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A B S T R A C T   

Tyrosine kinase inhibitors (TKIs) are established drugs in the therapy of FLT3-ITD mutated acute myeloid leu-
kemia (AML). However, acquired mutations, such as D835 in the tyrosine kinase domain (FLT3-ITD/D835), can 
induce resistance to TKIs. A cap analysis gene expression (CAGE) technology revealed that the gene expression of 
BCL2A1 transcription start sites was increased in primary AML cells bearing FLT3-ITD/D835 compared to FLT3- 
ITD. Overexpression of BCL2A1 attenuated the sensitivity to quizartinib, a type II TKI, and venetoclax, a selective 
BCL2 inhibitor, in AML cell lines. However, a type I TKI, gilteritinib, inhibited the expression of BCL2A1 through 
inactivation of STAT5 and alleviated TKI resistance of FLT3-ITD/D835. The combination of gilteritinib and 
venetoclax showed synergistic effects in the FLT3-ITD/D835 positive AML cells. The promoter region of BCL2A1 
contains a BRD4 binding site. Thus, the blockade of BRD4 with a BET inhibitor (CPI-0610) downregulated 
BCL2A1 in FLT3-mutated AML cells and extended profound suppression of FLT3-ITD/D835 mutant cells. 
Therefore, we propose that BCL2A1 has the potential to be a novel therapeutic target in treating FLT3-ITD/D835 
mutated AML.   

Introduction 

Acute myeloid leukemia (AML) is associated with chromosomal 
disorders, germline, and somatic driver mutations [1]. Specifically, in-
ternal tandem duplications in the juxtamembrane domain of the 

FMS-like tyrosine kinase 3 gene (FLT3-ITD) and missense mutations in 
the tyrosine kinase domain (TKD) of the FLT3 gene play critical roles in 
the pathophysiology of AML. In fact, FLT3-ITD and FLT3-TKD mutations 
were detected in approximately 15–35% and 5–10% of AML patients, 
respectively [2], and approximately 1–3% of the patients carry both 
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mutations at diagnosis [3,4]. Both FLT3-ITD and FLT3-TKD mutations 
constitutively activate FLT3 tyrosine kinase, leading to uncontrolled 
activation of downstream signaling pathways including phosphoinosi-
tide 3-kinase (PI3K), mitogen-activated protein kinases (RAS-MAPK), 
and STAT5 [5]. 

Several FLT3-directed tyrosine kinase inhibitors (TKIs) have been 
developed for treatment of FLT3-mutated AML. These inhibitors can be 
divided into two distinct functional subtypes based on their mechanism 
of action. Type I inhibitors, such as gilteritinib, midostaurin, and cren-
olanib block the active and inactive conformation of FLT3 targeting the 
ITD and TKDs, while the type II inhibitors, such as quizartinib and 
sorafenib, selectively bind to the inactive state of FLT3-ITD only [5,6]. 
TKIs have shown favorable effects in refractory FLT3-mutated AML 
compared to traditional chemotherapies [7,8], and the combination of 
TKIs with Ara-c and idarubicin or daunorubicin also showed promising 
outcomes in newly diagnosed FLT3 mutant AML [9]. Thus, the FDA 
approved midostraurin and gilteritinib for clinical use [10,11]. How-
ever, the effects of TKIs are often transient, resulting in disease relapse 
after initial responses [12]. 

Multiple underlying resistance mechanisms against these TKIs have 
been proposed. One mechanism is that the TKI-induced acquisition of 
additional point mutations in the TKD accounts for resistance of FLT3- 
ITD cells. Another is the co-existence of multiple mutated clones 
including FLT3-ITD and FLT3-TKD prior to treatment, which causes 
proliferation of refractory clones after TKI treatments. Targeted 
sequencing of single cells derived from patients with relapsed/refractory 
AML showed polyclonal blast populations harboring several subclones 
with ITD plus D835 mutations in the activation loop of TKD, such as 
D835V, D835Y, or D835F (FLT3-ITD/D835) [13], which might 
contribute to subsequent leukemia progression. 

On the other hand, FLT3-independent alternative signaling pathways 
can lead to resistance. Type I TKIs were found to be more effective in 
AML with FLT3-ITD/TKD mutations compared to type II TKIs. However, 
type I TKI-induced mutations in the RAS gene have been identified as an 
important factor of FLT3-independent resistance [14]. Also, 
FLT3-ITD/TKD double mutant clones have been reported to activate 
alternative survival pathways involved in DNA repair and anti-apoptosis 
during leukemia progression [15,16]. 

To overcome resistance, combination therapies with inhibitors 
against FLT3 and alternative resistance factors such as apoptosis have 
been developed [17]. A phase Ib/II clinical trial using quizartinib with a 
specific BCL2 inhibitor, venetoclax (NCT03735875), and a phase Ib 
multi-center clinical study of gilteritinib and venetoclax 
(NCT03625505) have been reported in relapsed/refractory AML pa-
tients with FLT3 mutations. Initial results of these studies revealed 
promising outcomes [18,19]. 

Characteristics of signaling pathways in the FLT3-ITD/TKD double 
mutations remain poorly understood. This study aims to investigate the 
survival mechanisms of AML cells with FLT3-ITD/TKD mutations. AML 
samples from patients bearing FLT3-ITD/TKD mutations were analyzed 
by transcriptome analysis and compared with those with FLT3-ITD only. 
Cap analysis gene expression (CAGE) technology revealed that FLT3- 
ITD/TKD AML showed higher levels of anti-apoptotic BCL2A1 gene 
transcripts, which is associated with resistance to venetoclax [20,21], 
compared to FLT3-ITD AML cells and thus, overexpression of BCL2A1 in 
FLT3-ITD AML cells decreases the sensitivity to quizartinib. Based on 
these findings, we propose BCL2A1 as a novel therapeutic target in re-
fractory AML with FLT3-ITD/D835. 

Materials and methods 

Preparation of cell lines and primary AML cells 

Human MV4;11 cells (RRID: CVCL_0064) were purchased from the 
American Type Culture Collection (Manassas, VA), and Molm13 cells 
(RRID: CVCL_2119) were purchased from DSMZ (Braunschweig, 

Germany). These cells were cultured in IMDM or RPMI 1640 medium 
supplemented with 10% heat-inactivated FBS, 100 U/mL penicillin, and 
100 μg/mL streptomycin. MV4;11 cells bearing FLT3-ITD/D835 muta-
tions (MV4;11-ITD/D835) were established from parental MV4;11 
bearing FLT3-ITD mutation (MV4;11-ITD) by exposure to quizartinib at 
incremental concentrations of from 0.3 to 1.5 nM for six months, fol-
lowed by clone cultures [22]. The FLT3-ITD/D835 mutations were 
confirmed by direct sequencing. The established FLT3-ITD/D835 clone 
had a 50% inhibitory concentration (IC50) of 6.7 nM for quizartinib, 
which was 34-times higher than that of MV4;11-ITD. MV4;11 cells 
bearing FLT3-ITD/D835 mutations were maintained in IMDM contain-
ing quizartinib (1.5 nM). Quizartinib was removed three to four days 
before experiments. 

To stably overexpress BCL2A1 in AML cell lines, a lentiviral vector 
was used for gene delivery. A lentiviral transfection vector with the 
BCL2A1 open reading frame (RefSeq NM_004049.4) under regulation of 
the human EF1A promoter was purchased from Vector Builder (Chicago, 
IL). As a negative control, a lentiviral transfection vector was used with a 
300 bp non-coding stuffer sequence under the same promoter from the 
same vendor. Lentivirus was prepared by transient co-transfection of 
HEK-293T cells (ATCC, RRID: CVCL_0063) with an equimolar mix of 
transfer vector and packaging plasmids (psPAX2 and pMD2.G, RRID: 
Addgene_12,260 and RRID: Addgene_12,259, respectively, from Addg-
ene) using JetPrime transfection reagent as directed by the manufac-
turer (Polyplus, Illkirch, France). Lentiviral supernatants were harvested 
48-h post transfection and passed through 0.45-micron, surfactant-free- 
cellulose acetate membranes. AML cell lines were incubated with un-
diluted viral supernatant overnight at 37 ◦C under 5% CO2; infected cells 
were then washed and selected with puromycin (Invivogen, San Diego, 
CA) at 0.5 μg/mL. Increased expression of each transgene was verified 
by immunoblot analysis. 

Primary peripheral blood and bone marrow (BM) samples were ob-
tained from newly diagnosed or relapsed AML patients (n = 26) after 
written informed consent was obtained in accordance with the Univer-
sity of Texas MD Anderson Cancer Center Institutional Review Board 
regulations under the Declaration of Helsinki principles. The protocol 
was approved by the respective Institutional Ethics Committees. The 
patients carrying nucleophosmin (NPM1) mutations were excluded 
since NPM1 mutations are associated with favorable prognosis in 
negative or low allelic ratio FLT3-ITD AML. Their age varied from 24 to 
87 years. Ficoll-Hypaque density gradient centrifugation was used to 
separate mononuclear cells (Sigma-Aldrich, St Louis, MO). Venetoclax 
(ABT-199/GDC-0199) and quizartinib (AC220) were purchased from 
Selleck-chem (Houston, TX). Gilteritinib and CPI-0610 were purchased 
from Funakoshi (Tokyo, Japan) and Abcam (Cambridge, UK), 
respectively. 

Analyses of cell viability and apoptosis 

Cell proliferation was assessed by Cell Counting Kit-8 (WST-8, 
Dojindo, Kumamoto, Japan). Effects of the reagents on cellular prolif-
eration were evaluated as percent-decrease of cell viability compared to 
the cell viability in the culture medium containing 0.01% dimethyl 
sulfoxide. The half-maximal inhibitory concentration (IC50) and com-
bination index (CI) were calculated by the Chou-Talalay method based 
on the median-effect principle [23], using CalcuSyn 2.0 software (Bio-
soft, Cambridge, UK). The dosage of each reagent was determined based 
on the previously reported therapeutic concentrations in humans: 270 
nM for quizartinib [24], 310 nM for gilteritinib [25], 2.5 μM for ven-
etoclax [26], and 6 μM for CPI-0610 [27]. 

Immunoblot analysis 

Immunoblot analysis was performed as previously described [28]. 
For immunoblotting, the following antibodies were used: b-actin (Sig-
ma-Aldrich, St. Louis, MO, Cat# A5316, RRID:AB_476,743); MCL-1 (BD 
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Biosciences, San Diego CA, Cat# 559,027, RRID:AB_397,176); BCL2 
(Cell Signaling Technology, Danvers, MA Cat# 2872, RRID:AB_10,693, 
462), BCL2A1 (Cell Signaling Technology, Cat# 14,093, RRID:AB_2, 
798,390), BCL-XL (Cell Signaling Technology, Cat# 2762, RRID:AB_10, 
694,844), STAT5 (Cell Signaling Technology, Cat# 9363, RRID:AB_2, 
196,923), phosphorylated (p-) STAT5 (Cell Signaling Technology, Cat# 
9351, RRID:AB_2,315,225), horseradish peroxidase–linked anti-mouse 
(Cell Signaling Technology, Cat# 7076, RRID:AB_330,924) and 
anti-rabbit IgG (Cell Signaling Technology, Cat# 7074, RRID:AB_2,099, 
233). 

Mutational analyses 

Mutation screening was performed using paired-end sequencing on 
the MiSeq sequencer (Illumina, San Diego CA) using DNA from fresh BM 
samples or peripheral blood. NGS sequencing libraries were created by 
polymerase chain reaction (PCR) amplification of target regions using 
TruSeq chemistry (Illumina) or Haloplex probe capture followed by PCR 
amplification of target regions using Haloplex chemistry (Agilent, Santa 
Clara, CA). The panel interrogated either selected hotspot or entire 
coding regions of 25 genes (ASXL1, BRAF, CEBPA, DNMT3, EGFR, EZH2, 
GATA1, GATA2, IDH1, IDH2, IKZF2, JAK2, KIT, MDM2, MLL, MPL, 
MYD88, NOTCH1, PDGFRA, PTPN11, RAS, RUNX1, TET2, TP53, WT1) 
utilizing TruSeq Amplicon Cancer Panel kit (Illumina) as described 
previously [29]. Human genome build 19 (hg19) was used as the 
reference for sequence alignment. Reporter and Agilent SureCall were 
used for variant calling for Truseq and Haloplex workflows, respectively. 
FLT3-ITD and FLT3-TKD mutation testing was performed using PCR 
followed by capillary electrophoresis on Genetic Analyzer (Applied 
Biosystems, Foster City, CA), as described previously [30]. 

mRNA quantification 

Total RNA was extracted from cells with the RNeasy Mini Kit (Qia-
gen, Hilden, Germany). First-strand cDNA was synthesized with oligo 
(dT) as primer (Superscript II System; Invitrogen). Real-time reverse- 
transcriptase PCR (RT-PCR) was performed by the Model 7500 Real- 
time PCR System (Applied Biosystems). Expression of the mRNAs 
encoding BCL2, BCL2A1, and GAPDH was detected by TaqMan Gene 
Expression Assays (BCL2: Hs00608023_m1; BCL2A1: Hs00187845_m1; 
GAPDH: Hs99999905_m1; Applied Biosystems). The expression of each 
gene transcript relative to that of GAPDH was calculated as follows: 
relative expression=100 × 2 exp [− ΔCt], where ΔCt is the mean Ct of the 
transcript of interest minus the mean Ct of the transcript for GAPDH. The 
Ct data from duplicate PCRs were averaged for calculation of relative 
expression. 

CAGE 

CAGE libraries from the RNA samples were prepared as described 
previously [31]. CAGE peaks that represent transcription start sites were 
defined by the decomposition-based peak identification method and 
annotated to genes [32]. Peaks were given a name in the form 
pN@GENE, where GENE indicates gene name and N indicates the rank 
in the ranked list of promoter activities for that gene. For example, 
p1@BCL2 represent the highest expression among alternative promoters 
among the peaks associated with BCL2 gene, according to the FANTOM5 
CAGE profiles [32]. The relative log expression method was utilized to 
calculate normalization factors for the expression of promoters. 
Normalized data were subjected to the R Bioconductor package “edgeR” 
for differential expression (Bioconductor, RRID:SCR_006442). Then, 
gene ontology (GO) analysis of differentially expressed genes was per-
formed with DAVID Bioinformatics Resources (DAVID, RRID: 
SCR_001881) [33]. 

RNA-Seq analysis 

Sequencing libraries were generated using NEBNext Ultra RNA Li-
brary Prep Kit for Illumina (New England Biolabs, Ipswich, MA) 
following the manufacturer’s recommendations. The library fragments 
were purified with QIAQuick PCR kits (QIAGEN). The clustering of the 
index-coded samples was performed on a cBot cluster generation system 
using HiSeq PE Cluster Kit v4-cBot-HS (Illumina) according to the 
manufacturer’s instructions. After cluster generation, the libraries were 
sequenced on an Illumina platform and 150 bp paired-end reads were 
generated. 

The reads were aligned to the GRCh38/hg38 genome reference and 
indexed using STAR aligner (STAR, RRID:SCR_004463) and Samtools 
(SAMTOOLS, RRID:SCR_002105) with default parameters. VarDict, an 
RNA-sequencing data compatible variant caller, was used with default 
settings to identify edited regions. Edits were searched for against hg38 
genome FASTA (FASTA, RRID:SCR_011819) and RefSeq (RefSeq, RRID: 
SCR_003496) hg38 bed file references with a minimum allele frequency 
of 0.01. Only single nucleotide mutations were kept. The output was 
further filtered by keeping edits occurring in exons (biomaRt) with >
100 reads in each experiment, > 0.1 differences in allele frequency of 
high-quality bases between the experimental conditions (higher in 
MV4;11 with FLT3-ITD/D835 vs. FLT3-ITD). Sites corresponding to A- 
to-I edit sites were removed from the list using REDItools (REDItools, 
RRID:SCR_012133) [34]. Finally, the list of edit sites was fed into 
Ensembl Variant Effect Predictor (VEP) [35] to identify associated 
amino acid changes, accounting for the strandardness of the reads. 

Statistical analyses 

Normalization for heatmap and the statistical tests were executed in 
R (version 3.4.2). Differences between groups were assessed by a two- 
tailed Student’s t-test. A p-value ≤ 0.05 was considered statistically 
significant. Where indicated, the results are expressed as the mean ± SD 
of three or more samples. 

Synergism, additive effects, or antagonism were assessed by the 
Chou-Talalay method, utilizing Calcusyn software (Biosoft). The 
average CI value for the experimental combination was calculated from 
the 50, 75, and 90% dose-effect levels of cell growth inhibition. By this 
method, CI values indicate the following: 0.3 - 0.7, strong synergism; 
0.7–0.85, moderate synergism; 0.85–0.9, slight synergism; 0.9–1.1, 
nearly additive; 1.1–1.2, slight antagonism; 1.2–1.45, moderate antag-
onism; 1.45–3.3, antagonism; 3.3–10, strong antagonism [23]. 

Data availability 

The CAGE and RNA-seq data generated during this study have been 
deposited to GEO under the access codes GSE149962 and GSE151249 

Results 

Primary AML cells bearing FLT3-ITD/D835 mutations show a higher 
frequency of co-mutations and higher levels of BCL2A1 gene transcripts 

To investigate differences in transcriptome and co-mutation profiles 
in primary AML patient cells bearing FLT3-ITD and FLT3-ITD/D835 
mutations, we obtained cells from 26 patients (14 bearing FLT3-ITD and 
12 bearing FLT3-ITD/D835 mutations). Table 1 summarizes clinical 
characteristics. Gene panel sequencing showed that co-mutations were 
identified more frequently in primary AML cells bearing FLT3-ITD/D835 
mutations than cells bearing FLT3-ITD alone (Table 1). In particular, 
mutations in RAS, ASXL1, and TET2 frequently co-existed in AML cells 
with FLT3-ITD/D835 mutations. 

To investigate transcriptome profiles, CAGE transcriptome analyses 
were performed. CAGE peaks indicate transcription start sites, which 
allows the investigation of differentially expressed transcripts and 
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promoter activities across the whole genome [32]. Out of 18,032 pro-
moters, CAGE identified 310 upregulated and 22 downregulated pro-
moters with a false discovery rate (FDR) of < 0.05 in AML cells bearing 
FLT3-ITD/D835 compared to cells bearing FLT3-ITD mutation. We then 
extracted 60 upregulated and 13 downregulated promoters that were 
functionally annotated by mammalian genomes, FANTOM 5 (Table 2) 
[36]. The expression levels of promoters for each sample are shown in a 
heatmap, and the differences between AML cases bearing FLT3-ITD and 
FLT3-ITD/D835 are demonstrated by a MA-plot diagram (Supplemen-
tary Figs. S1 and S2). The gene ontology (GO) analyses by Database for 
Annotation, Visualization, and Integrated Discovery (DAVID) [33] 
identified apoptotic pathways as the top GO term with 14 promoters 
(Fig. 1A and Supplementary. Table S1). The promoter of BCL2A1, a 
BCL-2 family gene, was one of the upregulated promoters in the AML 
cells bearing FLT3-ITD/D835 when compared to cells bearing FLT3-ITD 
alone (FDR < 0.05, log fold change > 2.0). Fig. 1B shows the profiles of 
promoter expressions of BCL2A1 (left panel) and BCL2 (right panel). In 
AML cells bearing FLT3-ITD/D835, BCL2A1 transcripts were higher in 
cells with co-mutations than in cells without co-mutations. To examine 
the effects of upregulated BCL2A1 promoters, mRNA levels were 
determined by qPCR. The left panel of Fig. 1C shows that the BCL2A1 
gene expression was upregulated in AML cells bearing FLT3-ITD/D835 
compared to AML cells bearing FLT3-ITD mutation (p = 0.03). In 
contrast, the gene expression levels of BCL2 were comparable between 
the AML cells bearing FLT3-ITD and bearing FLT3-ITD/D835 (right 
panel) (p = 0.43). 

Upregulation of BCL2A1 and increased confounding gene mutations in 
MV4;11 cells bearing FLT3-ITD/D835 

We then examined the differences in mRNA and protein expression 
levels of BCL2A1 and BCL2 in isogenic MV4;11 cells bearing FLT3-ITD 
(MV4;11-ITD) and bearing FLT3-ITD/D835 mutations (MV4;11-ITD/ 
D835). Fig. 2A shows that mRNA levels of BCL2A1 were higher in 
MV4;11-ITD/D835 compared to MV4;11-ITD (left panel, p < 0.01) while 
mRNA levels of BCL2 were comparable between the two groups (middle 
panel, p = 0.05). Concordant with these results, the western blot ana-
lyses showed that BCL2A1 expression was 1.6-fold higher in MV4;11- 
ITD/D835 compared to MV4;11-ITD cells (Fig. 2A right panel), while 
BCL2 protein expression was comparable between the two groups. In 
contrast, expressions of MCL-1 and BCL-XL levels were decreased in 
MV4;11-ITD/D835 compared to MV4;11-ITD. MV4;11-ITD/D835 cells 
have been established by the prolonged exposure to quizartinib, and our 
observation was consistent with our previous report that quizartinib 
downregulates the expression of MCL-1 and BCL-XL [37]. 

We further compared occurrence of co-mutations in the aforemen-
tioned cells. Compared to MV4;11-ITD, RNA-Seq analysis detected 
newly acquired mutations in MV4;11-ITD/D835 including CCZ1 
c.538C>A:(p.H180N), PTPN11 c.218C>T:(p.T73I), ZNF598 
c.1675C>T:(p.P559S), DDX5 c.427G>T:(p.G143W), and ARFGAP3 
c.1421G>A:(p.S474N). 

Table 1 
Clinical characteristics and mutation status of primary AML samples.  

Patient 
number 

Diagnosis Sex/Age 
(y) 

Prior therapy Mutation status 
FLT3-ITD /VAF 
(%) 

FLT3-D835 /VAF 
(%) 

Other genes* 

1 AML M/39 AML (3 + 7; DHAD+VP-16; DAC; AraC+TOPO) Positive/47.0 Negative Not detected 
2 AML F/86 None Positive/47.5 Negative Not detected 
3 AML M/32 AML (FLAG+Gemtuzumab ozogamicin) Positive/24.3 Negative Not detected 
4 AMOL M/81 None Positive/24.9 Negative Not detected 
5 AMML F/40 None Positive/15.4 Negative Not detected 
6 AMML F/55 None Positive/47.9 Negative Not detected 
7 AMML M/78 None Positive/48.2 Negative Not detected 
8 AMML F/62 None Positive/48.2 Negative Not detected 
9 APL F/36 None Positive/ 

Positive** 
Negative Not detected 

10 AML M/46 None Positive/2.1 Negative RAS 
11 AML M/71 None Positive/43.6 Negative CEBPA 
12 AML M/47 None Positive/1.6 Negative KIT 
13 AMOL F/50 None Positive/43.7 Negative RAS 
14 AMML M/29 None Positive/29.1 Negative RAS 
15 AML M/32 AML (FLAG+Gemtuzumab ozogamicin) Positive/24.3 Positive/ 

Positive** 
Not detected 

16 AMOL F/51 AML (FLAG+IDA/AZA; FLAG+IDA/BMT; 
Sorafenib; Clofa+AraC) 

Positive/46.0 Positive/33.8 Not detected 

17 AML F/87 AML (Hydrea+AraC; AraC+ DXR; Sorafenib) Positive/39.6 Positive/13.3 TET2, RUNX1, RAS 
18 AML M/66 AML Positive/6.4 Positive/3.4 TET2, RUNX1, IKZF2, EZH2, RAS 
19 AML M/81 None Positive/3.1 Positive/34.9 CEBPA, DNMT3, IDH2, MPL, RUNX1 
20 AML M/76 ET (hydroxyurea)→AML (DAC+RUX) Positive/46.3 Positive/3.9 ASXL1, RUNX1, TET2, WT1 
21 AML M/62 AML(3 + 7) Positive/1.7 Positive/13.1 IDH2, RAS 
22 AML M/32 None Positive/24.3 Positive/ 

Positive** 
CEBPA 

23 AML M/24 AML (3 + 7; VP-16+Ctx; Quizartinib) Positive/54.3 Positive/29.4 IDH1, RAS 
24 AML M/58 MDS (AZA), AML (3 + 7; Quizartinib) Positive/87.3 Positive/50.1 ASXL1, MLL, NOTCH1 
25 APL M/80 Unknown Positive/39.4 Positive/6.9 DNMT3, EGFR, MPL 
26 APL F/51 Unknown Positive/2.0 Positive/27.7 EGFR, EZH2, MLL, MPL, NOTCH1, 

RUNX1, TET2, WT1 

AML, acute myelogenous leukemia; APL, acute promyelocytic leukemia; AMOL, acute monocytic leukemia; AMML, acute myelomonocytic leukemia; MDS, myelo-
dysplastic syndromes; VAF, variant allele frequency; ET, essential thrombocythemia; DHAD, mitoxantrone; VP-16, etoposide; DAC, decitabine; AraC, cytarabine; 
TOPO, topoisomerase; DXR, daunorubicin; RUX, ruxolitinib; Ctx, cyclophosphamide; AZA, azacitidine; FLAG, fludarabine, cytarabine and granulocyte colony stim-
ulating factor; IDA, idarubicin; BMT, blood or marrow transplantation; Clofa, clofarabin. 

* All samples were wt-NPM. The mutational status of 25 genes was analyzed. 
** Data are not available. 

K. Yamatani et al.                                                                                                                                                                                                                              



Translational Oncology 18 (2022) 101354

5

Upregulation of BCL2A1 correlates with decreased sensitivity to 
quizartinib 

To investigate whether drug resistance of AML cells bearing FLT3- 
ITD/D835 is associated with BCL2A1, we utilized Molm13 cells bearing 
the FLT3-ITD mutation and transfected with BCL2A1 using lentiviral 
systems. Western blots confirmed that BCL2A1 was overexpressed in the 
transfected cells, but not in the cells with mock transfections (Fig. 2B left 
panel). These cells were then treated with various concentrations of 

quizartinib, and the apoptogenic effects were evaluated by Annexin V- 
FITC and compared to the cells with mock transfections. As shown in 
Fig. 2B (right panels), overexpression of BCL2A1 significantly decreased 
the fraction of quizartinib-induced apoptotic Molm13 cells compared to 
the cells with mock transfection. 

A phase Ib/II clinical trial using quizartinib, a Type II FLT3 inhibitor, 
with venetoclax, a specific BCL2 inhibitor, targeting AML with FLT3-ITD 
is ongoing (NCT03735875) and is showing encouraging results [18]. 
However, the effect of quizartinib combined with venetoclax specifically 

Table 2 
CAGE-defined promoters differentially expressed between primary AML cells bearing FLT3-ITD and cells bearing FLT3-ITD/D835 (log2 FC > |2|, FDR < 0.05).  

CAGE-defined promoter Log2 FC P value FDR CAGE-defined promoter Log2 FC P value FDR 
Upregulated (FLT3-ITD/D835 vs. FLT3-ITD) Downregulated (FLT3-ITD/D835 vs. FLT3-ITD) 

p1@TKTL1 8.22 3.61E-07 3.92E-03 p5@CD1E − 6.38 1.49E-05 2.10E-02 
p5@H1F0 6.09 6.00E-05 4.29E-02 p1@CLIP3 − 6.05 5.90E-05 4.26E-02 
p3@SCGB3A1 5.76 6.58E-05 4.46E-02 p3@CYB5R3 − 6.04 4.09E-05 3.47E-02 
p1@C6orf126 5.39 9.38E-06 1.56E-02 p1@CD1B − 6.04 4.35E-05 3.58E-02 
p6@QPCT 5.25 4.98E-06 1.17E-02 p2@KCNA5 − 5.83 7.01E-05 4.58E-02 
p5@LTF 5.11 7.50E-06 1.43E-02 p1@CD1E − 5.32 5.57E-05 4.20E-02 
p2@S100A8 4.80 1.63E-07 3.66E-03 p1@PCDHGB5 − 5.08 1.30E-05 1.92E-02 
p1@D4S234E 4.60 5.19E-06 1.20E-02 p2@SLC4A3 − 5.07 1.00E-05 1.63E-02 
p4@NSMAF 4.30 2.98E-08 1.20E-03 p1@PPM1J − 4.89 6.48E-05 4.46E-02 
p2@AATK 4.26 4.02E-05 3.44E-02 p1@TIMP4 − 4.05 2.37E-06 8.02E-03 
p13@NSMAF 3.95 6.93E-06 1.35E-02 p2@SIGLEC6 − 3.93 6.24E-06 1.29E-02 
p2@PNPLA2 3.94 4.19E-06 1.06E-02 p3@SOCS2 − 3.89 8.16E-05 4.99E-02 
p3@SRGN 3.93 1.73E-05 2.31E-02     
p9@TLR4 3.91 4.88E-05 3.81E-02     
p4@PRKCH 3.86 2.90E-07 3.92E-03     
p1@AK124679 3.84 6.47E-06 1.29E-02     
p1@HRH4 3.69 1.23E-05 1.90E-02     
p2@FCAR 3.66 9.27E-07 5.68E-03     
p3@EVI2B 3.64 2.74E-05 2.83E-02     
p4@CYP4F3 3.60 3.79E-05 3.36E-02     
p2@PRKCH 3.53 4.63E-05 3.69E-02     
p6@C2orf55 3.44 5.80E-05 4.24E-02     
p1@CD24 3.41 2.33E-05 2.67E-02     
p4@NFIL3 3.20 2.39E-07 3.92E-03     
p5@ANXA1 3.20 5.68E-06 1.25E-02     
p1@OLR1 3.13 6.21E-05 4.38E-02     
p1@OPLAH 3.13 6.54E-05 4.46E-02     
p3@RPL12 3.08 2.72E-06 8.45E-03     
p2@GPR160 2.99 6.50E-07 5.47E-03     
p4@CTSS 2.97 2.42E-05 2.71E-02     
p3@SYNE1 2.94 2.52E-06 8.08E-03     
p3@SLC36A4 2.90 3.02E-07 3.92E-03     
p3@ALOX5AP 2.87 4.22E-05 3.54E-02     
p2@NBN 2.85 8.40E-06 1.49E-02     
p7@KLF6 2.85 2.29E-05 2.67E-02     
p4@ALOX5 2.84 2.12E-05 2.60E-02     
p2@ENTPD1 2.82 1.29E-05 1.92E-02     
p1@LOC100130597 2.82 3.78E-05 3.36E-02     
p7@PLD1 2.75 6.65E-05 4.47E-02     
p3@GRK6 2.74 2.16E-05 2.63E-02     
p4@BCL2A1 2.74 4.54E-05 3.68E-02     
p17@TRIB1 2.74 5.33E-06 1.20E-02     
p1@DAPK2 2.74 3.80E-05 3.36E-02     
p1@CEACAM1 2.71 2.72E-05 2.83E-02     
p7@JMJD6 2.71 2.32E-05 2.67E-02     
p1@NAMPT 2.61 2.05E-05 2.56E-02     
p6@DYSF 2.60 2.18E-05 2.63E-02     
p2@RPS8 2.57 5.66E-05 4.20E-02     
p3@CHD7 2.56 2.44E-06 8.02E-03     
p5@RBM7 2.54 2.68E-05 2.83E-02     
p8@FGD4 2.50 7.23E-05 4.63E-02     
p6@ECE1 2.48 3.16E-05 3.05E-02     
p9@ANKRD28 2.47 2.66E-05 2.83E-02     
p1@PADI4 2.36 1.98E-05 2.51E-02     
p8@TMSB4X 2.34 6.65E-05 4.47E-02     
p4@CFL1 2.31 6.29E-05 4.40E-02     
p2@FLII 2.22 1.92E-05 2.46E-02     
p2@ACTG1 2.16 3.50E-05 3.23E-02     
p3@IFNGR1 2.08 2.80E-05 2.85E-02     
p2@CTBS 2.04 4.03E-05 3.44E-02     

FC, Fold Change; FDR, False Discovery Rate. 
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Fig. 1. Reference in promoter expression in primary AML cells bearing FLT3-ITD or FLT3-ITD/D835 mutations. (A) Gene ontology (GO) enrichment analysis of the 
biological process of up-regulated promoters using network DAVID. The top 10 GO terms relevant to biological process were sorted according to promoter counts and 
p < 0.05. (B) The y-axis shows counts per million (CPM) of human BCL2A1 or BCL2 promoters, detected by CAGE. The x-axis shows patient number. The patients in 
the FLT3-ITD or FLT3-ITD/D835 groups were further divided into groups with or without co-mutations. Peaks were given a name in the form pN@GENE, where 
GENE indicates gene name and N indicates alternative promoters of the same gene. (C) Transcript expression levels of either BCL2A1 or BCL2 in AML patients 
harboring the FLT3-ITD or FLT3-ITD/D835 mutations were confirmed by q-RT-PCR. The relative expression of each mRNA was normalized to GAPDH. 
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in AML with FLT3-ITD/D835 has not been well investigated. We 
therefore examined the dose-dependent inhibitory effects of quizartinib 
and venetoclax on cell proliferation of MV4;11-ITD or 
MV4;11-ITD/D835 (Fig. 3A). The top-left panel of Fig. 3A shows that 
MV4;11-ITD/D835 were significantly less sensitive to quizartinib 
compared to MV4;11-ITD (IC50: 0.20 ± 0.02 nM vs. 7.69 ± 2.14 nM, p <
0.01, n = 5). The top-right panel of Fig. 3A shows that 
MV4;11-ITD/D835 were less sensitive than MV4;11-ITD to venetoclax 
(IC50: 1.90 ± 0.58 nM vs. 6.78 ± 1.60 nM, p < 0.01, n = 5). This data is 
consistent with previous reports demonstrating that BCL2A1 causes 
resistance to venetoclax [20,21]. We confirmed that overexpression of 
BCL2A1 attenuated sensitivity of AML cells to venetoclax (Supplemen-
tary Fig. S3). The bottom panel of Fig. 3A shows effects of quizartinib in 
combination with venetoclax, on proliferation of MV4;11-ITD (left 
panel) and MV4;11-ITD/D835 cells (right panel). While proliferation of 
MV4;11-ITD was almost completely suppressed by the quizartinib (0.25 
nM) and venetoclax (2 nM) combination in a synergistic manner 
(combination index, CI = 0.41), no synergistic combinational effects 
were observed in MV4;11-ITD/D835 (CI = 1.61). 

Synergistic effects of gilteritinib and venetoclax on cell growth of MV4;11- 
ITD and MV4;11-ITD/D835 

It has been shown that gilteritinib, a Type I FLT3 inhibitor, 

effectively blocks cell growth of AML cells bearing FLT3-ITD/D835 [38], 
and that the combination of gilteritinib and venetoclax is synergistically 
effective in AML cells with FLT3-ITD [39]. We therefore investigated the 
effects of gilteritinib and venetoclax on MV4;11-ITD and 
MV4;11-ITD/D835 cells. 

The top-left panel of Fig. 3B shows that gilteritinib inhibited cell 
growth of MV4;11-ITD and MV4;11-ITD/D835 in a dose-dependent 
manner. The top-middle and right panels of Fig. 3B shows that com-
bined treatment of gilteritinib and venetoclax synergistically reduced 
cell proliferation of both MV4;11-ITD and MV4;11-ITD/D835, although 
to a lesser degree in the double-mutant cells. To investigate underlying 
mechanism(s) of the combinational effects, we assessed protein levels of 
STAT5, a transcriptional regulator of BCL2 family proteins [40,41]. As 
shown in Fig. 3B (bottom panel), western blot analysis demonstrated 
that treatment with gilteritinib only diminished phosphorylation of 
STAT5 (p-STAT5) and decreased BCL2A1 levels in both MV4;11-ITD and 
MV4;11-ITD/D835 cells. The combination of gilteritinib and venetoclax 
further downregulated MCL-1 in MV4;11-ITD/D835. These results 
indicate that downregulation of p-STAT5 and its downstream BCL2 
family proteins may be associated with the anti-leukemic effects of gil-
teritinib in AML cells bearing FLT3-ITD and FLT3-ITD/D835. 

Fig. 2. (A) BCL2A1 is upregulated in MV4;11-ITD/D835 compared to MV4;11-ITD/D835. BCL2A1 and BCL2 mRNA of MV4;11-ITD and MV4;11-ITD/D835 were 
detected by q-RT-PCR. The relative expressions of BCL2A1 and BCL2 mRNA were normalized by GAPDH. Protein expression levels of BCL2A1, BCL2, MCL-1, and 
BCL-XL in MV4;11-ITD and MV4;11-ITD/D835 were detected by immunoblotting. (B) Overexpression of BCL2A1 attenuates quizartinib-induced cell growth inhi-
bition and apoptosis in Molm13 cells. Comparative analysis of BCL2A1 protein expressions in mock vector versus overexpressing (OE)-BCL2A1 cell line was 
determined by western blot analysis. Molm13 cells with mock vector or OE-BCL2A1 cells were treated with 2 to 50 nM quizartinib for 72 h. The percentages of 
annexin V-positive cells were evaluated by annexin V/PI (Propidium Iodide) staining and FACS analysis. Error bars, means ± SD. 
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Inhibition of bromodomain and extra-terminal motif (BET) induced 
apoptosis in MV4;11-ITD/D835 

We next examined the anti-leukemic effects of CPI-0610, a BET in-
hibitor, known to exert anti-tumor effects by also inhibiting BCL2A1 
[21]. Currently, no specific inhibitors of BCL2A1 are available, but a 
clinical trial using CPI-0610 for treatment of AML has been reported 
[42]. Fig. 4A shows that CPI-0610 inhibited cell growth dramatically 
with a modest increase in apoptosis in MV4;11-ITD (IC50256 ± 87.4 nM) 
and MV4;11-ITD/D835 (IC50304 ± 119 nM) in a dose dependent 
manner. Western blot analysis demonstrated that CPI-0610 decreased 
BCL2A1 in both cells (Fig. 4B). 

Discussion 

In this study, we asked the question: what factors are involved in the 
well-established resistance of double-mutated FLT3-ITD/D835 AML 
cells compared to that with FLT3-ITD only? We conducted a systemic 
global analysis of transcription start sites using CAGE analysis or pri-
mary clinical samples. Comprehensive bioinformatics analysis revealed 
apoptosis resistance as a top pathway. Next, we demonstrated upregu-
lation of BCL2A1 both at the transcriptional and protein levels in AML 
cells bearing FLT3-ITD/D835 mutations compared to ones with FLT3- 

ITD mutation only. The upregulation of BCL2A1 was found to account 
for resistance of AML cells bearing FLT3-ITD/D835 mutations to qui-
zartinib as well as to venetoclax. BCL2A1 has been reported to play an 
important role in tumor expansion and/or metastasis of various solid 
cancers [43,44], hematopoietic malignancies [20,45], and resistance to 
venetoclax [20,21]. Indeed, the combination of quizartinib and ven-
etoclax was not effective in AML cells bearing FLT3-ITD/D835 that 
highly express BCL2A1. However, the combination of gilteritinib and 
venetoclax showed synergistic effects in AML cells bearing 
FLT3-ITD/D835. We confirmed that gilteritinib reduced the expressions 
of p-STAT5 and BCL2A1 in MV4;11 cells bearing FLT3-ITD/D835. The 
expression of BCL2A1 is known to be regulated through JAK/STAT 
signaling [46,47] and here it is demonstrated that gilteritinib, at least in 
part, overcomes resistance of AML cells with FLT3-ITD/D835 to ven-
etoclax by inhibition of JAK/STAT-BCL2A1 signaling. 

While BCL2A1 may be a promising therapeutic target in AML with 
FLT3-ITD/TKD mutations, specific BCL2A1 inhibitors are currently un-
available. AML cells are vulnerable to BET family/BRD4 inhibiters, 
which transcriptionally suppress the expression of BCL2A1 and also 
downregulate the activity of important cell survival factors, such as 
MYC, BCL2, and CDK6 that are highly expressed in AML cells [21,48]. 
We observed that CPI-0610, a BET inhibitor [27], showed anti-tumor 
effects on AML cells bearing FLT3-ITD and FLT3-ITD/D835. Recently, 

Fig. 3. (A) Cell growth inhibition by quizartinib and/or venetoclax in MV4;11-ITD and MV4;11-ITD/D835. MV4;11-ITD or MV4;11-ITD/D835 were treated with 
0.01 to 1000 nM quizartinib or 0.01 to 1000 nM venetoclax and cell growth was assessed by the WST-8 test at 72 h. The concentration of drug resulting in 50% cell 
growth inhibition (IC50) was calculated using CalcuSyn software (BioSoft, Cambrifge, UK) from five independent experiments. IC50 of quizartinib: FLT3-ITD 0.20 ±
0.02 nM, FLT3-ITD/D835 7.69 ± 2.14 nM. IC50 of venetoclax: FLT3-ITD 1.90 ± 0.58 nM, FLT3-ITD/D835 6.78 ± 1.60 nM (top panels). FLT3-ITD positive cells or 
FLT3-ITD/D835-positive MV4;11 cells were treated for 72 h with 0.0625–32 nM quizartinib and/or 0.5–2 nM venetoclax, and cell growth was assessed by the WST-8 
test. Combination index (CI) was calculated using CalcuSyn software. CI: FLT3-ITD 0.41, FLT3-ITD/D835 1.61 (bottom panels). (B) Synergistic cell growth inhibition 
by gilteritinib plus venetoclax. MV4;11-ITD or MV4;11-ITD/D835 were treated with 0.01 to 1000 nM gilteritinib and cell growth was assessed by the WST-8 test at 
72 h. IC50: FLT3-ITD 1.61 ± 0.63 nM, FLT3-ITD/D835 1.55 ± 0.98 nM (top-left panel). MV4;11-ITD or MV4;11-ITD/D835 were treated for 72 h with 0.25–1 nM 
gilteritinib and/or 0.5–2 nM venetoclax, and cell growth was assessed by the WST-8 test. CI: FLT3-ITD 0.23, FLT3-ITD/D835 0.28 (middle and right panels). Protein 
levels of p-STAT5 and anti-apoptotic family members were determined by western blot in MV4;11-ITD and MV4;11-ITD/D835 treated in the presence or absence of 
10 nM gilteritinib and 10 nM venetoclax for 24 h. Error bars, means ± SD. 

Fig. 4. BET inhibitor CPI-0610 effectively inhibits cell growth in MV4;11 cells regardless of the FLT3-ITD or FLT3-ITD/D835 mutation status. (A) MV4;11-ITD or 
MV4;11-ITD/D835 were treated with 50 to 1600 nM CPI-0610 for 72 h. Cell growth was assessed by the WST-8 test. The concentration of CPI-0610 resulting in 50% 
cell growth inhibition (IC50) was calculated using CalcuSyn software. IC50: FLT3-ITD 256 ± 87.4 nM, FLT3-ITD/D835 304 ± 119 nM. The percentages of apoptotic 
cells were analyzed by FACS analysis after stained with annexin V-FITC and propidium iodide (PI). Error bars, means ± SD. (B) Protein levels of BCL2A1 were 
determined by western blot in MV4;11-ITD or MV4;11-ITD/D835 treated in the presence or absence of 1 µM CPI-0610 for 24 h. 
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a combinatorial therapy of INCB054329, a novel BET inhibitor, and 
venetoclax has been shown to successfully reduce cell viability of AML 
cells associated with reduced transcriptional activation of key onco-
genes as well as with genes involved in cell cycle and metabolism [49]. 
The promoter regions of MYC and BCL2A1 contain BRD4 binding sites, 
suggesting that these genes are potentially sensitive to BRD4 inhibition 
[48]. BRD4 also activates NFκB via binding to the NFκB co-activator 
RELA [50], which is known to induce transcription of BCL2A1 [51]. 
These studies and our findings reported here may explain the anti-tumor 
effects of BET inhibitors on AML cells with upregulated BCL2A1. 

In our data, co-mutations in the genes, RAS, ASXL1, and TET2, were 
frequently detected in primary AML cells bearing FLT3-ITD/D835 mu-
tations. These findings are consistent with a previous study of the 
crenolanib-resistant cases exhibiting greater numbers of coexisting 
driver mutations in the TET2, IDH1, RAS, and ASXL1 genes compared to 
the responders [52]. Similarly, RAS mutations were frequently found in 
the relapsed cases after treatment with gilteritinib [14]. Recently, Zhang 
et al. reported that NRAS mutations induced resistance against ven-
etoclax by upregulating of BCL2A1 through activation of NFκB signaling 
[53]. 

This study has significant limitations: (1) western blot analyses were 
only performed in cell lines because of inadequate amounts of primary 
patient samples in our repository; and (2) roles of other co-mutations 
detected in refractory AML samples could not be addressed though 
these mutations may be related to overexpression of BCL2A1. We are 
currently planning to address these issues in future projects. 

In summary, we demonstrated that BCL2A1 was upregulated in AML 
cells bearing FLT3-ITD/TKD mutations, which is a novel underlying 
mechanism of drug resistance. A combination of gilteritinib and ven-
etoclax that suppresses BCL2A1 has a potential to improve the prognosis 
of AML with FLT3-ITD/D835 mutations. In addition, BET inhibitors that 
downregulate BCL2A1 can be alternative reagents to treat AML bearing 
multiple mutations including FLT3-ITD/D835. 
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