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Temporal Context affects interval 
timing at the perceptual level
Eckart Zimmermann   1 ✉ & Guido Marco Cicchini   2

There is now ample evidence that when observers are asked to estimate features of an object they 
take into account recent stimulation history and blend the current sensory evidence with the recent 
stimulus intensity according to their reliability. Most of this evidence has been obtained via estimation 
or production paradigms both of which entail a conspicuous post-perceptual decision stage. So it is an 
unsolved question, as to whether the trace of previous stimulation contributes at the decision stage or 
as early as the perceptual stage. To this aim we focused on duration judgments, which typically exhibit 
strong central tendency effects and asked a duration comparison between two intervals, one of which 
characterized by high uncertainty. We found that the perceived duration of this interval regressed 
toward the average duration, demonstrating a genuine perceptual bias. Regression did not transfer 
between the visual and the auditory modality, indicating it is modality specific, but generalized across 
passively observed and actively produced intervals. These findings suggest that temporal central 
tendency effects modulate how long an interval appears to us and that integration of current sensory 
evidence can occur as early as in the sensory systems.

Our sensory systems continuously inform us about the color of objects, the identity of faces, the duration of 
events. Some of these judgments are reached with good sensory information but many, being it for short expo-
sure, lack of attention or scarce sensory information are based on far-from-ideal sensory information. There is 
now growing evidence that in such conditions observers estimate or reproduce stimulus qualities with a strong 
central tendency which steers responses towards the average of previous stimulation history1,2.

One of the domains where these effects are particularly strong is time perception, in which judgements can 
gravitate towards an intermediate interval (Vierord’s Law3–7. Despite the pressing need for accurate temporal 
estimations, judgments do not have Weber Fractions as low as other sensory systems8,9 and are susceptible to 
many factors such as action, intention and execution10–12, attention13, pace of presentation14,15 and masking16. In 
line with this, central tendencies in duration reproduction tasks can be quite powerful and distort estimates up to 
60%8. For this reason, temporal judgments have proven as a useful benchmark to demonstrate many properties of 
central tendencies. In particular it has been shown that reliability of each stimulus is paramount in determining 
central tendency2,8,17–20 and that regression towards the mean is an effective strategy to tame the response errors 
in the face of noisy sensory signals2,18,21.

Importantly, much of the literature on central tendency effects is built upon estimation or reproduction par-
adigms which leave ample room for post-perceptual decision mechanisms20. However, it is unclear whether 
similar strategies are applied as early as in the perceptual systems. Indeed, in a seminal experiment Roach and 
colleagues21 interleaved stimuli belonging to distinct ranges and distinct modalities, and asked either to perform 
temporal reproduction with the same motor act or with two distinct motor acts. The authors found that when one 
motor output is requested, responses converge towards a common average; separate central tendencies emerged 
only if subjects were asked to perform distinct motor acts for the two modalities indicating a crucial role of the 
motor planning.

Given the usefulness of central tendencies in reducing error and the fact that other perceptual judgments can 
be affected by recent stimulus history22–24 it would be rather surprising if mechanisms for duration perception 
were immune from such a mechanisms. The evidence in this respect is quite scarce and fragmented. On one 
hand, in the same manuscript Roach et al. have reported that after some practice (4 or more sessions of 140 trials 
each) separate priors emerge even if a single motor response was requested. This indicates that sensory systems 
have a capability of storing temporal context, but it requires time. On the other hand a couple of recent works 
have shown that when stimuli follow a regular pattern, the perceived timing of the last stimulus of the sequence 
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is biased towards the putative time belonging to the rhythm, indicating some capacity to warp perceived time to 
comply with more wholistic representations14,15. Yet, to date, a clear demonstration of central tendency in tem-
poral perceptual judgments is still missing. The central research question of the present study asks if temporal 
regression of the mean exists on the perceptual level.

Measuring perceptual distortions induced by the temporal context is challenged by the fact that if a distortion 
of perceptual time were taking place, it would affect equally all stimuli that subjects have to compare and null 
effect would result. Our method to overcome this difficulty leverages on the fact that intervals carrying high 
uncertainty should display stronger context effects than intervals with better temporal resolution. So a perceptual 
comparison between a high uncertainty and a low uncertainty stimulus should reveal if context effects are taking 
place25. In this work we exploited this principle and introduced high uncertainty in one of the two stimuli either 
masking the visual stimulus, or presenting the two auditory markers to the two ears separately. We demonstrate 
that this simple manipulation uncovers strong context effects in a purely perceptual comparison task. Further we 
show that temporal context effects are modality specific and they can be strong enough to override other temporal 
distortions like those introduced by voluntary action.

Results
Experiment 1: Baseline and visual distortion.  We measured how time perception is affected by stimu-
lus range asking subjects to compare a probe and a comparison interval (see Fig. 1A). Both intervals were purely 
visual, defined by the brief presentation of two visual bars. In separate sessions, probe interval durations ranged 
from 33 to 117 ms or from 117 to 200 ms. The comparison interval that followed the probe varied in duration 
served to derive the Point of Subjective Equality (PSE). We first ran the experiment in a baseline condition in 
which probe and comparison intervals were identical stimuli except for their duration. Figure 1B shows perceived 
duration of the probe interval in the baseline condition averaged across all observers. We estimated the regression 
lines for intervals with low duration (red color, regression: 10.53 + 0.95×) and for intervals with high duration 
(green color, regression: 44.48 + 0.75×). The size of the range effect can be quantified by the slope of the regres-
sion line. If the results are unaffected by a range effect, all data should lie on the identity line and the regression 
slope would be 1. Any shift of the slope towards 0 would indicate the strength of a regression to the mean. In order 
to test the putative range effect statistically, we calculated regression lines within each observer and tested the 
respective slopes of all observers against 1. In the baseline condition we found that slopes were not statistically 
different from 1 for low intervals (t(3) = −0.57, p = 0.31) but only for high intervals (t(3) = −3.53, p = 0.02). 
See supplementary material for individual data. When we ran the experiment in the visual distortion condition, 
the first visual bar in the probe interval was presented on top of a whole-field mask (see Fig. 1A). Earlier studies 
have shown that this condition leads to an increase of discrimination thresholds along with a compression of 
apparent time16,26. Figure 1C shows perceived duration of the probe interval in the distortion condition averaged 
across all observers from Experiment 1. In contrast to the baseline condition when the probe interval contained 
a mask, estimates gravitate heavily towards the average interval of the session (average slope for low intervals = 
49.04 + 0.10×, average slope for high intervals = 75.24 + 0.22×). T-tests confirmed that slopes for low (t(4) = 
−6.2, p < 0.005) and high (t(4) = −9.9, p < 0.001) intervals were significantly shallower than 1, indicating a gen-
uine regression towards the average, even in a perceptual task.

No transfer of visual temporal context to audition.  Next, we asked about transfer of central tendency 
effects between the visual and the auditory modality. To this end, we adopted and modified an auditory task that 
has been demonstrated to induce a temporal distortion10 (see Fig. 2A). The distortion modifies duration per-
ception if temporal interval markers are presented to different ears compared to when they are presented to the 
same ears. We therefore presented an interval start marker to one ear and after the duration of the interval, the 
second marker to the other ear. Observers had to compare the duration of this interval to a comparison interval 
in which interval start and end markers were presented to both ears. Although for this illusion only a reduction 
of perceived duration had been reported, we found in piloting experiments that this illusion was also amenable 
for regression to the mean. We interspersed these auditory trials between the visual trials such that trials con-
taining the auditory distortion represented only a fraction (1/7) of all trials. The physical duration of the auditory 
distortion in this experiment was always 117 ms whereas the visual trials could be either short (33 to 117 ms) or 
long (117 to 200 ms). Modulation of duration estimation by interval context was indicated by differences in judge-
ments of the 117 ms interval when presented together with shorter or longer visual intervals (see Fig. 1D–F for 
example psychometric functions). On average, interval duration judgements for the visual illusion were strongly 
biased towards the mean (see Fig. 1H). However, in the randomly interleaved transfer trials containing the audi-
tory stimuli, there was no modulation by interval context and estimations were virtually identical (see Fig. 1F,H). 
Transfer of central tendency effects between the visual and the acoustic modality was also absent in the average 
data as can be seen in Fig. 1H. As we collected these data along with the complementary experiment where the 
transfer was from audition to vision (Experiment 2), we decided to analyze the entire dataset together so for sta-
tistical analysis please refer to the section on Experiment 2.

Subjects perform a genuine comparison between the stimuli.  Since the probe interval is noisier 
than the comparison due to the presentation of the mask, subjects could choose to base their judgement on the 
average duration of all comparison intervals27. In this regime, they would ignore the probe interval and respond 
whether the current comparison interval is shorter or longer than the average of all previous comparison inter-
vals. To measure how strong this effect was in our dataset we repeated the visual distortion condition consider-
ing only one duration for the probe interval (117 ms). We ran separate blocks using two well separated interval 
duration ranges for the comparison, i.e. the allegedly more informative, stimulus. If subjects ignored the probe 
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Figure 1.  Temporal context affects perception of time. (A) Stimulus sequence in the visual illusion condition. 
A probe interval of fixed duration has to be compared with a comparison interval whose duration varied 
and allowed to extract psychometric functions. In the baseline condition both the probe and the comparison 
intervals were delimited by a red bar upon an uniform background, in the visual illusion condition (displayed 
here) the fixed probe interval was delimited by a bar over a luminance mask and a bar upon an uniform 
background. Such manipulation is known to introduce temporal distortions and/or increase in uncertainty 
(Zimmermann et al., 2014; 2016). (B) Perceived duration of stimuli in the baseline condition either in a session 
comprised only of short intervals (33–117 ms -red curve) or long intervals (117–200 ms - green curve). Isolated 
data points indicate perceived duration of each probe interval along with standard errors of the sample mean. 
Grey region delimits the 117 ms stimulus which has been presented in both temporal context conditions (short 
and long intervals). (C) Data from the “visual illusion condition” in which one of the two bars of the probe 
was presented superimposed on a mask. (D,E) Psychometric functions of a representative subject judging the 
duration of a 117 ms stimulus; red data points indicate data when extracted from the “brief intervals” condition, 
green data points are extracted from the “long intervals” condition. Psychometric curves indicate best fitting 
cumulative gaussian functions which estimate the point of subjective equality at which probe and comparison 
are perceived as having the same duration (indicated by vertical lines). (F) Psychometric curves for the visual-
to-auditory transfer condition in which presentation of visual intervals provided a temporal context (86% of 
trials) and interspersed auditory intervals of 117 ms measured the transfer of the context to other modalities. 
As before the range of intervals could be short (33–117 ms - grey) or long (117–200 - black). Psychometric 
curves display only the crucial visual trials of 117 ms where transfer was measured. (G) Control condition. In 
order to control for the susceptibility of judgments to the durations of the second comparison interval we asked 
a comparison of a 117 ms visual stimulus with a mask either using a range of comparisons extracted from a 
uniform distribution either of brief or long intervals. The effect on perceived time when testing with the two 
temporal contexts is plotted against the average difference oft he probe intervals in the two sessions. Symbols 
indicate individual data, hollow symbol average effect. The thin dashed line indicates a prediction of a model 
which ascribes the whole central tendency  to the difference in the probe intervals used in the two sessions. 
(H) Average perceived duration in the four experimental conditions shown in panels D-G. Error bars indicate 
the standard error of the sample mean. Colored symbols show individual subject data. The dashed line shows 
veridical interval duration (117 ms).
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stimulus and based their responses only on the relative duration of the comparison intervals, the two interval 
duration ranges should yield different psychometric curves gravitating around the average comparison stimulus.

In order to estimate the putative influence of the comparison intervals on the 117 ms probe intervals we cal-
culated the change in PSE introduced by the two different temporal contexts and plotted it against the mean 
duration difference between the two conditions (long probes – short probes, see Fig. 1G). The colored symbols 
mark the different subjects. The hollow data point represent the average. It is clear from the graph that the average 
drift of the psychometric functions even amounts to a negative effect (−9.04 ± 18.61). Besides the average values, 
also the correlation between these two variables is weak (r = 0.08) and likely reflects a non-dependence between 
the two measures (BF = 0.46).

To better frame this result we also display the prediction of a model which ascribed the whole central tendency 
to the range of duration of probe intervals. In the visual distortion condition, we found slopes of 0.10 and 0.22 
in the short interval and long interval conditions corresponding to a weight of the context (1-slope) of 90% and 
78% respectively (on average 84%). For this reason if all of the effect reported in that experiment was due to the 
diversity between the probe intervals we should have found that PSEs in the two probe conditions shift about 84% 
of the difference of the probe ranges (dashed line y = 0.84×). Comparison of this model to the data yields the 
impression of a rather poor fit. This is substantiated when calculating the maximum likelihood that such a model 

Figure 2.  Temporal context does not generalize across modalities. (A) Stimulus timeline for an auditory 
version of the experiment in which the probe intervals was marked by a monaural presentation of a beep, and 
comparison interval by binaural presentation. These trials constituted 6/7 of trials and provided a temporal 
context. The remaining  1/7 of trials comprised a visual stimulus similar to that of the visual illusion condition. 
(B) Perceived interval duration of an auditory stimulus either embedded in a brief interval context or in a long 
interval context. Conventions are similar to Fig. 1B and display that also in the auditory modality temporal 
intervals can be attracted towards the center of the stimulus distribution. (C) Psychometric curves for 117 ms 
auditory probe intervals either in a brief interval context (red) or in a long interval context (green). Dashed lines 
indicate PSE, all other conventions are like in Fig. 1D–G. (D) Psychomeric curves for a 117 ms visual interval 
in the transfer trials presented amongst either brief or long auditory intervals. (E) Summary statistics for the 
conditions of Fig. 2C,D, error bars represent the standard error of the sample mean. Colored symbols show 
individual subject data. The dashed line shows veridical interval duration (117 ms).
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explains the data and dividing it by the likelihood that the best fitting linear model produces the data. The ratio 
between the two likelihoods is 105.8, indicating that overall this hypothesis is capturing very little of the data.

Experiment 2: auditory distortion.  Next, we tested presence and transfer of central tendency effects in 
the auditory modality. In order to lower the reliability of auditory signals we presented one auditory interval 
marker to the left and the other to the right ear (see Fig. 2A). As can be seen in Fig. 2B, interval judgments were 
strongly modulated by central tendency effects under this condition. In order to test the putative transfer of audi-
tory regression to visual perception, we interspersed trials containing the visual distortion between the auditory 
trials.

The participant shown in Fig. 2C showed a clear central tendency effect for auditory duration judgements 
with PSEs changing even twofold. Average data (Fig. 2B) revealed a strong group effect (slope for low intervals 
= 44.74 + 0.40×, slope for high intervals = 105.85 + 0.12×). A t-test confirmed that slopes for low (t(4)=−6.19, 
p < 0.001) and high intervals (t(4) = −9.94, p < 0.001) were significantly shallower than 1. However, in the trans-
fer trials their judgements did not differ between trials that were embedded in shorter or in longer regression 
trials (see Fig. 2D). What can be seen for both transfer conditions (gray and black) is an underestimation of the 
117 ms interval which reflects time compression induced by the presentation of the mask in the probe interval. 
This underestimation is also reflected in the average data (see Fig. 2E). On average, regression to the mean of audi-
tory judgements but no transfer onto the visual modality occurred (see Fig. 2E). A 2 × 2 × 2 repeated measures 
ANOVA with the factors Transfer direction (visual->auditory/auditory->visual), Trial Type (regression trial/
transfer trial) and Interval Context (short/long) revealed a significant main effect for the factor Interval Context 
(F(1,4) = 22.08, p < 0.01) and a significant interaction effect between the factors Trial Type and Interval Context 
(F(1,4) = 10.75, p = 0.03).

Experiment 3: Active/passive transfer
We also asked about transfer of central tendency effects between passively observed and actively produced distor-
tion of time. We chose the intentional temporal binding effect where a button press leads to a temporal interval 
compression between the press and the following sensory event11 (see Fig. 3A). We first tested interval judge-
ments for the passive mask illusion again. As in Experiment 1, we found regression to the mean for both interval 
ranges (see Fig. 3B, slope for low intervals = 38.63 + 0.38 ×, slope for high intervals = 94.28 + 0.32 ×). A t-test 
confirmed that slopes for low (t(4) = −9.18, p < 0.001) and high intervals (t(4) = −13.33, p < 0.001) were signif-
icantly shallower than 1.

In order to measure the transfer of the regression effect, we interspersed trials between the passive trials that 
contained the active intentional temporal binding paradigm (see Fig. 3A). As in Experiment 2 these trials repre-
sented 1/7 of all trials in the session. In trials containing the active illusion the probe interval start was marked by 
a button press performed by the subject and the end by a flashed visual bar. The duration of these intervals had to 
be compared against intervals defined by two bar flashes.

Temporal judgements for the passive and for the active 117 ms intervals are shown in Fig. 3C,F for one subject. 
In both distortions, this subject demonstrated a clear central tendency effect. We then tested interval judgements 
for the active distortion. Similarly to the passive distortion we found regression to the mean (see Fig. 3E, slope for 
low intervals = 49.14 + 0.29×, slope for high intervals = 95.03 + 0.29 ×). A t-test confirmed that slopes low (t(4) 
= −8.14, p < 0.001) and high intervals (t(4) = −2.9, p < 0.05) were significantly shallower than 1.

These regression effects were found for the active distortion but also for the interspersed passive distortion 
(see Fig. 3D,G for a single subject). On average, regression transferred almost completely between the passive and 
active distortions (see Fig. 3H). A 2 × 2 × 2 ANOVA with the factors Transfer direction (Passive->Active/Active-
>Passive), Trial Type (Regression trial/Transfer trial) and interval context (short/long) revealed a significant 
main effect for the factor interval context (F(1,4) = 14.46, p = 0.019). Thus, both regression and transfer trials 
were affected by the interval context. There was no statistical evidence for a difference between transfer direction 
or trial types.

Discussion
In this study we investigated temporal duration judgments and showed that even perception is affected by cen-
tral tendency. Principally, it is impossible to measure central tendency when two stimuli have equal sensory 
resolution. However, when we introduced additional noise into one of the intervals by presenting a mask, or by 
playing sounds to both ears separately or by active button pressing, we found that duration matches were attracted 
towards the mean of all presented intervals. Further, perceptual regression towards the average temporal duration 
was modality-specific. We did not observe any transfer of regression between visually and auditory defined inter-
vals. However, within the visual modality regression to the mean did transfer between passively observed and 
intervals where one of the two intervals was delimited by an action. These findings are consistent with the idea of 
central tendency effects taking place at the perceptual level.

We found that if the setup allows distortions and central tendency effects to emerge - i.e. when intervals are 
presented in a range of durations - strong regression effects occur and can even cancel out the distortion. This has 
been overlooked in the previous literature as temporal distortions were mostly tested with a single interval dura-
tion. The intentional binding effect - that was used also in the present study - for instance, usually is investigated 
with 100 ms interval, resulting in temporal compression28. As we show here, regression to the mean becomes the 
dominant effect when a range of intervals is tested. Whether we found time compression or expansion for our 
117 ms interval depended on the range of intervals in which it was embedded. Thus, conclusions drawn from 
investigations into temporal distortions can be generalized only to regular presentations of identical interval 
durations. As soon as interval durations vary - as in real life - central tendency effects take the lead.
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Our results are clearly in line with a Bayesian explanation of central tendency effects2,8,29 as the interval which 
bear more uncertainty is the one that undergoes the strongest pull towards the central interval. In this respect it 
would have been interesting to fit the data with a Bayesian model. However applying any flavor of the aforemen-
tioned models presents several challenges. In a first place, it is difficult to extract sensory resolution levels from 
an experiment like ours because perceptual estimates undergo a contextual effect and, in these conditions, the 
measurable noise reflects mostly the noise of the prior, not that of the probe stimulus. Further one cannot assume 
that the high reliability comparison stimulus is immune from the prior. This implies that also the noise of the 

Figure 3.  Temporal context generalizes across motor actions. (A) To test the generality of the temporal 
context effect, we introduced a further condition in which the interval could be actively produced. In this case 
the probe interval was delimited by a key-press performed by the observer and a visual stimulus presented 
after a given interval. Such “active trials” could either be the majority during the session (and the few passive 
trials would be transfer trials) or could themselves be interspersed in between passive trials (in which case 
they are active-transfer trials). (B) Perceived duration of active trials in a session where active trials are the 
majority of the trials. Conventions are the same as in Fig. 1B. Data indicate that temporal context takes place 
also between actively produced intervals. (C,D) Sample psychometric curves either for 117 ms active trials or 
117 ms passive trials. Temporal context was always comprised of active trials either belonging to a distribution 
of brief stimulus (green or grey) or long stimuli (red or black). The curves separate depending upon the range of 
durations employed in the context. (E–G) Similar plots as (B–D). The temporal context is provided by passively 
produced trials. Red and green colors again refer to context trials (in this case, passive visual trials alike those 
of Experiment 1) and gray-black  colors refer to transfer trials (in this case active trials). Error bars represent 
the standard error of the sample mean. (H) Summary statistics for the conditions of Fig. 3C,D,F,G, error bars 
represent the standard error of the sample mean. Colored symbols show individual subject data. The dashed line 
shows veridical interval duration (117 ms).
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representation of the comparison stimulus is determined by the interaction with the prior. This is catastrophic 
because if the comparison stimulus is compressed this impacts both on the measured regression effect in the 
2IFC (decrease) both the measured JND of the 2IFC (increase). One possibility would be to leverage on the fact 
that context effects do not transfer across modalities and measure JNDs in transfer trials. Indeed when we did so, 
we found that both of our manipulations (masking one bar in vision, presentation to separate ears in audition) 
yielded unusually high noise levels for each modality (Weber Fractions of 36 ± 9% and 17 ± 2% respectively). In 
theory it is possible to repeat these measures for all durations and for all types of stimuli (of low and high reliabil-
ity). However given that this data collection is highly inefficient (because it employs only the transfer trials which 
are only 14% of the trials) we would leave it for a future study.

Interestingly in our paradigm we have measured a regression effect also for the auditory modality which in 
other circumstances has been found immune to regression effects8. However it is worth of notice that our stimuli 
bear some differences with other typical setups. Firstly our auditory markers are rather long (about 250 ms) and 
it has been shown that markers beyond 200 ms yield worse JNDs30. Secondly the two markers overlap in time, 
therefore the overall power modulation in time is less that an interval marked by brief clicks and with a distinct 
silence period in between. Not least, binaural presentation, may have also contributed as it has been demonstrated 
already that binaural sounds are more prone to perceptual illusions10. We speculate therefore that both the per-
ceptual distortions and the regression may be higher because of a higher uncertainty associated with these kind 
of presentations.

As a by-product our research revealed that prior information is rather specific for the stimulus employed, con-
sistent with sensory-specific effects in time perception31. This was directly tested in Experiment 2 which showed 
that temporal context of one modality did not affect temporal judgments of the other modality. At the same time, 
quite unexpectedly, we found a similar lack of transfer also in the control experiment (see Fig. 1G). In this para-
digm we tested a comparison between low reliability visual stimuli and high reliability visual stimuli. If a common 
prior for visual stimuli existed, the mere presentation of the comparison stimuli should have yielded an attractive 
effect of the high reliability stimuli upon the low reliability ones. However this did not happen, suggesting the 
possibility that even within the same modality multiple traces of sensory history could co-exist and they may be 
tagged to the event and the stimulus that marks it. This is not in contrast with optimal integration theory as stim-
ulus similarity is a key variable in enabling context effects19,32,33.

Our results may seem at odds with a recent report which has argued that central tendency in temporal repro-
duction leverages on a supramodal prior occurring in motor decision stages21. However, there are several cau-
tionary notes before the two results are contrasted. Firstly, the two experiments tap on rather distinct duration 
ranges. Our stimuli are very brief, (typically 117 ms and maximum 200 ms); Roach’s stimuli ranged from 200 ms 
to 2 seconds.

According to a large body of literature perception of time between sub-second and supra-second intervals 
is subserved by different mechanisms8,34–36. Further there is good evidence that intervals below one second are 
processed independently by each modality, however stimuli above one second are processed by a common timing 
mechanism34,37. This could explain in part why we do not find transfer between modalities whereas Roach et al. 
(2017) have some conditions in which there is transfer between modalities.

Our findings are also related to the growing literature on the attractive effect exerted by a preceding stimulus, 
known as serial dependence18,38,39. Similarly to central tendency, also serial dependence is attractive and obeys 
laws of optimal perception14,30. Also the field of serial dependence is under a vibrant debate concerning whether 
its origins lie in perception, perceptual judgments or motor response33,40–42. One of the emerging results in the 
serial dependence literature is that under circumstances predicted by lawful Bayesian integration, also a tangible 
perceptual component can be documented43 which bears a strong similarity to what reported here and reiterates 
the pivotal role of sensory reliability in contextual effects.

In conclusion, our data suggest that central tendency effects in temporal interval estimations occur at the 
perceptual level. In particular it suggests that sensory systems compute and make use of sensory statistics over the 
last few minutes, a peculiar function which should be supported by a dedicated, neural mechanism and shapes 
the way objects appear to us.

Materials and methods
Participants.  Four subjects (one male author and one male and two female naive subjects; mean age: 28 
years) participated in the baseline condition of Experiment 1. Five different subjects (one male author and one 
male and three female naive subjects; mean age: 27 years) participated in the visual condition of Experiment 1 
and Experiment 2. Five different subjects in Experiment 3 (one male author and one male and three female naive 
subjects; mean age: 27 years). All subjects had normal or corrected-to-normal vision. Subjects gave informed 
consent. The experiments were carried out along the principles laid down in the Declaration of Helsinki. All 
experiments were approved by the local ethics committee of the psychological department of the Heinrich-Heine 
University Düsseldorf.

Sample Size.  In order to plan the experiment we ran an a priori power analysis simulating the experimental 
paradigm which is focused on measuring the central tendency effect. To this aim, we mirrored our experimental 
paradigm and asked how many subjects would ensure that a given effect would be detected in 90% of the cases 
(i.e. power of 0.9). To do so we assumed that each observer would be tested at 7 different duration each requiring 
a psychometric curves of 60 trials and yielding a PSE. PSEs at each duration would then be calculated. Finally PSE 
as function of test duration would be plotted and the slope of the fit would indicate the central tendency effect.

In order to provide a reasonable stimulation which incorporated sources of noise we assumed that each judg-
ment would be corrupted by a scalar gaussian noise equivalent to 20% of the duration and also that between 
subjects regression effects could vary up to 20%.
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Even though typical central tendency effects can be very large (up to 50% of the physical duration) we required 
that our paradigm could be able to detect the presence of an effect of about only 10% (i.e. slopes of 0.9). These 
simulations (10,000 iterations) suggested that already four subjects would be sufficient to detect such a central 
tendency in 84% of the cases, increase to 5 subjects would lead to a power of 92%.

Apparatus.  Subjects were seated 57 cm from a CRT monitor (Eizo FlexScan T57S). The visible screen diag-
onal was 40.5 cm, resulting in a visual field of 40° × 30°. Stimuli were presented on the monitor with a vertical 
frequency of 120 Hz on a homogeneously gray background (luminance: 11.65 cd/m2.

Procedure.  Experiment 1 tested whether visual and auditory temporal intervals would be subject to cen-
tral tendency effects and whether these would transfer between modalities. In sessions of Experiment 1 interval 
duration were chosen from a range of 33–117 ms in 6 steps of 16 ms. Experiment 2 tested central tendency effects 
and transfer between passively observed and actively produced visual intervals. A session of Experiment 1 or 2 
contained two trial kinds: Regression and transfer trials. In a session, 6 different probe interval durations of a spe-
cific trial kind were tested. Depending on the session this set consisted either of short (33.32–116.62 ms, 6 steps of 
16.66 ms) or long intervals (116.62–199.92 ms, 6 steps of 16.62 ms). Interspersed into each session were transfer 
trials which contained probe intervals that always lasted 117 ms. All trials were presented in randomized order. 
No feedback about correct estimations was given to participants in any of the experiments reported in this study. 
In each session of Experiment 1 or 2, a full psychometric function was measured for the 6 regression intervals and 
the single transfer interval. For each psychometric function 70 trials were measured. To estimate psychometric 
functions we averaged the 10 responses for each of the 7 comparison intervals within each observer and fitted a 
cumulative gaussian function to the data.

Visual intervals: Passively observed.  A trial started with the presentation of a fixation point (black, 
radius: 0.25°, luminance: 0.11 cd/m2), which was shown constantly throughout the whole session (see Fig. 1A). 
After 1000 ms plus a random delay between 0 and 500 ms, a bar stimulus (red, 40° × 2°, luminance: 6.38 cd/m2) 
was presented 10° above screen center. Except in the baseline condition, the bar stimulus was shown on top of a 
whole screen random-texture mask, consisting of 40 × 30 rectangles (size: 1° × 1°) which each had a randomly 
assigned luminance on the gray scale level.

Bar and mask were presented for one frame (8.3 ms). The onset of bar and mask marked the start of the probe 
interval. The duration of the probe interval was randomly selected per trial from a set of 6 possible durations (see 
Procedure). The end of the interval was marked by another bar stimulus (red, 40° × 2°, luminance: 0.11 cd/m2) 
presented 10° below the screen center for one frame (8.3 ms) without a mask. Thousand ms later, the compari-
son interval was presented. As for the probe interval, start and end of the comparison interval were marked by 
a bar stimulus (red, 40° × 2°, luminance: 0.11 cd/m2) flashed 10° above and below screen center for one frame 
(8.3 ms). No mask was presented in the comparison interval. The duration of the comparison interval depended 
on the probe interval and was randomly chosen from seven equiprobable durations (symmetrically distributed 
around the probe interval). The following comparison interval durations were selected for the short intervals: 
For the 33.32 ms interval: (8.33, 16.66, 24.99, 33.32, 41.65, 49.98, 58.31), for the 49.98 ms interval: (16.66, 24.99, 
41.65, 49.98, 58.31, 74.97, 83.3), for the 66.64 ms interval: (16.66, 33.32, 49.98, 66.64, 83.3, 99.96, 116.62), for the 
83.3 ms interval: (24.99, 41.65, 66.64, 83.3, 99.96, 124.95, 141.61), for the 99.96 ms interval: (24.99, 49.98, 74.97, 
99.96, 124.95, 149.94, 174.93) and the 116.62 ms interval: (33.32, 58.31, 91.63, 116.62, 141.61, 174.93, 199.92). The 
following comparison interval durations were selected for the long intervals: For the 116.62 ms interval: (33.32, 
58.31, 91.63, 116.62, 141.61, 174.93, 199.92), for the 133.28 ms interval: (33.32, 66.64, 99.96, 133.28, 166.6, 199.92, 
233.24), for the 149.94 ms interval: (41.65, 74.97, 116.62, 149.94, 183.26, 224.91, 258.23), for the 166.6 ms interval: 
(41.65, 83.3, 124.95, 166.6, 208.25, 249.9, 291.55), for the 183.26 ms interval: (49.98, 91.63, 141.61, 183.26, 224.91, 
274.89, 316.54) and the 199.92 ms interval: (49.98, 99.96, 149.94, 199.92, 249.9, 299.88, 349.86).

Subjects had to indicate whether the probe or the comparison interval was shorter (2-IFC task) by pressing the 
left or right arrow key of the computer keyboard. The subject’s response started the next trial.

Auditory intervals.  Auditory interval markers were delivered via earphones, consisting of a single-pulse 
(acoustic tom-tom drum sound, ~250 ms duration with a short decay) (see Fig. 1C). In order to define an auditory 
temporal interval, one sound marking interval start was presented to one ear and another sound marking interval 
end to the other ear. As for the sessions containing the visual distortion, the duration of the probe intervals was 
randomly chosen out of 6 possible durations for short and for long intervals (same durations as in Experiment 
1). After 1000 ms the comparison interval was presented. In the comparison interval, both, the interval start and 
end markers were both defined by presenting the sound to both ears. The subject had to indicate which interval 
appeared shorter by pressing one of the arrow buttons. The response started the next trial.

Controls.  In order to control for the possibility that subjects based their judgements only on the average dura-
tion of all comparison intervals instead of the probe intervals, we ran an extra experiment. In two separate ses-
sions, subjects had to estimate the masked 117 ms interval either against comparison intervals that were selected 
to be within the range of the low interval durations (8.33–199 ms) or against comparison intervals within the 
range of the high interval durations (8.33–349.86 ms).

Visual intervals: Intentional temporal binding effect.  In actively produced intervals the probe interval 
start was marked by a button press performed by the subject. Participants were instructed to press the space bar 
on the computer keyboard and to observe the temporal interval between the button press and the interval end 
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marking stimulus which was a bar (red, 40° × 2°) presented for one frame (8.3 ms) 10° below screen center. As 
for passively observed intervals, the duration of actively produced probe intervals was randomly chosen out of 
6 possible durations (see Procedure). After 1000 ms the comparison interval was presented that was identical to 
those of the passively observed intervals. When subjects pressed an arrow button to give the response a new trial 
started. The subject was then free to push the space bar when she or he felt ready.

Data availability
The datasets generated during and/or analyzed during the current study are available in the Open science 
framework repository, https://osf.io/8eb27/?view_only=f18de1a4b8d045ae978a69f9f8ede7f1.
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