. Based on changing the decision threshold, the curve is 
calculated for both 1-Specificity (False Positive Rate) and sensitivity 
(True Positive Rate). With a model that is close to 1, its discrimination 
capability is greater in the prediction test. These reported results indi
cated that, with a sensitivity of 0.826 and specificity of 0.802, the ROC 
curve had a maximum average sensitivity and specificity. 

As explained earlier, one of the main parts of the proposed method is 
feature selection phase, which prevents the selection of redundant and 
irrelevant features. Typically, a large portion of this COVID-19 data is 
irrelevant or redundant, decreasing the predictability of the model. 
Therefore, the performance of the prediction model is significantly 
influenced by feature selection. In this study, an efficient feature selec
tion method has been proposed utilizing the feature similarity and node 

centrality techniques. This mechanism identifies a subset of dissimilar 
features that have the highest correlation with the target class of dis
eases. In this developed feature selection model, in feature selection 
phase, 21 features are selected, and the reminder features are elimi
nated. These features are listed in Table 6. 

It should be noted that the features of this listed are sorted based on 
their importance values (FIs). Moreover, in these selected features the 
features of PLT, EOS, MPV, CRP, AST, CREAT, WBC, MONO, LYM and 
AST obtained the highest importance value compared to others features. 

Moreover in Fig. 7 part of the final extracted tree for explainable 
COVID-19 diagnosis is shown. Considering this route in the derived 
decision tree, the features of PLT, MPV, EOS, WBC, LYM, ALT and HGB 
can be used for final COVID-19 disease diagnosis. Based on these 
extracted features and generated rules, Decision Tree explanation is as 
follows: 

if (PLT ≤ 0.10) and (MPV > − 1.02) and (EOS ≤ − 0.66) and (WBC 
≤-0.52) and (LYM > − 1.11) and (ALT > − 0.51) and (HGB > 0.96) then 
the COVID-19 diagnosis is positive. 

4.3. Comparison with other feature selection methods 

In this subsection, the performance of the proposed feature selection 
method is evaluated. The performance of the developed feature selection 
method is compared with four well-known feature selection methods 
including Fisher Score (FS) [86], Laplacian Score [95], 

Fig. 5. Boxplot of 10-fold validation in 30 independent runs.  

Table 4 
Number of times the best results are achieved by different prediction models in 
30 independent runs.  

Method Accuracy F1-Score Sensitivity Specificity AUROC 

XGBoost 2 1 1 2 2 
SVM 0 1 0 0 1 
MLP 1 0 1 1 0 
XDT 2 1 1 1 2 
Proposed Model 25 27 27 26 25  

Table 5 
Normalized confusion matrices for different COVID-19 diagnosis model.  

Method True- 
Negative 

True- 
Positive 

False- 
Negative 

False- 
Positive 

XGBoost 92.18 66.87 8.71 34.71 
SVM 89.79 67.36 11.27 37.21 
MLP 90.71 65.57 10.01 38.37 
XDT 91.38 69.81 9.75 32.56 
Proposed 

Model 
92.99 71.98 8.12 30.72  

Fig. 6. The ROC Curve for the developed model.  

Table 6 
The selected features sorted based on their 
importance.  

Number Feature 

1 PLT 
2 EOS 
3 MPV 
4 CRP 
5 AST 
6 CREAT 
7 WBC 
8 MONO 
9 LYM 
10 RBC 
11 NEU 
12 NA 
13 ALT 
14 HCT 
15 HGB 
16 RWD 
17 UREA 
18 K+
19 MCV 
20 MCH 
21 MCHC  
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Relevance-Redundancy Feature Selection (RRFS) [96] and Minimal-
Redundancy–Maximal-Relevance (MRMR) as well as four 
state-of-the-art feature selection methods including Five-way Joint 
Mutual Information (FJMI) [97], Adaptive Hypergraph Embedded Dic
tionary Learning (AHEDL) [98], Artificial Bee Colony Algorithm based 
on Dominance (ABCD) [99] and Multi-objective PSO (MPSO) [79] 
methods. In this experiment, in the feature selection phase, the method 

proposed in each paper is used and for a fair comparison, in classifica
tion phase, for all of them, a common classifier is used. 

Fig. 8 shows the average classification accuracy of different feature 
selection methods on various classifiers in 30 independent runs. The 
reported results of this figure indicated that the performance of the 
developed model is higher than those from all other feature selection 
models. As an example, on SVM classifier, the classification accuracy of 
FS, LS, RRFS, MRMR, FJMI, AHEDL, ABCD and MPSO feature selection 
methods are 75.17%, 73.19%, 83.81%, 84.93%, 86.17%, 85.19%, 
86.71% and 88.09%, respectively. However, the classification accuracy 
of proposed feature selection method yields 89.96% accuracy. 

In the next experiment, different feature selection methods are 
compared in term of execution times. In these experiments, corre
sponding execution times (in ms) for each feature selection method are 
shown in Fig. 9. Due to the fact that the feature selection phase and the 
final prediction phase are separate, only the execution time for feature 
selection phase is calculated in this figure. It can be seen from the 
recorded data that generally the single variate feature selection ap
proaches (FS and LS) are much faster than the multivariate feature se
lection approaches (i.e., RRFS, MRMR, FJMI, AHEDL, ABCD, MPSO and 
proposed method). This is because univariate methods do not consider 
the possible dependency between features in feature selection, there
fore, they are computationally less costly than multivariate approaches. 
It should be noted that compared to multivariate feature selection ap
proaches, univariate ones are less accurate since they ignore feature 
dependencies, as demonstrated in Fig. 8. Moreover, the reported results 

Fig. 7. Part of explainable tree for COVID-19 diagnosis.  

Fig. 8. Average classification accuracy of different feature selection methods on various classifiers.  

Fig. 9. Average execution time (in ms) of different feature selection approaches 
over 30 independent runs. 
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revealed that the between the state-of-the-art feature selection ap
proaches, the proposed feature selection has the lowest average execu
tion time. 

4.4. Comparison with other explainable RF-based models 

RFs integrate multiple DTs towards providing a single output in su
pervised prediction duties. RFs have gained popularity among data 
scientists due to their ability to combine different hypotheses into a 
single model and their effectiveness in dealing with any type of rela
tional dataset. Every prediction model that is made by a RF must go over 
a wide variety of trees. Consequently, the end-user does not have a clear 
understanding of the model’s predictions. Additionally, the model 
structure is practically made up of numerous single models, which 
makes it difficult for the end user to comprehend. Several researchers, 
developed models to transform a RF into a single DT. In this subsection, 
the performance of the proposed method for transforming a RF to a 
single DT is compared with four state-of-the-art methods. The details of 
these methods are explained in Table 7. In this experiment, in the feature 
selection phase, for a fair comparison a common feature selection 
method (the proposed method in this paper) is used. and in trans
formation phase (transform a RF to a single DT), the method proposed in 
each paper is employed. Table 8 reports the average performance of 
different transforming techniques on in 30 independent runs. The re
ported results of this table indicated that the performance of proposed 
transforming technique is higher than those from all other transforming 
techniques. As an example, the classification accuracy of Counterfactual 
Sets [100], Rule Conjunctions [90], Construction and Filtering of 
Conjunction Sets [89] and Explainable Matrix–Visualization [101] 
methods are 87.81%, 84.79%, 85.12%, and 88.19%, respectively. 
However, the classification accuracy of proposed transforming tech
nique yields 89.53%. 

4.5. Sensitivity analysis of the parameters 

The developed COVID-19 prediction model has two parameters θ and 
δ, where their corresponding optimum values must be justified by the 
user. 

The θ value is a threshold for edge removing of initial generated 
graph of feature space value. This threshold is employed to make the 
graph sparser. If θ parameter is set to a low value, fewer edges will be 
removed, and a denser graph emerges for subsequent steps. Similarly, 
when θ is set to a high value, more edges will be removed, and a sparser 
graph is resulted or the next steps. The δ value is a threshold for average 
similarity value that governs the final feature selection process. This 
parameter can be set to any value in the range [01]. If this parameter is 
set to a high value, the number of features and the portability risk of 
selection of similar features will be increased. Moreover, when δ is set to 
a low value, the number of features will be reduced. It is therefore 
important to identify appropriate value of these parameters in a way to 
maximize the prediction accuracy. 

To investigate the optimal value for these parameter, different ex
periments were performed to examine how the performance impacts the 
parameter selection. 

Fig. 10 exhibits the θ parameter sensitivity analysis for Accuracy, F1- 
Score, Sensitivity and Specificity measures. The results showed that in 
most cases when the θ is adjusted to 0.6, the developed COVID-19 

diagnosis model yields the best performance. 
Likewise, Fig. 11 shows the δ parameter sensitivity analysis for Ac

curacy, F1-Score, Sensitivity and Specificity measures. The results 
indicated that in most cases when the δ is adjusted to 0.7, the proposed 
COVID-19 diagnosis model achieves the best performance. 

4.6. Statistical analysis of the proposed method 

In this subsection, the Friedman test [102] is employed to perform 
the statistical analysis of the experimental results. The Friedman test is a 
non-parametric statistical test introduced by Milton Friedman to detect 
differences between multiple treatments, as is the case with parametric 
measures. By ranking each row together and then evaluating the values 
of the ranks based on columns, the ranking procedure is completed. For 
this purpose, each COVID-19 prediction model is ranked for each mea
sure. We used SPSS statistics to run this statistical test. Based on reported 

Table 7 
Characteristics of comparative transforming techniques.  

Paper Year Technique 

Rubén et al. [100] 2020 Counterfactual Sets 
Sagi et al. [90] 2020 Rule Conjunctions 
Sagi et al. [89] 2021 Filtering of Conjunction Sets 
Neto et al. [101] 2021 Explainable Matrix–Visualization  

Table 8 
Average performance and standard deviation (shown in parenthesis) of trans
forming techniques.  

Method Accuracy F1-Score Sensitivity Specificity 

Counterfactual Sets 87.81 
(1.24) 

72.32 
(2.31) 

68.51 
(2.41) 

91.86 
(1.93) 

Rule Conjunctions 84.79 
(2.31) 

75.31 
(1.72) 

69.51 
(3.31) 

88.82 
(3.12) 

Filtering of 
Conjunction Sets 

85.12 
(3.27) 

69.17 
(3.12) 

51.15 
(1.28) 

89.13 
(2.84) 

Matrix–Visualization 88.19 
(2.51) 

76.13 
(2.13) 

68.21 
(2.81) 

91.54 
(1.71) 

Proposed Method 89.53 
(1.12) 

78.21 
(1.32) 

71.38 
(2.69) 

92.79 
(1.76) 

p-value 0.0034784 0.0037691 0.0039877 0.004897  

Fig. 10. Average performance (in %) over 30 independent runs, with different 
θ values for Accuracy, F1-Score, Sensitivity and Specificity measures. 

Fig. 11. Average performance (in %) over 30 independent runs, with different 
δ values for Accuracy, F1-Score, Sensitivity and Specificity measures. 
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results of Table 3, the average ranking for different prediction models (i. 
e., XGBoost, SVM, MLP, XDT and Proposed Model) on each measure is 
indicated in Table 9. These results indicate that the proposed model has 
the best performance. Moreover, Table 10 shows the results of Friedman 
test for these compared COVID-19 diagnosis models. The reported re
sults demonstrated that the p-value of 0.0034218, 0.0037548, 
0.003295, 0.004606 and 0.004438 on Accuracy, F1-Score, Sensitivity 
and Specificity and AUROC measures, correspondingly. Considering 
these values are lower than 0.05, a conclusion can be drawn of the 
statistical significance of the outperformance of our model with respect 
to alternative models shown in the table. Moreover, based on the result 
of Table 8, the p-value for Accuracy, F1-Score, Sensitivity and Specificity 
measures were 0.0034784, 0.0037691, 0.0039877 and 0.004897. These 
reported values demonstrated that, in terms of statistical significance, 
our model outperforms other transforming techniques (i.e., Counter
factual Sets, Rule Conjunctions, Filtering of Conjunction Sets and 
Matrix–Visualization). 

5. Discussion 

In this paper, an available dataset of routine blood tests is used, 
which includes positive COVID-19 cases as well as negative COVID-19 
cases. Our machine learning-based method is trained and evaluated 
for COVID-19 disease diagnosis. The average Accuracy, F1-Score, 
Sensitivity, Specificity and AUROC of our model were 89.98%, 
78.12%, 71.69%, 92.96% and 92.88%, respectively, which is higher 
than other classical and state-of-the-art COVID-19 disease diagnosis 
(Tables 3 and 4). 

Moreover, in terms of the average normalized confusion matrix, the 
developed method was compared with other methods, and the reported 
results showed that in all cases, the developed COVID-19 diagnosis 
model had better performance (Table 5). 

Furthermore, the performance of the proposed feature selection 
method in terms of accuracy and execution time is compared with four 
well-known feature selection methods as well as four state-of-the-art 
feature selection methods. The reported results indicated that the ac
curacy of the developed method is higher than other feature selection 
methods. Moreover, in terms of execution time the reported results 
revealed that, the univariate feature selection methods (i.e. FS and LS) 
have less execution time than multivariate methods due to the fewer 
calculations they perform in their selection process. That is because in 
univariate feature selection approaches, the possible similarity between 
features is not considered in the feature selection process. Therefore, 
these methods have low accuracy in real applications and high- 
dimensional datasets. On the other hand compared to state-of-the-art 
feature selection approaches, the reported results revealed that, the 
proposed feature selection method has the lowest average execution 
time (Figs. 8 and 9). 

The reported results of feature selection phase indicated that, PLT, 
EOS, MPV, CRP, AST, CREAT, WBC, MONO, LYM and RBC were the ten 
most important features, respectively (Table 6). This finding demon
strates the importance of AST, WBC, CRP, RBC and MONO features in 
COVID-19 diagnosis, that is in line with the results of other previous 
studies [7,92]. 

Based on these reported results, it can be said that the developed 
prediction method in this study is one of the most accurate and fastest 
models presented to date. Our proposed model is an intelligent model 
that can help physicians to diagnose COVID-19 positive cases. Through 
our understandable prediction and feature selection phase, it is possible 
to determine which features of datasets were more important in pre
diction. This explainable COVID-19 disease diagnosis model has higher 
transparency and explainability than previous black box methods 
[67–70,103–105] that can improve the acceptance rate and trustworthy 
of intelligent model for physicians. 

In the reminder of this section the reasons for the enhanced perfor
mances of the developed COVID-19 prediction model compared to other 
prediction methods are discussed. These are grounded on a key inno
vation that are incorporated into the developed, which made the model 
perform better than many state-of-the-art methods:  

1 Unlike many previous methods of COVID-19 diagnosis, which use 
PCR and imaging approaches (i.e., Chest X-ray, and Chest CT) and 
have drawbacks such as costly equipment, need to specialist staff, 
and certified labs, our developed model make use of routinely 
available blood test results, which is much faster, accessible, 
cheaper, and affordable than previous methods.  

2 This paper proposes an artificial intelligence decision system to 
provide physicians with a simple and human-interpretable set of 
rules for diagnosing COVID-19 positive cases in the same spirit as 
Decision Tree model together with social graph visualization to 
ensure transparency and explainability for any clinician.  

3 In many previous COVID-19 prediction models, the final prediction 
is made by a single classifier, which means that their generalization 
ability is limited. Contrary to these previous models, a model based 
on Ensemble Learning is developed in this study. As a result of the 
ensemble decision forest model, the prediction accuracy is improved, 
and also the probability of overfitting is reduced.  

4 Irrelevant features, as well as redundant features, strongly affect the 
performance of learning model and the result of COVID-19 diagnosis. 
Therefore, an intelligent prediction model should recognize and 
remove irrelevant and redundant features as far as possible. All of the 
initial features have been used by many previous methods of diag
nosing COVID-19. Therefore, the accuracy and generalizability of 
these methods will be reduced, as well as their computational 
complexity will be increased. In our proposed model, by incorpo
rating an additional feature selection phase, a new COVID-19 diag
nosis model is developed which will enhance the final model’s 
performance.  

5 Though decision forest has a high level of prediction performance, its 
inherent limitations cannot be hidden as well. This can be summa
rized in two factors. First, because the decision forest generates many 
trees instead of one, the classification of decision forest is usually 
inefficient and in real-time prediction systems, this property creates a 
significant vulnerability. Second, a DF must explore a variety of trees 
when it makes a classification. Therefore, the end-user cannot clearly 
justify the model’s predictions and they cannot understand the 
model structure as it is composed of numerous single models. As a 
result, standard decision forests are usually prone to limitation when 
a straightforward and real time explanations are required in the 

Table 9 
Average ranks of the different COVID-19 prediction models on different 
measures.  

Measure Compared COVID-19 diagnosis models 

XGBoost SVM MLP XDT Proposed Model 

Accuracy 4.79 4.06 2.68 2.10 1.34 
F1-Score 4.79 3.93 2.79 2.17 1.31 
Sensitivity 4.68 3.89 2.82 2.31 1.27 
Specificity 4.62 4.06 2.72 2.20 1.37 
AUROC 4.58 4.03 2.79 2.27 1.32  

Table 10 
The results of the Friedman statistics test.   

Measure  

Accuracy F1-Score Sensitivity Specificity AUROC 

Chi-Square 10.3858 13.9218 10.2319 15.0436 15.0321 
df 4 4 4 4 4 
Asymp.Sig 

(p-value) 
0.0034218 0.0037548 0.003295 0.004606 0.004438  
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health-system application. However, when real time is not an 
important aspect, such a limitation can be ignored. 

6. Conclusion and future works 

A severe respiratory disease called COVID-19 has been reported by 
the WHO. Since the beginning of the pandemic until 1st March 2022, 
more than 5.9 million people have died as a result of the COVID-19. 
Recently, artificial intelligence has emerged as a breakthrough of cur
rent strategy, and it can be utilized to diagnose COVID-19 positive cases, 
detect, and predict their mortality. A complex machine-learning model 
like deep learning performs better than simple algorithms for COVID-19 
diagnosis. Although deep learning models perform well, their decisions 
cannot be justified by explanations, which may limit their effectiveness 
in medical applications. 

To overcome this limitation, explainable AI proposes developing a 
suite of machine learning models that have a high level of accuracy and 
are easily explained by physicians. The proposed method includes two 
main phases. In the first phase, a set of relevant and non-redundant 
feature are selected for final prediction. In this developed feature se
lection mechanism, the feature relevance is calculated using the node 
centrality and Fisher Score, whereas the redundancy of features is 
calculated using feature similarities. Then, in the second phase, after 
selecting the final features, in the fourth step, the Decision Forests-based 
classifier is employed to COVID-19 prediction by employing routine 
blood tests. In contrast to previous deep learning-based COVID-19 
diagnosis models, which are difficult to explain for physicians due to 
their black box nature, the developed prediction model is transparent 
through its explainable decision trees. Moreover, by employing an 
ensemble learning-based prediction model, a new COVID-19 diagnosis 
model is developed that will improve the final prediction accuracy. The 
proposed method has been compared to the well-known and newest 
COVID-19 diagnosis models including XGBoost, SVM, MLP and 
eXplainable Decision Trees model with respect to four different perfor
mance metrics: Classification Accuracy, F1–Score, Sensitivity and 
Specificity. The experimental results indicate that the developed pre
diction model achieved outperformed the state-of-the-art methods and 
baseline algorithms. 

The developed model opens the door for the use of explainable AI in 
healthcare applications. Inherent limitations have also been examined 
and thoroughly discussed. In future works, we will attempt to extend out 
proposal model beyond the inherent limitations of DF algorithm by 
endowing a set of rule-based approach that each the integration of 
various DT in DF mechanism to ensure further transparency. 
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