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Abstract: This study established a flexible and eye-readable sensing system for the easy-to-use, visual
detection of milk freshness, using acidity-responsive N-doped carbon quantum dots (N-CQDs).
N-CQDs, rich in amino groups and with characteristic acidity sensitivity, exhibited high relative
quantum yields of 25.2% and an optimal emission wavelength of 567 nm. The N-CQDs fluorescence
quenching upon the dissociated hydrogen ions (H+) in milk and their reacting with the amino
groups produced an excellent linear relation (R2 = 0.996) between the fluorescence intensity and
the milk acidity, which indicated that the fluorescence of the N-CQDs was highly correlated with
milk freshness. Furthermore, a fluorescence sensor was designed by depositing the N-CQDs on
filter-papers and starch-gel films, to provide eye-readable signals under UV light. A fluorescence
colorimetric card was developed, based on the decrease in fluorescence brightness as freshness
deteriorated. With the advantages of high sensitivity and eye readability, the proposed sensor could
detect spoiled milk in advance and without any preprocessing steps, offering a promising method of
assessing food safety.

Keywords: milk freshness; acidity; fluorescent sensor; carbon quantum dots; food safety

1. Introduction

Fresh milk is rich in nutrients and plays an important role in daily life [1]. However,
it is particularly susceptible to spoilage during its production, transportation, processing,
and marketing because it provides a favorable growth substrate for various decay-inducing
microorganisms (e.g., pathogens and spoilage organisms, etc.) [2,3]. The denaturation of
proteins, rancidity of fats, hydrolysis of carbohydrates, and other spoilage reactions that
are caused by microbial fermentation, cause flavors to disappear and nutritional value
to decrease, resulting in huge food waste and financial losses. Moreover, the formation
of harmful substances and the reproduction of microbial pathogens can lead to food
poisoning [4]. Thus, it is of great practical significance to evaluate milk freshness to ensure
milk safety and human health. The microorganisms present in milk begin to break down
lactose into lactic acid, leading to an increase in acidity during storage [5]. Milk with
an acidity > 18 ◦T is considered to be spoiled and unfit for consumption, indicating that
microbes are growing and multiplying in large numbers [6]. Therefore, acidity can be used
as the most important freshness indicator in evaluating milk freshness.

Traditional methods for the detection of milk acidity include neutralization titra-
tions (phenolphthalein indicator titration) [7] and potentiometers (pH meter) [8,9]. These
methods have been successfully applied in the accurate detection of milk freshness [7,9].
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However, electrode-based methods and acid-based titration techniques are not suitable
for low volume detection and on-site monitoring. Certain rapid methods, such as near-
infrared spectroscopy and spectrophotometry, still involve tedious operations and poor
repeatability. Recently, fluorescence sensing methods have been widely used for food
assessment, owing to their high operational simplicity, high sensitivity, and short response
time [10,11]; however, these fluorescence methods need to be improved, owing to the
requirement of specialized instruments [12]. Eye-readable sensors have attracted increasing
attention for their simple and convenient assessment, without the need for electronics
and external digital readouts [13,14]. Such sensors have been fabricated using organic
fluorophores, such as fluorescein isothiocyanate (FITC) [8] and succinimide substituted
2-(2′-hydroxyphenyl) benzothiazole derivative (BTSA) [15]. These fluorescent dyes, which
have good fluorescence emission performance, often suffer from certain disadvantages,
including poor biocompatibility, broad red-tailed photoluminescence spectra, and high
susceptibility to photobleaching [16], prompting us to improve the fluorescence properties
of eye-readable sensors.

Carbon quantum dots (CQDs) are a new type of fluorescent material that have been ap-
plied for food assessment [17], biological analysis [18], and environmental monitoring, [19]
owing to their excellent optical properties and biocompatibility [20]. Previous studies have
shown that CQDs exhibit excellent responses to pH variations and can be used for the
detection of pH and organophosphorus pesticides [17,21,22]. However, there have been
relatively few scientific studies regarding freshness associated with acidity sensing using
CQDs. Therefore, this study aimed to develop flexible and eye-readable fluorescence sen-
sors to monitor milk freshness using acidity-responsive N-doped CQDs, thus, simplifying
the experimental equipment and procedures required for the fluorescence monitoring of
milk freshness during processing, transportation, and marketing (Figure 1). N-CQDs were
synthesized from poly-amino compounds, resulting in rapid responses to rancid milk. The
fluorescence of the fabricated sensors can be quenched by the rancid milk and, thus, can be
used for milk freshness assessments. These low-cost and easy-to-use fluorescence sensors,
which are portable and eye-readable, can be used for the visual sensing of milk freshness,
with the aid of only UV light and the naked eye.
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Figure 1. Schematic illustration of (A) easy-to-use visual sensing of milk freshness, using 
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2.1. Materials and Apparatus 

Chemical reagents (O-phenylenediamine, formamide, quinine sulfate (QS), and 
sodium hydroxide, etc.) and materials (filter paper and cow’s milk, etc.) in this study have 
been described in the experimental section of the supplementary materials file. The 
employed apparatus has also been introduced in the supplementary materials file. 

2.2. Preparation of Acidity-Responsive N-CQDs 
This preparation was performed according to previous studies, with minor 

modifications [23,24]. O-phenylenediamine (0.5 g) was dissolved in 10 mL of formamide, 
and the mixed solution was heated in a microwave oven (750 W, Midea, Tianjin, China) 
for 1 min to obtain a dark yellow solution. Large impurities in the solution were removed 
using a 0.22 μm filter paper. The unreacted o-phenylenediamine and formamide were 
removed by silica gel column chromatography [25]. Silica gel powder dissolved in 

Figure 1. Schematic illustration of (A) easy-to-use visual sensing of milk freshness, using fluores-
cence sensors based on N-CQDs; (B) preparation of carbon quantum dots (N-CQDs); and (C) the
fluorescence quenching of sensors by rancid milk.

2. Experimental Section
2.1. Materials and Apparatus

Chemical reagents (O-phenylenediamine, formamide, quinine sulfate (QS), and sodium
hydroxide, etc.) and materials (filter paper and cow’s milk, etc.) in this study have been
described in the experimental section of the Supplementary Materials file. The employed
apparatus has also been introduced in the Supplementary Materials file.

2.2. Preparation of Acidity-Responsive N-CQDs

This preparation was performed according to previous studies, with minor modifica-
tions [23,24]. O-phenylenediamine (0.5 g) was dissolved in 10 mL of formamide, and the
mixed solution was heated in a microwave oven (750 W, Midea, Tianjin, China) for 1 min
to obtain a dark yellow solution. Large impurities in the solution were removed using a
0.22 µm filter paper. The unreacted o-phenylenediamine and formamide were removed by
silica gel column chromatography [25]. Silica gel powder dissolved in dichloromethane
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(v/v = 1:2) was used as the adsorbent. After the unpurified N-CQDs solution was com-
pletely absorbed, a mixture of ethanol and ethyl acetate (volume ratio: 1:1) was added as an
eluent to collect the pure N-CQDs solution. The effluent flow obtained in the first and last
three minutes was discarded. Pure N-CQDs powder, obtained by vacuum freeze-drying,
was re-dissolved in 10 mL of purified water to obtain the original N-CQDs solution.

2.3. Investigation of Fluorescence Change Mechanism

Acid buffer solutions with different levels of pH (4.5, 5, 5.5, 6, 6.2, 6.4, 6.6, 6.8, 7.0,
and 7.2) were prepared, and 1.8 mL of buffer solution was mixed with 0.2 mL of the
original N-CQDs solution. After standing for 1 min, the mixture was poured into a quartz
colorimetric cell. UV-vis absorption and fluorescence spectra of the N-CQDs in different
buffer solutions were recorded. The mechanism of the fluorescence change in the N-CQDs
was revealed by the fluorescence and absorption properties.

2.4. Establishment of Fluorescence Method

Lactic acid solutions with different acidities (12.1, 14.7, 17.6, 21.0, 24.5, 28.8, 31.8, 34.6,
and 40.8 ◦T) were prepared. Each lactic acid solution (0.2 mL) was mixed with the N-CQDs
solution (1.8 mL) and left standing for 3 min. The fluorescence spectra of the mixtures with
different levels of acidity were recorded and the relation between acidity and fluorescence
intensity was investigated by linear regression. Milk samples at different acidity levels (11.6,
13.7, 17.9, 21.5, 24.5, 27.8, 30, 34.2, and 40.2 ◦T) were prepared by adding lactic acid. Next,
the 200 µL of N-CQDs solution was mixed with the milk sample (1.8 mL). Fluorescence
spectra of mixtures poured into a quartz colorimetric dish were recorded after standing for
3 min. A linear equation was established on the basis of the relation between milk acidity
and fluorescence intensity.

2.5. Fabrication of Visual Fluorescence Method

To prepare the paper-based sensor, filter papers (circles, 2 cm in diameter) were
immersed in the N-CQDs solution, at the optimal concentration, for 2 min. To prepare the
film-based sensor, 2 g of starch, 2 g of polyvinyl alcohol, and 1 mL of glycerol were added
to 100 mL of distilled water and heated for 35 min at 90 ◦C. Thereafter, N-CQDs solution
was added to the cold film-forming solution at the optimal dosage. Subsequently, 18 mL of
film solution was spread on a glass petri dish, 60 mm in diameter. The paper-based and
film-based sensors were dried at 40 ◦C in an oven for 10–12 h. These sensors were vacuum
packaged and stored in the dark at room temperature. After preparing the two types of
sensors, milk (50 µL) at different acidity levels (11.6, 13.7, 17.9, 21.5, 24.5, 27.8, 30, 34.2, and
40.2 ◦T) was added to the sensor. Finally, images of the paper-based and film-based sensors
indicating milk acidity were combined as acidity colorimetric cards.

2.6. Fluorescence Monitoring of Milk Freshness

Fresh, sealed cow’s milk was opened and divided into 24 conical bottles, under aseptic
conditions. Next, they were re-sealed and stored at 37 ◦C for 0, 2, 4, 6, 8, 10, 12, and 24 h.
Three samples were collected at each time point. Acidity sensing was performed under
optimal reaction conditions. Milk samples (0.2 mL) were mixed with the N-CQDs solution
(1.8 mL), stirring evenly. Fluorescence spectra of these mixtures were recorded 3 min later.
Milk acidity was calculated using the fluorescence intensity. Milk freshness was evaluated
by fluorescent sensors, following the procedures described in the above section.

2.7. Standard Methods for Evaluating Milk Freshness

To verify the accuracy of the developed methods, the phenolphthalein indicator
titration method and a sensory evaluation were performed to measure the acidity and
freshness of milk samples [26]. The acidity of lactic acid solution and milk was measured
as follows: milk (10 g) was diluted with 20 mL of freshly boiled water and cooled to room
temperature. After the addition of 0.5% phenolphthalein indicator (2 mL), the diluted milk
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was titrated with 0.1 mol/L of NaOH standard solution. Titration was not stopped until
slightly red and the red color was maintained for 30 s. The volume of NaOH consumed was
substituted into Equation (S1) (X(◦T) = 100 cV/0.1 m) to calculate the acidity of the milk (◦T)
(supporting information). Nine trained judges were selected to evaluate the freshness of
the milk samples. The freshness attributes were evaluated by fresh (good quality), spoiling
(approaching spoiled), and spoiled (poor quality). All samples were served once and their
order of serving was randomized.

3. Results and Discussion
3.1. Structural Characterization of N-CQDs

The N-CQDs were prepared from o-phenylenediamine and formamide, using the
microwave assisting method (Figure 1A). FT-IR spectra, XPS spectra, and EDS mapping
images were obtained to investigate their morphology, active groups, and the constituent
elements of the N-CQDs (Figure 2). TEM images revealed that the N-CQDs had a regular
spherical shape (Figure 2A), with a range of 2.2–4.7 nm in diameter and an average value of
3.2 nm (left inset in Figure 2A), which is indicative of the uniform size of the N-CQDs. The
right inset showed a high-resolution TEM image of a single N-CQD particle, which clearly
revealed that the N-CQDs had a good crystalline structure, with a lattice fringe spacing of
0.22 nm. The FT-IR spectrum of the N-CQDs showed characteristic peaks, centered at 3423,
2933, 1633, 1526, 1114, and 471 cm−1 (Figure 2B). The peaks at 3423, 2933, and 1633 cm−1

were attributed to the nitrogen–hydrogen bonds (NH2), carbon–hydrogen bonds (C-H),
and amide–carbonyl bonds (H2N-C=O), respectively. The peak at 1526 cm−1 was due to the
stretching vibration of the carbon–oxygen double bonds (C=O) or to the carbon–nitrogen
double bonds (C=N). The results indicated that the surface of the N-CQDs was rich in a
large number of active groups (e.g., amine, carboxyl, etc.).

The elemental composition and distribution of the N-CQDs were analyzed by XPS and
EDS mapping (Figure 2C,D). The inset of Figure 2C shows an SEM image of the N-CQDs
powder, used for analysis. The XPS spectrum of the N-CQDs (Figure 2C) displayed that
three binding energy peaks, centered at 285.94, 398.99, and 532.49 eV, were assigned to
the carbon (C), nitrogen (N), and oxygen (O) elements, with relative contents of 19.85%,
2.13%, and 78.02%, respectively (Table S1). The XPS spectrum of the C1s (Figure S1A)
displayed three peaks of 285.0, 286.0, and 288.0 eV, generated from the C-C, C-N and
C=O groups, respectively. The N1s spectrum (Figure S1B) presented three peaks of 399.1,
400.5, and 401.3 eV, caused by the nitrogen in pyridine, amino, and pyrrole, respectively.
The XPS spectrum of the O1s demonstrated that the characteristic binding energy peaks
were centered at 531.7 and 533.0 eV, and their corresponding characteristic groups were
C=O and C-OH and C-O-C, respectively (Figure S1C). In addition, EDS mapping was
used to analyze the elemental distribution of the N-CQDs (Figure 2D). The first image is
a superposition image of the C, N and O elements. The distribution of the C, N and O
elements on the N-CQDs surface is displayed in the last three images of Figure 2D. These
results further demonstrated the successful synthesis of N-CQDs, which are composed of
evenly distributed C, N and O elements, and are rich in amine and carboxyl groups.

3.2. Optical Properties of N-CQDs

The UV-vis and fluorescence spectra, fluorescence lifetime, and relative fluorescence
quantum yields (QYs) were analyzed to verify the excellent optical properties of the
N-CQDs, especially their fluorescence (FL) characteristics (Figure 3). As shown in Figure 3A,
the N-CQDs exhibited obvious characteristic absorption peaks at 297 and 415 nm, which
were attributed to π−π* transitions of sp2-conjugation in the carbon core and n−π* transi-
tion of functionalized molecules or doped atoms on the N-CQDs surface, respectively [24].
The N-CQDs solution was observed to be yellow under natural light (inset of Figure 3A).
The emission spectra of the N-CQDs, excited at different wavelengths (320–430 nm), showed
that the optimal excitation and emission wavelengths were 380 nm and 567 nm, respectively
(Figure 3B). The solution displayed distinct yellow fluorescence under a UV light of 365 nm
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(inset in Figure 3B). The emission wavelengths were excitation-dependent; however, the
red shift of the emission wavelength, with an increasing excitation wavelength, was not
significant because of the 89◦angle between the emission wavelength tendency line and the
horizontal line. This may be due to the fact that the N atoms doped on the surface of the
N-CQDs inhibited this shift [24].
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Figure 2. (A) TEM image of N-CQDs, inset: diameter distribution of N-CQDs and high-resolution
TEM of a single N-CQD particle; (B) FT-IR spectrum of N-CQDs; (C) XPS spectrum of N-CQDs, inset:
scanning electron microscopy (SEM) image of N-CQDs powder; and (D) EDS mapping images of
elements on the surface of N-CQDs.

In this study, formamide acted as a passivator to synthesize the N-CQDs, as such, the
increase in the N content was able to change the defect in the energy band to improve the
FL efficiency [18]. Both the relative QYs and the fluorescence lifetime (τ) were measured
to evaluate the FL efficiency of the N-CQDs. τ is the time required for the FL intensity
to drop to 1/e of the maximum FL intensity in the excited state [27]. Figure 3C shows a
fluorescence lifetime scatter plot of the N-CQDs, which was fitted by single, double, and
triple exponential function. It was found that the fitting result of the single exponential
function was optimal, and the τ of the N-CQDs was 5.07 ns. The fitting curve equation was
y = 1024.35exp(−x/5.07) + 29.96 (R2 = 0.98). The fluorescence QY was an important index
for evaluating FL efficiency. Quinine sulfate (with QYs of 54%) was used as the standard
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material to measure relative QYs. In Figure 3D, the black fitting curve exhibited the linear
relation between the absorbance and the FL intensity (a.u.) of quinine sulfate, while the
red fitting curve illustrated the linear relation between the absorbance and the FL intensity
(a.u.) of N-CQDs. The QY of the N-CQDs was calculated to be 25.2%, by substituting the
slopes of the two fitting curves into Equation (S2) [Qx = Qst (Ast/Ax) (Ix/Ist) ((η2

x)/(η2
st)],

as described in the supporting information. As shown, the FL properties were excellent
and better than some of the previously reported N-CQDs, because of the N doping [24].
The N atoms can be protonated, and this proton transfer to the conjugated C structure may
result in FL enhancement of the N-CQDs [28].
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3.3. FL Response to Solutions with Various pH

The UV-vis absorption and fluorescence spectra of the N-CQDs in solutions with dif-
ferent pH values (4.5, 5, 5.5, 6.0, 6.2, 6.4, 6.6, 6.8, 7.0, and 7.2) were explored to demonstrate
the acidity-sensitive characteristics, revealing the FL response mechanism (Figure 4). The
UV-vis absorption spectra of the N-CQDs under different pH conditions are displayed in
Figure 4A. The absorbance at 415 nm was regularly increased, and their peak wavelengths
remained unchanged as the pH value changed from 7.0 to 5.5. However, the absorption
peak’s red shift was obvious at a pH < 5.5. As shown in Figure 4B, the FL emission wave-
length was maintained at approximately 567 nm under different pH values (7.2–4.5). There
was no emission wavelength shift, owing to the 90-degree angle between the emission
wavelength tendency line and the horizontal line. Moreover, the N-CQDs were sensitive
to H+, as indicated by the quenching of the FL intensity with decreasing pH values. Fluo-
rescence quenching is typically divided into dynamic and static quenching [29]. If the FL
quenching process is treated as dynamic quenching, the interaction relationship between
the N-CQDs and the quencher molecules (H+) can be described by the Stern–Volmer (SV)
equation (Equation (S3): F0/F = 1 + KSV [Q] = 1 + kqτ0 [Q], supporting information) [23,30].

The FL quenching mechanism involving N-CQDs and H+ was analyzed by SV fitting
and optical characteristic peaks (Figure 4C,D). The F0/F value increased exponentially, as
the pH value decreased (F0/F = 9466.57exp(−VpH/0.58) + 1.01, Figure 4C). pH values in
the range of 6.8–6.2 had a good linear relation with the F0/F value, via the SV equation
fitting (F0/F = 1 + 0.02VpH, inset in Figure 4C). The SV equation showed that the value of
KSV was 0.02, and kq was calculated to be 6.69 × 106 L/mol·s (τ0 = 5.07 ns). The kq value
between the N-CQDs and H+ was much lower than the limiting diffusion rate constant of
the fluorophore (2.0 × 1010 L/mol·s), and the UV-vis absorption spectra demonstrated that
there was no shift in the range of pH 6.8–6.2. These results indicate that the FL quenching
mechanism at pH 6.8–6.2 is dynamic. The significant red shift at pH 5–4.5 indicates that
the FL quench between the N-CQDs and H+ occurs via a static quenching process, which
was attributed to the formation of the N-CQDs-H complex. In summary, the FL quenching
mechanism gradually changed from dynamic to static, with a decrease in the pH value. The
FL of the N-CQDs was quenched as a result of the inhibition of the proton transfer from N
atoms to the conjugated structure as the pH decreased (Figure 4D). A study concerning
the mechanism of FL quenching demonstrated that N-CQDs had a regular response to
solutions of pH 7.0–5.5.

3.4. N-CQDs-Based Sensitive FL Assay

The increase in milk acidity was mainly caused by the production of dissociated
hydrogen ions (H+) from lactic acid. The relation between the FL intensity and the acidity
of the lactic acid–milk and lactic acid–water solutions was investigated for the rapid and
sensitive detection of milk acidity. The optimal reaction parameters (N-CQDs dosage and
reaction time) are described in the Supplementary Materials (Figure S2). Figure 5A shows
the FL spectra of N-CQDs in lactic acid–water solution, under the optimal conditions. The
lactic acid–water solution was a mixture of lactic acid, as solute, and water, as solvent
(inset in Figure 5A). It can be seen that the maximum FL emission peak of the N-CQDs
was 567 nm. The FL intensity at 567 nm decreased, with increasing acidity (12.1, 14.7, 17.6,
21.0, 24.5, 28.8, 31.8, 34.6, and 40.8 ◦T). A good linear relation was found between the FL
intensity at 567 nm and the acidity (12.1–34.6 ◦T) (Figure 5B). Their linear equation was
y = 6026.22 − 155.17x [R2 = 0.990, where y is the FL intensity (a.u.), and x is the milk acidity
(◦T)]. These results indicated that the N-CQDs had a regular response to the acidity of the
lactic acid–water solution, without interfering substances (inset in Figure 5B).
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Figure 4. (A) UV-vis absorption spectra of N-CQDs solution at different pH values (4.5, 5, 5.5, 6,
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and pH values (6.8–6.2), the error bars were equal to the standard deviation of three measurements;
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The presence of other trace acid substances (e.g., fatty acid, citrate, phosphate, casein,
etc.) in milk may interfere with the FL properties of N-CQDs. Milk samples with differ-
ent levels of lactic acid were investigated to determine the FL response of the N-CQDs
(Figure 5C). Figure 5C shows the FL spectra of the N-CQDs in lactic acid–milk solutions at
different acidities (11.6, 13.7, 17.9, 21.5, 24.5, 27.8, 30.0, 34.2, and 40.2 ◦T). The FL intensity
at 567 nm gradually decreased, with increasing milk acidity. A new fluorescence peak of
approximately 490 nm was attributed to the fluorescent molecules of milk, such as casein,
and Vitamins B2 and B6 [31]. By fitting the relation between the FL intensity and the milk
acidity, a good linear relation between the two was observed, with a milk acidity range of
11.6–34.2 ◦T (Figure 5D). Their linear equation was y = 1554.63 − 28.77x (R2 = 0.996) where
y is the FL intensity, and x is the milk acidity (◦T) Compared with the FL characteristics
of the N-CQDs with added lactic acid–water solution, the FL intensity decreased by two
thirds (from 3982 a.u. to 1237 a.u.), and a new FL peak appeared, due to the interference
from protein (especially casein) and fatty acid. The results demonstrated that the milk
matrix had a significant influence on the FL characteristics of the N-CQDs. This FL method
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with an excellent linear coefficient, established by milk as the solvent (inset in Figure 5D).
This shows that acidity-sensitive N-CQDs have a regular signal response to different levels
of rancid milk, without any negative influence in practical applications. The coefficient
of variation of the FL response signal was lower than 3.64%, by measuring the N-CQDs
before and after storage, at 4 ◦C for 30 days. This indicated that the storable N-CQDs
could reduce the reagent preparation time and simplify the experimental steps. This FL
method was more credible and more reproducible, compared to other detection methods
for milk acidity [7,8,13]. As a result, the FL method based on acidity-responsive N-CQDs
can be successfully used to detect different levels of acidity in milk, by investigating the FL
characteristics of milk samples without any pre-processing steps.

3.5. FL-Based Visual Assay

Since there is a high correlation between milk acidity and milk freshness, the acidity-
sensitive N-CQDs were further used to fabricate paper- and film-based FL sensors for the
rapid and visual sensing of milk freshness. The fabricated sensors were performed using
50 µL of milk samples at different acidity levels (11.6, 13.7, 17.9, 21.5, 24.5, 27.8, 30.0, 34.2,
and 40.2 ◦T). The paper- and film-based standard colorimetric card at different levels of
milk freshness were acquired using an FL imaging analyzer, with a UV light of 365 nm
(Figure 5E). The FL brightness in paper- and film-based sensors decreased with an increase
in milk acidity. As displayed by the paper-based sensor, the bright yellow–green gradually
became a light green, then turned a deep yellow, and, finally, turned purple or blue. For
the film-based sensors, the deep yellow–green FL changed in the same way as that of the
paper-based sensors. However, the FL performance of paper-based sensors was superior
to that of film-based sensors because of their wider color range and higher FL brightness.
According to the milk safety standard, milk with an acidity >18.0 ◦T was considered
unqualified, and that at >20 ◦T was badly spoiled and no longer edible [6,32]. The FL
brightness characteristics of fresh and spoiled milk are depicted by two color gradient
arrows in Figure 5E. The FL brightness from the head to the red vertical line represented
fresh milk, and that from the red vertical line to the end indicated that the milk was spoiled.
The FL brightness in the presence of different levels of rancid milk was collected, and these
color characteristics could rapidly, accurately, and visually indicate milk freshness.

3.6. Monitoring of Milk Freshness

Milk, when stored at 37 ◦C, acted as a practical application sample to verify the feasibil-
ity of the developed system. The phenolphthalein indicator titration method and a sensory
evaluation were used as the standard means to evaluate the accuracy of the developed
system. Figure 6A shows the FL spectra of the N-CQDs added to milk at different storage
times (0, 2, 4, 6, 8, 10, 12, and 24 h). It can be seen that the FL intensity at 567 nm gradually
decreased as the storage time increased. Milk acidity can be calculated by substituting
the FL intensity at 567 nm (F567) into the linear equation (acidity = (1554.4 − F567)/28.77).
The acidity of the milk stored for 0, 2, 4, 6, 8, 10, 12, and 24 h was 14.9, 16.3, 17.2, 19.7,
21.4, 23.36, 25.5, and 36.1 ◦T, respectively (Figure 6B). The milk acidity at each storage
time, measured using the standard method, was 15.2, 15.9, 16.0, 19.3, 21.1, 23.1, 25.2, and
36.4 ◦T, respectively (Figure 6B). To evaluate the differences between the two methods, a
significance analysis (F test) was conducted on data for the two groups, which revealed that
the two methods had no significant difference (p > 0.05) [33]. According to the freshness
threshold set in national standards (purple dot line), milk stored for > 4 h becomes stale.
These results showed that milk that had been stored for 6 h was unqualified and that milk
that had been stored for 12 h was unsafe. The freshness of milk can be accurately and
rapidly monitored using the developed FL method.
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(B) Milk acidity during storage detected by the fluorescence method (pink bars) and standard
method (blue bars), Purple dot line represented the milk freshness threshold set in national standard;
(C) Monitoring milk freshness over different storage times by fluorescence sensors.

On-site sensing is necessary for testing milk freshness during the milk production,
processing and sales process. The fabricated FL sensors can be used for the visual sensing of
milk freshness without any instrument other than the naked eye and UV light (Figure 6C).
The FL brightness of the paper-based sensor changed with the addition of milk samples
at different storage times. The milk stored for 4 h was fresh, according to the standard
colorimetric card. The acidity of the milk stored for 6 h was >17.9 ◦T, indicating that the
milk was unqualified and approaching spoiled (yellow circle). The acidity of the milk
samples stored for 8 h was approximately 21.5 ◦T, indicating that the milk was spoiled.
From the results obtained using the film-based sensors, the acidity of the milk samples after
8 h and 10 h was approximately 17.9 and 21.5 ◦T, respectively. This revealed that the milk
stored for 8 h was approaching spoiled (yellow circle), and that the milk stored for 10 h was
spoiled. The paper- and film-based sensors turning blue indicated that the milk acidity for
the samples stored for 12 h was >30 ◦T, indicating that the milk might cause food poisoning
(red circles), owing to the presence of various decay-inducing microorganisms.

A sensory evaluation revealed that the milk at 10 h was spoiled and no longer consum-
able, according to the smell, taste, and color of the milk. The FL sensors exhibited a visual
response to rancid milk, and the FL color changed almost instantly (<5 s). The paper-based
method was more sensitive than the film-based method, with better performance than the
sensory evaluation, owing to the earlier detection of spoiled milk. The sensing performance
may depend on the FL brightness of the N-CQDs and the combination effect, involving
N-CQDs and H+ [34,35]. The N-CQDs, on paper, displayed excellent FL properties and
the combination between H+ and the N-CQDs was more effective and complete than that
on the starch-gel film. The steps involved in the developed system include the following:
(1) adding milk without pretreatment, which takes <1 min; and (2) visually judging the
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freshness by referring to the standard colorimetric card, with the aid of only the naked eye
and UV light, which can be done within 1 min. This work integrated the N-CQDs into
flexible substrates and eliminates the requirement of sophisticated instruments, thereby,
reducing complexity. The portable FL sensor could be applied wherever milk needs to
be monitored. These results demonstrated that this flexible and eye-readable sensing sys-
tem can accomplish an easy-to-use visual detection method of milk freshness, with high
sensitivity and stability.

4. Conclusions

In this study, easy-to-use fluorescence sensors, which were based on acidity-responsive
N-CQDs, were designed for the visual sensing of milk freshness. The N-CQDs prepared
from poly-amino substances exhibited excellent fluorescence properties and were confirmed
to have a regular response to rancid milk, due to the effective fluorescence quenching as
the milk’s freshness decreased. The fluorescence intensity showed an excellent linearity
(R2 = 0.996) with rancid milk over the range 11.6–34.2 ◦T. Moreover, the fluorescence
sensors based on the N-CQDs were fabricated with portability and eye-readability in mind,
using paper and starch-gel films as substrates. A significant change in the fluorescence
brightness (from bright yellow–green, to deep yellow, and, finally, to blue) was observed
by the naked eye as decreasing milk freshness. The practical applications of the results of
the fluorescence sensors were consistent with the results obtained by standard methods.
This assay was completed within 2 min, via the naked eye under UV light and without
any milk pretreatment. These results suggest that a visual sensing of milk freshness can
be performed, providing tremendous prospects for the sensitive, rapid, and easy-to-use
monitoring of food quality and safety.
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