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Automatic Three-dimensional 
Detection of Photoreceptor 
Ellipsoid Zone Disruption Caused by 
Trauma in the OCT
Weifang Zhu1,*, Haoyu Chen2,3,*, Heming Zhao1, Bei Tian4, Lirong Wang1, Fei Shi1, 
Dehui Xiang1, Xiaohong Luo2, Enting Gao1, Li Zhang1, Yilong Yin5 & Xinjian Chen1

Detection and assessment of the integrity of the photoreceptor ellipsoid zone (EZ) are important 
because it is critical for visual acuity in retina trauma and other diseases. We have proposed and 
validated a framework that can automatically analyse the 3D integrity of the EZ in optical coherence 
tomography (OCT) images. The images are first filtered and automatically segmented into 10 layers, of 
which EZ is located in the 7th layer. For each voxel of the EZ, 57 features are extracted and a principle 
component analysis is performed to optimize the features. An Adaboost classifier is trained to classify 
each voxel of the EZ as disrupted or non-disrupted. Finally, blood vessel silhouettes and isolated 
points are excluded. To demonstrate its effectiveness, the proposed framework was tested on 15 eyes 
with retinal trauma and 15 normal eyes. For the eyes with retinal trauma, the sensitivity (SEN) was 
85.69% ± 9.59%, the specificity (SPE) was 85.91% ± 5.48%, and the balanced accuracy rate (BAR) was 
85.80% ± 6.16%. For the normal eyes, the SPE was 99.03% ± 0.73%, and the SEN and BAR levels were 
not relevant. Our framework has the potential to become a useful tool for studying retina trauma and 
other conditions involving EZ integrity.

Ocular trauma is a significant cause of visual impairment and blindness1. Commotio retinae is characterized by 
a grey-white discoloration or opacification of the retina after closed globe trauma, when the impact at the level 
of the ocular surface is transferred to the retina in the posterior segment2. Histopathologic studies of human and 
animal eyes have found that damage of the photoreceptor is a pathogenesis of commotio retinae3,4. Photoreceptors 
are specialized types of neurons in the retina that are capable of phototransduction. They are critical for vision 
because they convert light into biological signals.

Spectral-domain optical coherence tomography (SD-OCT) can produce high speed, high resolution, cross 
sectional 3D images and is a powerful technology for the non-invasive assessment of retinal physiology and 
pathology. In the SD-OCT image, the ellipsoid zone (EZ)5, previously called the photoreceptor inner segment/
outer segment (IS/OS), is defined as the second hyper-reflective zone of the outer retina and is located just below 
the external limiting membrane5. A disruption of the EZ integrity represents damage to the photoreceptors and is 
generally linked with poorer vision in commotio retina6 and other retinal diseases7–17.

It would be very interesting to quantitatively assess photoreceptor damage by quantifying the 3D extent and 
the volume of EZ disruption because the EZ is a region with small thickness in the photoreceptor yet it has 
the potential in helping to diagnose diseases, evaluate the effect of treatment, and predict visual outcomes in 
patients with ocular trauma. To the best of our knowledge, this is the first work on automatic 3D detection of 
EZ disruption in OCT images. Some manual and/or 2D methods for 2D EZ disruption area detection have been 
reported10,11,16,18. Shin et al.16 manually measured the disrupted EZ length in a B scan slice. However, it was based 

1School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu, 215006, China. 2Joint 
Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, 
Guangdong, 515041, China. 3Department of Ophthalmology and Visual Sciences, the Chinese University of Hong 
Kong, Shatin N.T., Hong Kong, 999077, China. 4Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, 
China. 5School of Computer Science and Technology, Shandong University, Jinan, Shandong, 250100, China. *These 
authors contributed equally to this work. Correspondence and requests for materials should be addressed to X.C. 
(email: xjchen@suda.edu.cn)

received: 02 October 2015

accepted: 18 April 2016

Published: 09 May 2016

OPEN

mailto:xjchen@suda.edu.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:25433 | DOI: 10.1038/srep25433

on only a single 2D cross section image. In ref. 10 and ref. 18, the partial OCT projection image, or en face 
image, was developed to better visualize a map of the photoreceptor integrity and its disruption. However, the 
measurement of the EZ disruption area was still based on a 2D image and a manual method, which could involve 
subjective factors when selecting the disruption margins. Sayanagi et al.11 developed an automated EZ disruption 
margin detection and a weighted EZ disruption area calculation method. However, their measurement was based 
on the assumption that the disruption region was circular, while in fact this region may have an irregular shape. 
Itoh et al.17 developed an automated EZ mapping tool to assess the EZ integrity by providing en face visualization 
of EZ integrity, EZ-retinal pigment epithelium (EZ-RPE) height and EZ-RPE volume.

In this paper, we propose an automatic 3D framework to detect EZ disruption in macular SD-OCT scans. 
Machine learning classifiers have been widely used in a variety of OCT specific applications including layer seg-
mentation19,20, drusen classification21, and microcystic macular edema segmentation22. In this paper, we apply 
an adaptive boosting (Adaboost)23–25 -based method to classify the pixels as disrupted or non-disrupted. The 
contributions of this work are as follows: (1) we propose a novel framework for a 3D, automated, and quantita-
tive analysis of EZ integrity in retinal OCT images; and (2) because the detection of EZ disruption is a typical 
imbalanced classification problem26, we apply two strategies on two different levels to improve the classification 
performance. These two strategies include the Adaboost ensemble classification algorithm at the algorithm level 
and an under-sampling strategy at the data level.

Results
Data Analysis. To evaluate the performance of the proposed method, all the EZ disruption regions in the 3D 
SD-OCT images were manually marked by an ophthalmologist slice by slice using the ITK-SNAP software27 and 
saved as the ground truth. The leave-one-out method was used to train the Adaboost based integrated classifier 
models. Because the sample ratio of the majority class (non-disrupted) and the minority class (disrupted) was 
approximately (110 ±  256):1 on average, non-disrupted samples were randomly selected to match the disrupted 
ones. The EZ disruption volume was calculated by multiplying the disruption number by the voxel resolution.

The mean and 95% confidence intervals of the segmented EZ disruption region volumes were compared 
between eyes with retinal trauma and normal eyes. Student’s t-test was used to evaluate the statistical signifi-
cance of the disruption volume differences between the two groups of eyes. Statistical correlation analysis and 
Bland-Altman plot analysis were utilized for a performance comparison between the proposed method and the 
ground truth.

To assess our experiments, several measures based on the segmented volume of the EZ disruption including 
sensitivity (SEN), specificity (SPE) and balanced accuracy rate (BAR) were adopted. These evaluation indexes are 
commonly used in imbalanced classification problems and are defined as below:
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where TP, FN, TN and FP represent true positive, false negative, true negative and false negative, respectively.

Experimental Results. Figure 1 shows one of the detection results (Case #4 in Table 1) using the proposed 
framework, and the corresponding ground truth for the EZ disruption region. The en face projections of the 
original VOIs, ground truth, and corresponding detected EZ disruption are also shown in Fig. 1. We can see from 
Fig. 1 that while the proposed method detected the EZ disruption well, there were still some false positives and 
false negatives. The detection results for a normal eye are shown in Fig. 2. Most of the negatives were detected; 
however, there were still some false positives.

The mean and 95% confidence intervals of the detected disruption volume for the normal eyes were mean-
normal =  0.0037 mm3 and CInormal =  [0.0005,0.0069]mm3, while for the eyes with retinal trauma they were 
meantrauma =  0.1.35 mm3 and CItrauma =  [0.0126,0.1944]mm3. The detected EZ disruption volume comparison 
between the normal eyes and the eyes with retinal trauma is shown in Fig. 3. Student’s t-test demonstrated a 
strong statistical significance for the detected EZ disruption volume differences between the two groups of eyes 
(p =  9.9112 ×  10−8 ≪  0.001).

Table 1 shows the detected EZ disruption volume, ground truth volume, whole EZ volume, SEN, SPE and BAR 
for the 15 eyes with retinal trauma. For the eyes with retinal trauma, the SEN was 85.69% ±  9.59%, the SPE was 
85.91% ±  5.48%, and the BAR was 85.80% ±  6.16%. For the normal eyes, the SPE was 99.03% ±  0.73%. Because 
there were no true positives, the values of SEN and BAR were irrelevant.

For the eyes with retinal trauma, the correlation between the segmented EZ disruption volume and the ground 
truth was r =  0.8795 with a significance level p <  0.0001. The 95% confidence interval for r was 0.6683 to 0.9595. 
Figure 4 shows the Bland-Altman plot for the consistency analysis between the automatic segmented EZ disrup-
tion volume and the ground truth. We can see from Fig. 4 that they are consistent.

Discussion and Conclusion
In this study, we developed and evaluated an automatic method to detect the 3D integrity of the EZ in eyes with 
retinal trauma. Because the disrupted voxels in the EZ region are much less numerous than the non-disrupted 
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ones, this leads to a typical imbalanced classification problem. To overcome this problem, an Adaboost algorithm 
(at the algorithm level) and dataset balance strategies (at the data level) are utilized. The vessel silhouettes and 
isolated points are excluded to decrease the false detections, using a vessel detector28 and morphological opening 
operations, respectively. The average detected EZ disruption volume in the eyes with retinal trauma was statisti-
cally much larger than the corresponding volume in the normal eyes (Student’s t-test, p =  9.9112 ×  10−8 <  0.001). 
In the eyes with retinal trauma, the SEN, SPE and BAR, using the proposed method, were 85.69% ±  9.59%, 
85.91% ±  5.48%, and 85.80% ±  6.16%, respectively. There was a strong correlation between the segmented EZ 
disruption volume and the ground truth (r =  0.8795). In the normal eyes, the SPE was 99.03% ±  0.73%.

This study has several limitations. (1) Although many studies have shown that the disruption extent of the 
EZ is an important clinical indicator for the injury degree of the photoreceptors and that EZ disruption may be 
closely associated with visual acuity in different eye diseases7–17, there are some controversies29–32. Whether the 
quantitative disruptions of the EZ have quantitative relationships with visual acuity and visual outcome has not 
yet been addressed. This study focuses on quantitative measurements of the EZ disruption volume; a further 
study will be carried out in the near future to determine the quantitative correlation, if any, of these quantitative 
measures to visual acuity and to the outcome of eyes with retinal trauma. (2) The sensitivity and specificity of the 

Figure 1. Examples of EZ disruption region detection results and ground truths for a subject with retinal 
trauma. The red region represents the ground truth, and the yellow region represents the segmented EZ 
disruption region using the proposed method. (a–c) Three original B-scans of an OCT volume. (d–f) The 
corresponding ground truth in the B-scans for (a–c), respectively. (g–i) The corresponding detection results 
using the proposed method for (a–c), respectively. (j) The ground truth in a 3D view. (k) The detection results in 
a 3D view. (l) The en face projection of the VOIs. (m) The en face projection of the ground truth (in red).  
(n) The en face projection of the detection results (in yellow).
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Eyes with 
retinal trauma

Disruption volume (mm3)

EZ volume (mm3) SEN (%) SPE (%) BAR (%)Detection result Ground truth

1 0.0666 0.0238 0.4352 94.81 86.73 90.77

2 0.0394 0.0223 0.4264 81.46 79.11 80.28

3 0.1474 0.1104 0.4534 90.17 86.04 88.10

4 0.1315 0.1020 0.4846 95.92 91.32 93.62

5 0.1980 0.2472 0.4616 71.99 90.64 81.32

6 0.1663 0.1532 0.4277 92.00 90.79 91.39

7 0.0400 0.0010 0.4584 89.96 88.78 89.37

8 0.0933 0.0139 0.4310 65.12 79.80 72.46

9 0.0912 0.0202 0.4807 93.02 84.28 88.65

10 0.0809 0.0358 0.4621 70.04 86.91 78.47

11 0.0811 0.0016 0.4562 88.76 74.32 81.54

12 0.1554 0.0819 0.4972 91.54 86.17 88.86

13 0.0913 0.0742 0.4812 90.69 93.82 92.26

14 0.0737 0.0438 0.4632 88.39 89.95 89.17

15 0.0970 0.0096 0.4553 81.47 79.99 80.73

Mean ± std 0.1035 ± 0.0464 0.0627 ± 0.0683 0.4583 ± 0.0216 85.69 ± 9.59 85.91 ± 5.48 85.80 ± 6.16

Table 1.  The detected EZ disruption volume, ground truth volume, whole EZ volume, SEN, SPE and BAR 
for 15 eyes with retinal trauma.

Figure 2. An example of the detection results using the proposed method on a normal subject. (a,b) The 
original B-scans of the OCT volume. (c,d) The false positive detection results (in green) using the proposed 
method. (e) All false positive detection results in a 3D view. (f) The en face projection of the VOIs. (g) The en 
face of the false positives (in green).
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proposed method could also be further improved. The classification errors could be due to two reasons. i) The 
inaccuracy of the surface segmentation results during the image pre-processing stage may cause unreasonable 
extractions of VOIs. For example, Fig. 5a shows an original B-scan, and Fig. 5b shows its segmented 7th and 8th 
surfaces; both of which have lower values than the correct surfaces on the left side. Figure 5c shows the ground 
truth (in red), and Fig. 5d shows the detected results (in yellow). It is obvious that there are both false positives 
and false negatives on the left side. ii) Because of the poor quality of the SD-OCT images, the ground truths 
marked by the ophthalmologist are subjective, especially in the transitional region between the disrupted and 
the non-disrupted regions. For example, in Fig. 5e, the quality of the B-scan is very low from the left side to the 
central fovea area. It is difficult to decide whether the corresponding EZ is disrupted or not. Figure 5f shows the 
ground truth (in red), which may contain subjective preferences. Figure 5g shows the detected EZ disruption 
results (in yellow), which are not very consistent with the ground truth. (3) Due to the collection difficulties and 
poor quality of the image data, in this paper, the proposed method was tested on a sample size of 30 images data-
set (15 eyes with retinal trauma and 15 normal eyes). The testing dataset is not large, however, we are still collect-
ing more data and will validate our method on a larger dataset in the near future. (4) This work is focused on the 
3D shape and volume of the EZ disruption in SD-OCT image, for more comprehensive EZ disruption analysis, 
the retinal information from other imaging modalities such as fundus and fundus fluorescein angiography image 
should be considered as well.

Methods
Study Subjects and Data Collection. The Institutional Review Board of the Joint Shantou International 
Eye Center approved this study and waived informed consent due to the retrospective nature of this study. Our 
study also complies with the Declaration of Helsinki. The patient records/information was made anonymous 
prior to analysis. The medical records and OCT database of JSIEC were searched and reviewed from February 
2009 to December 2012.

In total, 15 eyes in subjects with retinal trauma and 15 eyes in normal subjects were included and 
underwent a macular-centred (6 ×  6 mm) SD-OCT scan (Topcon 3D OCT-1000, 512 ×  64 ×  480 voxels, 
11.72 ×  93.75 ×  3.50 μ m3, or 512 ×  128 ×  480 voxels, 11.72 ×  46.88 ×  3.50 μ m3). There were 12 males and 3 

Figure 3. Detected EZ disruption volume comparison. The blue bars show the mean volumes, and the red 
error bars show the 95% confidence intervals.

Figure 4. Bland-Altman plot for consistency analysis. 
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females in the trauma group, with a mean age of 30.3 ±  11.3 years (range: 8–43 years). There were 9 males and 
6 females in the normal group, with a mean age of 33.1 ±  10.8 years (range: 7–46 years). Subjects with other eye 
diseases were excluded except for those with refractive error < =  + /− 6 diopter. The raw, uncompressed data were 
exported from the OCT machine in “.fds” format for analysis.

Overview of the EZ Disruption Detection Method. The proposed method consists of three main 
parts: pre-processing, classification, and post-processing. In the pre-processing step, the SD-OCT images are 
first denoised using fast bilateral filtering33. Then, the SD-OCT volume is automatically segmented into 10 
intra-retinal layers using the multi-scale 3D graph-search approach34–40, which produces 11 surfaces. The retina 
in the original SD-OCT volume is flattened, and the 11th surface (the bottom of the retinal pigment epithelium) 
is used as the reference plane. The EZ region between the 7th and 8th surfaces is extracted, which is the volume of 
interest (VOI) for our analysis. In the classification step, five categories, from a total of 57 features, are extracted 
for each voxel in the VOIs. Then, principle component analysis (PCA) is adopted for feature selection. Because 
the disrupted voxels (the minority) in the VOIs are far less numerous than the non-disrupted ones (the majority), 
it is a typical imbalanced classification problem. To improve the performance of the classification, we apply the 
following two strategies in the classification training: (1) an Adaboost algorithm is adopted to train some weak 
classifiers into an integrated strong classifier at the algorithm level; and (2) the majority samples are randomly 
under-sampled at the data level. In the classifier testing step, every voxel in the VOIs is classified as disrupted or 
not disrupted. In the post-processing step, the blood vessel silhouettes are identified and excluded by a vessel 
detector28 and the isolated points are excluded by morphological operations to avoid false detections. Finally, the 
volume of the disrupted EZ is calculated.

Figure 5. The effect of incorrect surface segmentation and poor quality in the SD-OCT image. (a) The 
original B-scans of the OCT volume. (b) The incorrectly segmented 7th and 8th surfaces. (c) The ground truth 
(in red). (d) The segmented EZ disruption (in yellow). (e) The original B-scans of the OCT volume with poor 
quality. (f) The ground truth (in red). (g) The segmented EZ disruption (in yellow).
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Denoising by Bilateral Filtering. Speckle noise is the main noise in OCT images41, and it affects the 
performance of image processing and classification. In this paper, we propose applying the bilateral filtering42 
method for denoising because it can remove speckle noise from images effectively while maintaining edge-like 
features. We have used a fast approximation algorithm33 to reduce the computation time without significantly 
impacting the bilateral filtering result. Each B-scan (X–Z image) of the OCT images is smoothed separately by 
bilateral filtering.

Segmentation of the Intra-retinal Layer and the EZ Region. The filtered SD-OCT volume is then 
automatically segmented into 10 intra-retinal layers using the multi-scale 3D graph-search approach34–40, which 
produces 11 surfaces (see Fig. 6). Then, all the surfaces are smoothed using thin plate splines. The retina in the 
original SD-OCT volume is flattened by adjusting the A-scans up and down in the z-direction, where the 11th 
surface (the bottom of the retinal pigment epithelium) is used as a reference plane because of its robustness. Then, 
the EZ regions between the 7th and 8th surfaces are extracted as the volumes of interest (VOIs).

Feature Extraction. For classification, the following five types of low-level features are extracted: normal-
ized intensity, block mean, block standard deviation, the absolute intensity difference in the 13 directions to be 
described later (step =  1, 2), and the grey-level co-occurrence matrix (GLCM) based features (contrast, correla-
tion, energy and homogeneity in 13 directions). Therefore, 57 features are extracted, which are listed in Table 2.

The normalized intensity represents the voxel’s grey level. As shown in Fig. 6, the intensity level of the dis-
rupted region of the EZ is lower than the intensity level of the non-disrupted region. Therefore, if a voxel’s nor-
malized intensity level is low, it has a higher probability of being classified as a disruption, and vice versa.

The block mean and block standard deviation represent the average intensity level and the variance of the inten-
sity level, respectively, in the local region centred around the voxel (region of 5 ×  5 ×  5 voxels). The absolute inten-
sity difference in 13 directions represents the variance of the intensity between the centre voxel and its neighbours 
in 13 directions. Let α1 stand for the angle between the X-axis and the projection direction on the X-Y plane, and 
let α2 stand for the angle between the X-Y projection direction and the Z-axis. The 13 directions can be described 
as follows: (α1, α2) =  (0, 90°), (45°, 90°), (90°, 90°), (135°, 90°), (0, 45°), (180°, 45°), (90°, 45°), (−90°, 45°),  

Figure 6. Segmentation results of 11 intra-retinal surfaces (10 layers) on a normal eye and an eye with 
retinal trauma. (a) B-scan of a normal eye. (b) Segmentation results of the normal eye, nerve fibre layer 
(NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer 
(OPL), outer unclear layer (ONL) + inner segment layer (ISL), outer segment layer (OSL), and retinal pigment 
epithelium complex (RPE+ ). (c) Three-dimensional rendering of the segmented surfaces for the normal eye. 
(d) B-scan of an eye with retinal trauma. (e) Segmentation results of the eye with retinal trauma. (f) Three-
dimensional rendering of the segmented surfaces for the eye with retinal trauma.
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(0, 0), (45°, 45°), (135°, 45°), and (−135°, 45°). The block mean, block standard deviation and absolute difference 
in the 13 directions can be used to distinguish the boundary between the disrupted and non-disrupted regions.

The grey-level co-occurrence matrices (GLCMs) for the 3D volumetric data describe the spatial dependence 
of grey levels across multiple slices43,44. The 3D method searches for other grey levels in the 13 directions (men-
tioned above) across multiple planes and constructs 13 GLCMs. Here, the GLCMs in the 13 directions of every 
5 ×  5 ×  5 block are constructed. Then, the following four features are calculated: (1) the contrast, which measures 
the local contrast of the volumetric image and is expected to be higher when a large grey-level difference occurs 
more frequently; (2) the correlation, which provides a correlation between the two voxels in a voxel pair and is 
expected to be higher when the grey levels of a voxel pair are more correlated; (3) the energy, which measures the 
number of repeated voxel pairs and is expected to be higher if the occurrence of repeated voxel pairs is higher; 
and (4) the homogeneity, which measures the local homogeneity of a voxel pair and will be larger when the grey 
levels of each voxel pair are more similar.

Feature Selection. Based on above definitions, we have a total of 57 features extracted for each voxel in the 
VOIs. To reduce the dimensionality of the feature vector and describe the inter-correlated quantitative depend-
ence of the features, a feature selection procedure based on the PCA is performed. In our experiments, the first 
10 principle components are selected as the new features; they represent more than 90% of the information in the 
original features.

Adaboost Algorithm and the Under-sampling Based Integrated Classifier. In this study, the num-
ber of non-disrupted samples in the EZ region is far greater than the number of disrupted ones. The disrupted EZ 
samples and non-disrupted EZ samples belong to the minority and majority classes, respectively. This is a typical 
imbalanced classification problem, which means the class distribution is highly skewed. Most traditional single 
classifiers, such as the support vector machine, the k-nearest neighbour classifier, quadratic discriminate analysis, 
and the decision tree classifier, tend to show a strong bias towards the majority class and do not work well for this 
type of problem because they aim to maximize the overall accuracy. The Adaboost algorithm based integrated 
classifier23–25 is one solution to overcome this problem at the algorithm level; it integrates multiple weak classifiers 
into a strong classifier and is therefore more sensitive to the minority. Hence, the Adaboost algorithm is adopted 
in this study.

To further improve the classification performance at the data level, the training datasets are balanced by 
under-sampling majority samples. In the training step, the Adaboost algorithm-based classifier model is calcu-
lated according to leave-one-out cross-validation, using all the disrupted samples and an equivalent number of 
randomly selected non-disrupted samples. In the testing stage, each voxel in the VOIs is classified as disrupted or 
non-disrupted using the trained Adaboost model.

Post-processing. The vessel silhouettes in the EZ have lower values of intensity (see Fig. 7), and the voxels 
in these regions may be falsely classified as disrupted. The vessel silhouettes are identified and detected based on 
a vessel detector28. As in the outer retina (EZ to RPE), the vessel silhouettes offer excellent contrast; only those 
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Table 2.  The features extracted in the feature extraction stage.
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voxels between the EZ and RPE are selected and each pixel in the 2D projection image is the average in the z-axis 
direction of the selected voxels at that particular x, y location in the OCT volume. Then, the vessel silhouettes 
are segmented using a KNN classifier. If the detected EZ disruption regions have the same x and y location as the 
vessel silhouettes, these regions are regarded as normal and removed as false detections. Due to the physiological 
connectivity of the EZ disrupted/non-disrupted regions, isolated disrupted/non-disrupted voxels are eliminated 
through morphological opening operations, where the shape of the structural element is set as ball with a radius 
of 5 voxels.
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