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Summary
Machine learning models are increasingly adopted for facilitating clinical decision-making. However, recent
research has shown that machine learning techniques may result in potential biases when making decisions for peo-
ple in different subgroups, which can lead to detrimental effects on the health and well-being of specific demo-
graphic groups such as vulnerable ethnic minorities. This problem, termed algorithmic bias, has been extensively
studied in theoretical machine learning recently. However, the impact of algorithmic bias on medicine and methods
to mitigate this bias remain topics of active discussion. This paper presents a comprehensive review of algorithmic
fairness in the context of computational medicine, which aims at improving medicine with computational
approaches. Specifically, we overview the different types of algorithmic bias, fairness quantification metrics, and
bias mitigation methods, and summarize popular software libraries and tools for bias evaluation and mitigation,
with the goal of providing reference and insights to researchers and practitioners in computational medicine.
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Introduction
Recent years have witnessed a surge of interests in the
development and deployment of machine learning algo-
rithms in healthcare. These algorithms were trained on
massive health data and have demonstrated promising
performance in a diverse set of problems such as skin
cancer detection from lesion images,1 prediction of the
risk of acute kidney injury based on electronic health
records (EHR),2 adaptive learning of the optimal treat-
ment regimens for sepsis patients in intensive care3 and
others.4

Despite the promise, however, there is growing con-
cern that machine learning algorithms may lead to
unintended bias when making decisions involving eth-
nic minorities, both through the algorithms themselves
and the data used to learn them. For example, associa-
tions between Framingham risk factors and cardiovas-
cular events have been shown to be significantly
different across different ethnic groups.5 Video stream
analysis algorithms for measuring the body’s spontane-
ous blink rate have been found to be particularly chal-
lenging for Asian individuals.6,7 Undiagnosed silent
hypoxemia, detected from pulse oximetry, occurred
approximately three times more frequently in Black
people due to the fact that dark skin responds differently
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to those light wavelengths.8 In these cases, the software
system may introduce or exacerbate health equity
issues.7

With machine learning models gaining increasing
attention in medicine, it is crucial to be aware of the
potential related bias and disparities, understand their
causes, and methods to mitigate them. This review will
help achieve this goal by providing an overview of the
existing literature studying the sources of bias and dis-
parities in computational medicine, their quantification
metrics, and mitigation strategies. We will also summa-
rize outstanding questions and point out future direc-
tions. The PRISMA diagram of the literature reviewed
in this paper is shown in Figure 1.
Distinguishing from existing reviews
It is worth noting other reviews of AI Fairness in the lit-
erature and how they differ. Mehrabi et al.9 built a tax-
onomy of machine learning related fairness in different
real world application contexts. Rajkomar et al.10 intro-
duced the principles of distributive justice and provided
guidance to clinicians on how to prioritize each princi-
ple when facing with potential bias in model develop-
ment and deployment. Gianfrancescogian et al.11

summarized the potential bias sources for electronic
health records (EHRs) and provided recommendations
on appropriately mitigating them. Fletcher et al.12

described three basic criteria (i.e., Appropriateness,
Fairness, and Bias) for evaluating machine learning and
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Figure 1. PRISMA flow diagram: disparity and fairness in computational medicine.
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AI systems in the context of global health. Mhasawade
et al.13 focused on the interactions among different cul-
tural, social, and environmental factors, their impact on
the fairness of machine learning algorithms, and how
machine learning, public and population health can
work together to achieve health equity. Unlike these
existing works, this review summarizes sources and
quantification methods for bias in computational medi-
cine and how they will impact downstream machine
learning models, as well as potential strategies to miti-
gate them through computational algorithms.
Computational bias
We categorize computational biases into three different
types according to the source of bias: data bias, measure-
ment bias, and algorithm bias. We will introduce them
in this section and provide examples in medical context.
Data bias
In supervised learning, machine learning algorithms
are trained from data sets.14 For example, classification
models try to accurately map the sample input features
to a set of pre-specified classes based on the observa-
tions from a set of training data. Clustering models aim
at identifying grouping structures of a given data set. In
this case, if the data from a specific demographic group
is not properly represented, the machine learning mod-
els trained from the data will be biased.

As a simple practical example, studies have found
that patients of low socioeconomic status may have lim-
ited access to health care.15,16 Consequently, compared
to patients with higher socioeconomic status, these
patients may generate proportionately less data in their
electronic health records which will lead to underrepre-
sentation if a machine learning model is trained using
this data. This will lead to poorer model performance
on this particular patient group. Below we list potential
sources of data bias in medicine.
Sampling bias. Sampling bias, also known as selection
bias, occurs when the selected data does not represent
the real environment in which a model will be
deployed.17 For example, melanoma detection algo-
rithms based on classification of skin lesion images1

may perform poorly on dark-pigmented skin if the train-
ing images contain predominantly lighter skin.18 For
the same reason, Face2Gene, a machine learning algo-
rithm to recognize Down syndrome based on facial
images, performed much better in Caucasian (accuracy
80%) than in African (accuracy 36.8%).19
www.thelancet.com Vol 84 Month , 2022
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Allocation bias. Allocation bias pertains to clinical trials
that contain interventions and arises if there are system-
atic differences in how participants are allocated to the
treatment and control groups.20 If researchers knew
which participants would benefit from an intervention,
it could bias how they recruit participants and how they
assign them to different groups so that they can select
subjects with a good prognosis for trials. Recently there
were studies trying to emulate clinical trials with real
world data such as EHRs.21 In this case, allocation bias
could exist as the treatment and control groups are
already observed in the data. This can lead to potentially
biased estimations of treatment effects with machine
learning models.
Attrition bias. Attrition bias also applies to clinical tri-
als and can occur if there are systematic differences in
the way different groups of participants are recruited or
are dropped from a study. When exploring an interven-
tion, different rates of losses to follow-up in the expo-
sure groups may alter the demographic composition of
these groups.20 Attrition bias will be more severe in
observational studies, as patients may move to another
place or be transferred to another hospital, which will
impact the machine learning model looking to predict
clinical events.
Publication bias. Publication bias occurs when the deci-
sion to publish a study depends on its own results.22

Empirical studies consistently show that studies with
positive or statistically significant results are easier and
take less time to be published than studies without sig-
nificant results.23,24 This can make it difficult for deci-
sion makers to distinguish between sound evidence and
overestimate the effectiveness of specific treatments or
models.24 For example, since the start of the COVID-19
pandemic, studies on COVID-19 is being published at a
rapid rate. However, many peer-reviewed publications
included only a limited number of patients included
and showed a high risk of bias.25
Symbol Description

A2 f0; 1g Binary protected attribute

X 2Rd Other observable attributes

U Relevant latent attributes not observed

Y 2 f0; 1g The outcome to be predicted

Ŷ :¼f ðX ;AÞ2 f0; 1g The prediction of Y

Ŷ A a Counterfactual value, i.e., what would Ŷ

have been if A had been equal to a

Table 1: Notations and symbols.
Measurement bias
Measurement bias is a systematic error that occurs
when the data are labeled inconsistently, or study varia-
bles (e.g., disease, exposure) are collected or measured
inaccurately.26 A recent example is the large disparity in
the quality of COVID-19 data reported across India.27

One of the common causes of measurement bias is
response bias. In the clinical context, response bias usu-
ally occurs in studies involving surveys or self-reported
data. When respondents tend to give inaccurate or even
wrong answers on self-reported questions, the survey
results will be affected.28 An example of response bias
is that people might tend to always rate themselves
favorably or feel pressured to provide socially acceptable
www.thelancet.com Vol 84 Month , 2022
answers.29 In addition, misleading questions can lead
to biased answers. In addition, demographic groups
who are willing to answer survey questions are some-
times different from those who are not.30 Consequently,
this will impact the machine learning algorithms
trained on surveys or patient reported outcomes.
Algorithm bias
Another source of bias is from the algorithms them-
selves,31 which can be algorithm specific or agnostic.
Algorithm specific bias is linked to their intrinsic
hypotheses.32 For example, logistic regression models
assume the relationships between input and target vari-
ables are linear, but this may not be true. Such a bias
presents a challenge in capturing the actual input-out-
put relationships in the data. The loss function meas-
ures the difference between the algorithm, output and
the ground truth outcome. It is used to evaluate how
well the machine learning algorithm fits the data. Typi-
cal machine learning algorithms attempt to minimize
such prediction loss on the training data, which is typi-
cally measured by adding up all prediction losses on
individual samples. However, if the loss function is
biased towards a specific demographic group (e.g.,
white patients in a population),33 the corresponding
model will be better trained for this group.
Fairness metrics
The previous section has summarized the various
potential sources of computational bias. Another impor-
tant question is how we can quantify such bias given a
specific healthcare context or data set. In this section,
we will review different ways that bias could be evalu-
ated, which are referred to as fairness metrics. Mathe-
matical notations that are used in this section are
summarized in Table 1.

To illustrate the use of fairness metrics, we make use
of a case study to build an alerting algorithm in ICU set-
ting (e.g., for developing sepsis34) with the machine
learning algorithm based on the patient’s EHR, and the
patient’s race. For the purpose of illustration, we con-
sider only two demographic groups (e.g., Black or white)
3
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and we examine how the alerting algorithm can behave
differently for patients from two demographic groups
using various fairness metrics.35,36
Fairness through unawareness
The simplest approach to achieve some degree of fair-
ness is to remove the protected attribute (e.g., race in
our case study) as an independent variable in the mod-
el.40�42 This method has been shown to be ineffective
because these protected attributes are often highly corre-
lated to other parameters in the data set. For example,
race may be related to zip code, socioeconomic status,
or disease predisposition. Therefore, simply removing
protected attribute is not enough to eliminate disparate
results between the two demographic groups.
Demographic parity
Another definition of Fairness is demographic parity,
also known as statistical parity or independence, which
requires that the overall proportion of individuals in a
protected group predicted as positive (or negative) to be
the same as that of the overall population.38 Although it
is intuitive to understand, prior studies43 found that
optimizing demographic parity may prevent the model
from taking into account relevant clinical characteristics
related to protected variables and outcomes, thereby
reducing the performance of the model for all groups.
Equalized odds
Unlike demographic parity, equalized odds is a defini-
tion of Fairness that39 allows the prediction Ŷ to depend
on protected attribute A, but only through the target var-
iable Y . This encourages the use of features that are
directly related to Y , rather than through A.39 To achieve
equalized odds, both true positive rates (TPR) and true
negative rates (TNR) of all groups defined by A are equal
up to a fixed tolerance T . Compared to demographic par-
ity, equalized odds is more flexible as it does not prevent
learning a predictor where there is a real association
between the protected attribute and the outcome.43
Equal opportunity
The “equal opportunity” definition of Fairness checks
whether the positive label is equally and accurately pre-
dicted by classifier for all values of the protected attri-
bute.39 In contrast to equalized odds, it is stronger
because it means that all possible thresholds are equally
likely to be met and therefore requires that all groups
produce the same ROC curve, but the decision thresh-
old can be adjusted to satisfy equalized odds.43
Individual fairness
The notion of individual fairness is based on the princi-
ple that any two individuals who are similar in the
context of a given task should be treated similarly.40,44

Clearly, individual fairness is more restrictive than
group fairness defined by the protected attribute. The
practical use of this concept is often limited due to the
challenges of defining an appropriate similarity metric
to encode the desired concept of fairness.40,43 In addi-
tion, there were also arguments that individual fairness
is inadequate, as similar treatment are not enough to
achieve fairness; thus, it should not be used alone to
detect bias or evaluate whether algorithms are fair.45

The formulation of individual fairness remains an active
area of research.
Counterfactual measures
Counterfactual fairness is a potential way to explain why
bias occurs. It states that a model is fair if its predictions
about a particular individual in the real world is the
same as it would be in a counterfactual world (i.e., in
this case, if the patient’s ethnic group was changed
from Black to white).37 We list the mathematical defini-
tion of counterfactual fairness in the last row of Table 2,
where Ŷ A a represents the prediction Ŷ if A had taken
value a. This metric considers the predictor to be fair if
its prediction remains unchanged when the protected
attribute of each sample is flipped to its counterfactual
value. A close concept of counterfactual fairness is coun-
terfactual reasoning.46 Some studies have shown that
counterfactual reasoning is susceptible to similar biases
as outcome bias (evaluating the quality of decisions
when the outcome is known).47 In addition, it has been
suggested that counterfactual reasoning may negatively
affect the process of causality identification.48 These
concerns raise questions about the practical applicability
of counterfactual measures.
Choice of Fairness Metric
As described above, different metrics have different
characteristics. According to Kleinberg et al.,49 these
aforementioned fairness metrics cannot be achieved at
the same time, except in highly restricted special cases.
Specifically, both equalized odds and demographic par-
ity focus on group fairness. Although their calculations
and reasoning are simple and intuitive, the derived
models may be discriminatory to structured subgroups
with protected attributes, leading to fairness
gerrymandering.43,50 The concept of individual fairness
potentially alleviate the issues of group fairness metrics
by forcing any two individuals who are similar at a given
task should be similarly classified. However, it is chal-
lenging to a domain-specific similarity measure, thus
the practical use of individual fairness is often limited.
Clinical prediction models may produce unfair results
based on particular metrics. The choice of the specific
fairness metric used by researchers and machine learn-
ing developers thus depends on the specific context. In
www.thelancet.com Vol 84 Month , 2022



Type Definition In our case study

Fairness Through Unawareness37 No protected attribute A is explicitly used in the decision-

making process: Ŷ ¼ f ðX;AÞ ¼ f ðXÞ
Train the model without using race variable

Demographic Parity38 /Statistical

Parity / Independence

The outcomes must be equal: PðŶ jA ¼ 0Þ ¼ PðŶ jA ¼ 1Þ Both demographic groups developed sepsis at

equal rates

Equalized Odds39 /Separation Different groups deal with similar odds, if Ŷ and A are

independent conditional on Y : PðŶ ¼ 1jA ¼ 0; Y ¼ yÞ ¼
PðŶ ¼ 1jA ¼ 1; Y ¼ yÞ, y2 f0; 1g

The true positive rates (of those who actually

developed sepsis, how many were correctly pre-

dicted to be positive) and false positive rates in

both demographic groups are equal

Equal Opportunity39 The true positive rates in the unprivileged group

and privileged group are equal. PðŶ ¼ 1jA ¼ 0; Y ¼ 1Þ
¼ PðŶ ¼ 1jA ¼ 1; Y ¼ 1Þ,

The true positive rates in both demographic

groups are equal

Individual Fairness40 Similar individuals have similar predictions.

Formally, given a metric dð ¢ ; ¢ Þ, if individuals i and j are

similar under this metric (i.e., dði; jÞ is small), then their

predictions should be similar:

Ŷ
�
XðiÞ;AðiÞ

�
� Ŷ

�
XðjÞ;AðjÞ

�

Similar patients have a similar

chance of developing sepsis

Counterfactual Fairness37 Predictor Ŷ is counterfactually fair if under

any context X ¼ x and A ¼ a, Pr
�
Ŷ A aðUÞ ¼ yjX ¼ x;

A ¼ a
�
¼ Pr

�
Ŷ A a0 ðUÞ ¼ yjX ¼ x;A ¼ a

�
, for all y

and for any value a0 attainable by A

The predicted outcome does not

change if a patient from one demographic

group is assigned to the other demographic

group

Table 2: Summary of fairness metrics.

Review
addition to these computational aspects, a more funda-
mental consideration is whether the bias should be
attributed to machine learning algorithms at all. Biologi-
cal and socioeconomic factors can contribute to inherent
bias as well. Therefore, it is important to work with
domain and legal experts to first understand the prob-
lem context and decide whether a machine learning
algorithm should be used at all (e.g., for ethical con-
cerns) and whether it can induce potential bias, and
then choose an appropriate fairness metric.
Bias mitigation
With the various sources of bias and different fairness
metrics, in this section we will summarize different
bias mitigation approaches for achieving algorithmic
fairness. These methods can be categorized as pre-proc-
essing,51 in-processing,52�55 and post-processing meth-
ods,56 which are detailed below.
Pre-processing
Data pre-processing refers to the procedures of cleaning
and preparing raw data for building machine learning
models.57 Pre-processing methods can potentially
remove the bias from the data.
Choice of sampling. Resampling is a popular prepro-
cessing method to ensure the datasets are balanced
across different groups.58 In the context of algorithmic
www.thelancet.com Vol 84 Month , 2022
fairness, the use of resampling is not to address class
imbalance, but rather to ensure that all demographic
groups are properly and proportionately represented in
the training dataset. If the data set is large, the majority
group can be randomly undersampled so that it is
approximately the same size as the minority group with-
out much information loss. However, since the data is
often limited, it is more common to oversample the
minority groups in the training data. Popular algo-
rithms, like synthetic minority oversampling technique
(SMOTE)59 or its variations, such as SMOTE-ENC,60

Borderline-SMOTE,61 can be used to oversample or syn-
thetically expand the size of the data from an under-rep-
resented demographic group. However, healthcare data
(such as EHRs or questionnaires) are typically compli-
cated, and it is thus challenging to generate synthetic
data without producing overfitting.12 In addition to
resampling, collecting more data with good planning is
always the best solution.33
Reweighting. Another method to train an algorithm to
place a greater emphasis on an under-represented
group is to use reweighting. This approach places differ-
ent weights on each group-class combination based on
the conditional probability of class by protected attri-
bute, so that the protected attribute is independent of
the outcome.51 As a representative method, inverse pro-
pensity score weighting (IPW)62 is often adopted to
adjust poorly sampled data. It involves estimating the
probability of individual participants in particular
5
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groups and then analyzing the re-weighted samples of
these participants.63 However, IPW adjusts the distribu-
tions of all variables simultaneously, which may poten-
tially increase imbalances and bias.64 Borland et al.65

presented dynamic reweighting (DR) to correct selec-
tion bias with interactive visual analysis.
In-processing
In-processing methods aims at developing unbiased
models directly from the data. A straightforward
approach to achieve this goal is to remove the protected
attribute from the model as we introduced in Section
3.1. However, if there are strong correlations between
the protected attribute and other covariates, the infor-
mation of the sensitive attributes will naturally intro-
duce bias into the decision.
Prejudice remover. Prejudice refers to the fact that there
is statistical dependence between the protected attribute
and the predicted outcome or other independent varia-
bles.66 Prejudice remover is a method that attempts to
train a predictor whose predictions are independent of the
protected attribute. For example, Kamiran and Calders et
al.67 proposed the concept of discrimination-aware classifi-
cation and developed an algorithm to “clear away” such
dependencies by “massaging the data" before applying tra-
ditional classification algorithms. Calders and Verwer52

proposed a discrimination-free naive-Bayes through post-
hoc processing, independent model training and balanc-
ing across different protected groups, or latent variable
modeling. Kamishima et al.54 proposed a prejudice
remover regularization to enforce the prediction’s inde-
pendence on the protected attribute. Zafar et al.53 proposed
the concept of “disparate mistreatment" as different mis-
classification rates across different protected groups, and
introduced a measure for decision boundary based classi-
fiers, which further can be incorporated into the classifier
optimization objectives as constraints to remove prejudice.
With increasing numbers of machine learning models
being developed for clinical risk prediction, there have also
been intense discussions on the corresponding ethical
concerns.68,69 These prejudice remover approaches can
potentially make these algorithms fair.
Adversarial learning. Adversarial learning70 is a learn-
ing paradigm that was originally designed for generat-
ing false samples to confuse the model. Typically, there
is a generator guaranteeing the generated fake samples
which are close to real samples, and a discriminator to
discriminate the fake samples from the real ones. The
goal of adversarial learning is to learn a generator to
generate samples that the discriminator cannot really
tell they faked or no. Pfohl et al.43 applied adversarial
learning for developing an “equitable” risk prediction
model for atherosclerotic cardiovascular disease
(ASCVD) with EHR. They used the generator to build
the risk predictor and discriminator to enforce equalized
odds for the predicted risks across different protected
groups.
Other learning strategies. Another closely related topic
is interpretable learning,71 as interpretable models can
allow the decision makers to better understand why cer-
tain predictions are made and make necessary modifica-
tions. Recent work at the FICO Data Science Lab72 has
shown that interpretable neural networks can help
uncover and eliminate data biases in models. Even in
cases where the data is deliberately biased toward one
subset of the population over another, the method mini-
mizes the pickup of signals that are biased toward the
core relationship.72 Similar argument has also been
made by Rudin73 that interpretable models are more
preferred in high stakes decision making scenarios
such as healthcare than black-box models.

Independent learning is another bias mitigation
strategy which trains a machine learning model for
each protected group.74 However, this approach may
sacrifice the training data sample sizes and reduce the
model performance.74 Gao and Cui74 introduced a
transfer learning approach to align the sample distribu-
tions across different protected groups. They demon-
strated that their method could achieve improved
performance in underrepresented groups and effec-
tively reduce disparity with cancer multiomics data.74
Post-processing
The post-processing approach treats off-the-shelf predic-
tors as black boxes and achieves fairness through adjust-
ment of their predictions. For example, Hardt et al.39

proposed equalized odds post-processing and calibrated
equalization odds post-processing, which aims to solve
for the probabilities of changing output labels to achieve
the equalized odds objective. Kallus et al.75 proposed to
adjust the risk scores of the instances in the disadvan-
taged group with a parameterized monotonically
increasing function to minimize the performance dis-
parity. Cui et al.76 proposed to adjust the ranking order
of the samples across different protected groups accord-
ing to their predicted scores with a dynamic program-
ming procedure to achieve fairness without sacrificing
prediction accuracy. One practical challenge for post-
processing methods is that the involved adjustments
are typically not explainable. Pan et al.77 proposed a
causal analysis approach that can quantitatively attri-
bute algorithm performance disparity onto different
causal decision paths, so that the paths with large contri-
butions can be removed as post-processing.

In practice, these three types of methods work at dif-
ferent stages of a machine learning pipeline: pre-proc-
essing manipulates the data through sampling or
www.thelancet.com Vol 84 Month , 2022
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weighting before building the model, in-processing
enforces fairness constraints during model building,
and post-processing makes adjustments after the model
was built. Different strategies have different assump-
tions; therefore, it is challenging to have a golden stan-
dard. Recent research from Park et al.78 compared
different risk mitigation methods in the context of post-
partum risk prediction and found that these methods
could indeed reduce bias, but different methods can
lead to different results. Therefore, the practitioners
should try to test different approaches and evaluate their
impact in the particular context they were applied to.
Popular software libraries
Over the past few years, a variety of software tools and
libraries have emerged to help developers and users of
machine learning algorithms to better explore the issue
of fairness and bias. Some of these libraries include
tools to visualize and measure the amount of bias in the
training data. Other libraries provide tools that can eval-
uate the algorithm results based on various fairness
metrics. We summarize existing popular algorithmic
fairness research software libraries in Table 3. Detailed
comparison of some software libraries can be referred
to recent articles.79,80
Open questions
As data is the source for building machine learning mod-
els, it is critical to be aware of the potential bias and
Project Name Developer Description

FairMLHealth81 KenSci Tools and tutorials for evalua

AIF36082 IBM Fairness metrics for datasets

interpretation of the metri

datasets and models. It is a

Fairlearn83 Microsoft A Python package to evaluat

inequities. Fairlearn includ

for model evaluation. It als

examples of Fairlearn usag

Fairness-comparison84 Sorelle et al. Compare fairness-aware mac

to facilitate benchmarking

algorithms.

MEASURES85 Cardoso et al. A benchmark framework for

Fairness Indicators86 Google A suite of tools built on top o

enable regular evaluation o

ML-fairness-gym87 Google A general framework for stud

effects in carefully constru

ronment over time.

themis-ml88 Niels Bantilan A Python library built on top

algorithms.

FairML89 Julius Adebayo A Python toolkit for auditing

Table 3: Popular library for fairness research.

www.thelancet.com Vol 84 Month , 2022
improve the diversity and inclusiveness during the data
collection process. In addition, we list some probably
encountered directions or open questions in this section.
Multiform fairness
Different types of fairness are sometimes incompatible.
For example, a model could be fair for equal positive
and negative predictive values, but unfair for equalized
odds (and vice versa). It is important to understand
which types of fairness are achievable under which sce-
narios. Therefore, fairness in computational medicine
requires not only machine learning/computer scientists
to understand, but also experts across disciplines to
work together to come up with definitions that fit a par-
ticular model and apply them to a given context.
Algorithm explainability
Explainable models can reveal how a machine learning
algorithm works and thus potentially alleviate decision
bias. However, on the other hand, interacting with
incorrect recommendations paired with explanations
that contain limited but easily interpretable information
can adversely affect the clinician’s treatment choices.90

Understanding such interaction between algorithm
explainability and bias is important for medical
machine learning.
Model generalization
Fairness in machine learning goes beyond preventing
models from harming protected populations. It can also
ting bias in healthcare machine learning.

and machine learning algorithms,

cs, and approaches for reducing bias in

vailable in both Python and R.

e fairness and mitigate any observed

es mitigation algorithms and metrics

o contains Jupyter notebooks with

e.

hine learning techniques. It aims

of fairness-aware machine learning

assessing discrimination-aware models.

f TensorFlow Model Analysis that

f fairness metrics in product pipelines.

ying and exploring long-term equity

cted simulation scenarios where learning subjects interact with the envi-

of pandas and sklearn that implements fairness-aware machine learning

machine learning model deviations.
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help focus care where it is really needed. The data used
to develop the model may not be generalized to the data
used during the deployment of the model (training-serv-
ing skew).10 Thus, besides model design and evaluation,
fairness should also be incorporated into the scenario
where the model is going to be deployed.91
Conclusions
In this review, we summarized the current research on
algorithmic fairness in computational medicine. We
first described the three types of computational bias:
data bias, measurement bias, and model bias. Then we
presented the fairness quantification metrics that are
used in various literature. Additionally, we introduced
three types of bias mitigation methods, namely, pre-
processing, in-processing and post-processing, and
listed the popular software libraries and tools for bias
evaluation and mitigation. Fairness is not just the result
of rigorous and thoughtful research, but rather the
social and political processes needed to advance health
equity.92 With machine learning and artificial intelli-
gence models gaining more attention, we should be
aware of these issues when designing the models and
appropriately mitigate them.
Search strategy and selection criteria
We searched PubMed and Google Scholar from incep-
tion of the database to Jul 30, 2021, for research articles
using the search terms (“bias” OR “disparity” OR
“fairness” OR “fair” OR “inequality” OR “equality”)
AND (“machine learning” OR “artificial intelligence”)
AND (“medical” OR “medicine” OR “healthcare”) in
English. We independently reviewed the title and
abstracts for inclusion. We also reviewed the reference
lists of eligible texts.
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