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Abstract

Background: Type-C dose algorithms provide more accurate dosimetry for lung SBRT treatment planning.
However, because current dosimetric protocols were developed based on conventional algorithms, its applicability
for the new generation algorithms needs to be determined. Previous studies on this issue used small sample sizes
and reached discordant conclusions. Our study assessed dose calculation of a Type-C algorithm with current
dosimetric protocols in a large patient cohort, in order to demonstrate the dosimetric impacts and necessary
treatment planning steps of switching from a Type-B to a Type-C dose algorithm for lung SBRT planning.

Methods: Fifty-two lung SBRT patients were included, each planned using coplanar VMAT arcs, normalized to
D95% = prescription dose using a Type-B algorithm. These were compared against three Type-C plans: re-calculated
plans (identical plan parameters), re-normalized plans (D95% = prescription dose), and re-optimized plans. Dosimetric
endpoints were extracted and compared among the four plans, including RTOG dosimetric criteria: (R100%, R50%,
D2cm, V105%, and lung V20), PTV Dmin, Dmax, Dmean, V% and D90%, PTV coverage (V100%), homogeneity index (HI), and
Paddick conformity index (PCI).

Results: Re-calculated Type-C plans resulted in decreased PTV Dmin with a mean difference of 5.2% and increased
Dmax with a mean difference of 3.1%, similar or improved RTOG dose compliance, but compromised PTV coverage
(mean D95% and V100% reduction of 2.5 and 8.1%, respectively). Seven plans had >5% D95% reduction (maximum
reduction = 16.7%), and 18 plans had >5% V100% reduction (maximum reduction = 60.0%). Re-normalized Type-C
plans restored target coverage, but yielded degraded plan conformity (average PCI reduction 4.0%), and RTOG
dosimetric criteria deviation worsened in 11 plans, in R50%, D2cm, and R100%. Except for one case, re-optimized
Type-C plans restored RTOG compliance achieved by the original Type-B plans, resulting in similar dosimetric
values but slightly higher target dose heterogeneity (mean HI increase = 13.2%).

Conclusions: Type-B SBRT lung plans considerably overestimate target coverage for some patients, necessitating
Type-C re-normalization or re-optimization. Current RTOG dosimetric criteria appear to remain appropriate.
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Background
Lung cancer is the second most common type of cancer
for both men and women, and the leading cause of can-
cer death, making up about 1 in every 4 cancer-related
deaths [1]. Non-small cell lung cancer (NSCLC) makes
up about 80–85% of all cases. Treatment for NSCLC
varies depending on the cancer stage and other patient
factors, but some common treatments include surgery,
chemotherapy, immunotherapy, and radiation therapy.
Stereotactic body radiotherapy (SBRT), also known as
stereotactic ablative radiotherapy (SABR), is a type of ex-
ternal beam radiotherapy that is often used to treat early
stage lung cancers as an increasingly popular alternative
option to surgery [2–4]. It is also often used to treat
small-sized, oligo-metastasis in the lung [5].
Lung SBRT conventionally used multiple coplanar or

non-coplanar conformal beams [6]. In recent years,
volumetric-modulated arc therapy (VMAT) has gained
greater popularity as the treatment technique of choice
for lung SBRT because of the quick delivery time,
superior critical tissue sparing and dose conformity,
and robustness against the interplay effect due to respira-
tory motion [7–12]. Several studies showed a substantial
reduction in the treatment time for SBRT lung cases using
VMAT when compared to intensity-modulated radiation
therapy (IMRT) and conformal beam treatment, from
dozens of to just a few minutes, especially when combined
with the high dose rates provided by flattening-filter-free
modes of modern linear accelerators (LINACs) [7, 9, 11].
While offering comparable steep dose gradients and crit-
ical tissue sparing to IMRT, VMAT was also found to be
less susceptible to the interplay effect that prevented the
wide application of IMRT in thoracic radiotherapy, espe-
cially when conventional dose rates are used [8, 10, 12].
However, accurate dose calculation in the presence of
heterogeneity remains a challenge that arises when
using SBRT [13–18]. The heterogeneous tissue inter-
faces between low density lung tissue and high density
tumor pose challenges for accurate dose modeling.
Starting from homogeneous dose calculation, commer-
cial treatment planning systems progressed in genera-
tions of heterogeneity corrected calculation algorithms,
often classified as Type-A to Type-C, to better address
this challenge [19–21]. Conventional homogeneous dose
calculations and Type-A or pencil beam algorithms with
equivalent path length corrections can often lead to target
peripheral dose over-estimation as high as 50% [22–25].
As the current mainstay of commercial treatment plan-
ning algorithms, Type-B or convolution/superposition
dose algorithms are commonly used due to their im-
proved accuracy compared with older algorithms [17, 26].
On the other hand, studies have shown that while these
algorithms resulted in <3% errors on the peripheral target
dose in many patient cases, errors could be as high as over

10% compared with Monte Carlo calculation in other
cases [27–30]. Therefore, Type-C or fast Monte Carlo
algorithms have been implemented in commercial treat-
ment planning systems in the recent decade, which
provide improved dose calculation accuracy over Type-B
algorithms but faster dose modeling than full-fledged
Monte Carlo simulation [29, 31–33]. Acuros® XB dose cal-
culation algorithm, implemented for treatment planning
in Eclipse (Varian Medical Systems, Palo Alto, CA), is
based on a linear Boltzmann equation solver to solve radi-
ation transport equation, rather than simulation of particle
transport implemented in Monte Carlo. It is considered a
Type-C algorithm due to the comparable level of dose
modeling accuracy [30, 34–36].
Many studies have investigated the dosimetric differ-

ences between Type-A or Type-B and Type-C dose al-
gorithms, and have shown that Type-C algorithms
more accurately calculate the dose distribution for
SBRT plans of lung patients [15, 22–24, 27, 32, 35].
Due to the large dose errors associated with Type-A
algorithms, they have been gradually phased out in thor-
acic treatment planning. Modern lung SBRT protocols
from National Research Group (NRG)/Radiation Therapy
Oncology Group (RTOG) such as RTOG0813 and
RTOG0915 require Type-B dose calculation [37, 38].
Despite the demonstrated dose calculation accuracy im-
provement and the increasing availability, currently the
clinical utilization of Type-C algorithms is still limited
[5]. In addition to technical challenges such as lengthier
computation time and sub-optimal or lack of integration
into inverse optimization engines compared with Type-B
algorithms, there are also some clinical challenges. Firstly,
inhomogeneous dose errors were revealed for Type-B
compared with Type-C algorithms for different patients.
While large errors can result for some patients, small
errors within 3% were found for other patients [27–30],
suggesting that elaborate dose calculation using Type-C
algorithms may not be necessary for every lung SBRT pa-
tient to offset the lengthier computation time. Secondly,
current clinical guidelines on dose prescription and con-
straints have been established for Type-B algorithms and
may not be directly applicable for Type-C algorithms.
Several authors have previously examined the dosimet-

ric compliance of Type-C calculated lung SBRT plans to
the current protocols [27, 29, 39, 40]. However, discordant
recommendations were reported by these studies. Li et al.
applied Monaco (Elekta/CMS, Crawley, UK), a Type-C al-
gorithm, on 15 patients planned using XiO (Elekta/CMS,
Crawley, UK), a Type-B algorithm, to examine RTOG
0813 compliance [29]. They recommended adjusting the
dosimetric criteria (such as R50%) because their values
were increased with the Type-C algorithm and the corre-
sponding compliance was worse. In contrast, Rana et al.
published a study on 14 patients evaluating the effect of
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switching from a Type-B algorithm (Analytical Aniso-
tropic Algorithm, or AAA) to a Type-C algorithm
(AXB) in Eclipse for lung SBRT plans using RTOG0813
dosimetric criteria [27]. They found that the AXB re-
calculation of the original AAA plans led to lower average
values for most dose constraint parameters and reduced
instances of protocol minor deviations on these parame-
ters. Two studies by Pokhrel et al. used another Type-C
algorithm, Voxel Monte Carlo implemented in iPlan
(BrainLab AG, Feldkirchen, Germany), to evaluate the
plan compliance with dosimetric criteria of RTOG0813
and RTOG0915 for central and peripheral lung SBRT pa-
tients, respectively [39, 40]. Based on the average values
obtained on 20 patients, Pokhrel et al. recommended
the necessary adjustments to the dosimetric criteria in
order to make their Type-C plans fully compliant with
the protocols.
The aim of this study, therefore, was to systematically

investigate the necessity and dosimetric impacts of switch-
ing from Type-B to Type-C dose algorithms for lung
SBRT planning on a large patient cohort. On fifty-two
patients, the target dose parameters as well as RTOG
dosimetric criteria were compared among the following
plans: original Type-B plans, re-calculated Type-C plans
with identical beam settings, re-normalized Type-C plans
(to ensure target coverage), and re-optimized Type-C
plans (to restore the original compliance to the dosimetric
criteria achieved by the Type-B plans).

Methods
As will be detailed in the following sections, the dosimet-
ric impacts of switching from Type-B to Type-C calcula-
tion were comprehensively evaluated using various dose-
volume endpoints and protocol dosimetric constraints on
52 lung SBRT patient plans. We compared the original
Type-B plans with the re-calculated, re-normalized, and
re-optimized Type-C plans.

Original Type-B plans
With the approval of the University of Nebraska Medical
Center institutional review board, treatment data for 70
patients with NSCLC, treated with lung SBRT at our insti-
tution between April 2014 and August 2016, were col-
lected. From these, 52 plans treated with VMAT were
selected for this retrospective study. The remaining cases
were excluded because they used 3D conformal treatment
techniques.
According to our institutional protocol, each patient

received a free-breathing three-dimensional computed
tomography (3D CT) followed by an eight-phase four-
dimensional computed tomography (4D CT) acquired
using a Sensation Open CT simulator (Siemens, Erlangen,
Germany) and the Real-time Position Management system
(Varian Medical Systems, Palo Alto, CA) as the respiratory

surrogate. A slice thickness of 2 mm was used for both
CT scans. Patients were simulated in treatment position
and immobilized with the BlueBAG™ immobilization sys-
tem (Medical Intelligence, Schwabmünchen, Germany).
The 3D and 4D CT images were fused using the common
frame of reference if visually confirmed with no relative
movement, or otherwise using rigid registration to the
spine. For each patient, the gross tumor volume (GTV)
was delineated by the attending radiation oncologists as
the visible tumor on the 3D CT, and the internal target
volume (ITV) was contoured using the 3DCT, maximum
intensity projection (MIP) from the 4DCT, and each phase
of the 4DCT, as the union of the gross tumor seen on
these images excluding possible nearby soft-tissue. The
planning target volume (PTV) was generated by adding
an isotropic expansion of 5–6 mm to the ITV.
For treatment planning, one to two coplanar VMAT

arcs were used, with partial arcs on the ipsilateral side to
spare the contralateral lung for some peripheral lesions
and full arcs for the rest. Fifty plans used flattening-
filter-free 6 MV and/or 10 MV beams, and the rest used
flattened beams of these energies. The plans were opti-
mized to best comply with the dosimetric criteria and
normal tissue constraints specified in RTOG0813,
RTOG0915, other guidelines [37, 38, 41], and according
to our institutional protocol. On average, the prescrip-
tion dose was about 88% of the maximum dose, with the
lowest prescription isodose line at 76% of the maximum
dose for one plan. All the treatment plans specified a
dose prescription of either 48 Gy (12 Gy x 4 fractions)
or 50 Gy (10 Gy x 5 fractions). Additionally, all cases
were planned using Type-B algorithms, with 47 plans
using Analytical Anisotropic Algorithm, or AAA in
Eclipse 13.5 (Varian Medical Systems, Palo Alto, CA)
and 5 plans using collapsed cone convolution, or CCC
in Pinnacle [3] (Philips Medical, Fitchburg WI). Plans
originally planned in Pinnacle [3] were transferred into
Eclipse and re-calculated with AAA for this study. All
plans were normalized so that 95% of the PTV received
the full prescription dose (D95% = prescription dose).

Re-calculated Type-C plans
The above plans were re-calculated using a Type-C
algorithm, Acuros XB or AXB in Eclipse 13.5. Identical
beam parameters including MLC patterns and monitor
units were used for the re-calculation as in the original
Type-B, or AAA plans. For AXB calculations, dose-to-
medium was reported.

Re-normalized Type-C plans
Another set of treatment plans was generated by re-
calculating the original clinical treatment plans with
the Type-C algorithm (AXB), but specifying plan
normalization so that 95% of the target volume received
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the full prescription dose (D95% = prescription dose) as in
the original clinical Type-B plans. In other words, these
plans used identical MLC patterns and relative beam
weighting as the original plans, but with different MUs so
that the Type-C plans’ PTV doses were re-normalized to
match the original Type-B, or AAA plans (D95% = pre-
scription dose).

Re-optimized Type-C plans
For the re-normalized Type-C plans that did not meet the
level of RTOG dosimetric compliance seen in their respect-
ive original Type-B plans, re-optimization was performed
using the Type-C algorithm, keeping the normalization at
D95% = prescription dose, to improve the dosimetric com-
pliance. Specifically, in addition to dose objectives for crit-
ical organs, the following dosimetric criteria from the
protocols were utilized: ratio of prescription isodose
volumes to PTV (R100%), ratio of 50% prescription isodose
volume to PTV (R50%), maximal dose 2 cm from the PTV
in any direction as a percentage of prescription dose
(D2cm), the percentage of lung receiving dose equal to or
larger than 20 Gy (V20), and the volume of 105% isodose
outside the PTV (V105%). The optimization objectives were
adjusted to create plans that optimize these dosimetric
values with intermediate and final Type-C dose calculation.

Dosimetric evaluation and comparison
For all above plans, the minimum (Dmin), maximum
(Dmax), and mean (Dmean) doses of the PTV were re-
corded, along with the doses received by 95% (D95%) and
90% (D90%) of the PTV volume. Volume-based dosimetric
parameters such as D95% were included and used for plan
normalization because single-point-based doses such as
Dmin are associated with higher uncertainties. The PTV
coverage, referring to the percent volume of PTV covered
by prescription dose or V100%, was also recorded. RTOG
criteria were used to calculate the values for R100%, R50%,
D2cm, V20, and V105%. Additionally, the Paddick Conform-
ity Index (PCI) [42] and the homogeneity index (HI) [43]
were calculated. The PCI was defined as (TVPIV)

2/(TV x
PIV), with TVPIV being the PTV volume receiving full pre-
scription dose, TV being the total PTV volume, and PIV
being the total irradiated volume receiving full prescrip-
tion dose. For any plan, the PCI would be within the range
of 0 to 1.0, with PCI = 1.0 for an ideal plan. The HI was
defined as the ratio of the maximum dose over the pre-
scription dose. The above dosimetric parameters were
used to compare the four types of plans as described in
II.A.-II.D. for each of the 52 patients.

Results
Clinical characteristics
Patient and tumor characteristics of the 52 patients are
described in Table 1.

Re-calculated and re-normalized Type-C plans vs. original
Type-B plans
For the 52 patients, the average values and standard de-
viations are summarized in Table 2 for PTV dosimetric
parameters, and in Table 3 for PTV coverage (V100%),
PCI, and HI. The numbers of cases with deviations to
RTOG dosimetric criteria are listed in Table 4. These
were used to compare between re-calculated Type-C
plans, re-normalized Type-C plans, and the original
Type-B plans.
As shown in Table 4, re-calculated Type-C plans re-

sulted in comparable or improved compliance for RTOG
dose criteria compared with the original Type-B plans.
Of the original 52 Type-B plans, 30 plans had minor
deviations for R50% and 16 had minor deviations for
D2cm. None had deviations for R100%, V20, or V105%, and
no major deviations were observed for any of the cri-
teria. After re-calculating with Type-C algorithm, the
level of deviation was reduced from minor to none for 3
plans for R50% and similarly in 5 plans for D2cm. On the
other hand, these re-calculated Type-C plans revealed
the target coverage dose overestimation by the Type-B
algorithm, as can be seen in the reduced PTV Dmin,
D95%, and D90% in Table 2, and in the reduced PTV
coverage or V100% in Table 3. It is worth noting that al-
though the 2.3% average PTV D95% reduction may not
seem clinically significant, a wide range of variation
(standard deviation = 4.4%) was observed from patient
to patient, with a maximum reduction of 16.7%. Of the
52 patients, 7 patients (13.5%) showed PTV D95% a re-
duction over 5%, and 4 patients (7.7%) showed a reduc-
tion over 10%. Figure 1 plots the distribution of the
magnitude for PTV D95% reduction. Similarly, PTV

Table 1 Patient and tumor characteristics

Parameter Total

Patients (n = 52) Female = 26, male = 26

Median age in years (range) 73 (46–89)

Median PTV in cm3 (range) 22.4 (6.1–85.7)

Tumor location (n = 52) 13 LUL, 14 RUL, 7 LLL, 14 RLL, 4 RML

LUL left upper lobe; RUL right upper lobe; LLL left lower lobe; RLL right lower
lobe; RML right middle lobe

Table 2 PTV dosimetric data averages and standard deviations
over all patients for the original Type-B plans and the re-calculated
as well as re-normalized Type-C comparison plans

Dmin

(Gy)
Dmean

(Gy)
Dmax

(Gy)
D95%

(Gy)
D90%

(Gy)

Original Type-B 45.5 ± 2.6 52.5 ± 1.6 56.5 ± 3.8 49.5 ± 0.9 50.1 ± 1.0

Re-calculated
Type-C

43.2 ± 3.4 52.5 ± 2.3 59.6 ± 3.4 48.4 ± 2.9 49.3 ± 2.4

Re-normalized
Type-C

44.1 ± 2.4 53.7 ± 1.9 59.6 ± 3.9 49.5 ± 0.9 50.5 ± 0.9
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V100% was reduced on average by 7.4% from 92.2 ± 3.3%
to 84.8 ± 14.6%. Of the 52 patients, 18 patients (34.6%)
showed a PTV V100% reduction over 5%, and 15 patients
(28.8%) showed a reduction over 10%. The maximum
V100% reduction was 60% for one patient. Figure 2 plots
the PTV D95% and V100% reductions for all patients over
PTV size.
The PTV coverage reductions on the re-calculated

Type-C plans suggested that simply re-calculating the
plans with the Type-C algorithm might not provide fair
comparisons. For example, on the 8 plans with improved
RTOG dose compliance on the re-calculated Type-C
plans when compared with the original Type-B plans,
the average PTV D95% reduction was 4.2%, with a max-
imum reduction of 15.1%. We therefore designed re-
normalized Type-C plans to restore the dose coverage
by ensuring D95% = prescription dose through inflated
MUs. Not surprisingly, the average values for the RTOG
dosimetric criteria increased on the re-normalized plans
for R100%, R50%, and D2cm compared with the original
Type-B plans. On 11 out of the 52 plans (21.2%), proto-
col compliance degraded on one or more dosimetric cri-
teria when compared with the original Type-B plans. For
R50%, 5 plans changed from minor to major deviation,
and 4 plans from no deviation to minor deviation. For
D2cm, 1 plan changed from minor to major deviation, 6
plans from no deviation to minor deviation, and 5 plans
from minor deviation to no deviation. For R100%, 3 plans
changed from no deviation to minor deviation. No plans
showed changes for V105% or lung V20.
The ratios of the re-calculated and re-normalized

Type-C plans over the original Type-B plans are plot-
ted against PTV volume in Fig. 3(a)-(d) for RTOG
dosimetric parameters R100%, R50%, D2cm, and lung

V20, respectively. It is apparent that the ratios for the
re-calculated plans are more clustered around or
below 1.0 and those for the re-normalized plans are
more spread out and above 1.0. This indicates that
while re-calculated Type-C plans achieved similar or
even better RTOG dosimetric criteria compliance as
the original Type-B plans, the compliance is worsened
on the re-normalized Type-C plans in which adequate
target dose coverage was restored.

Re-optimized Type-C plans
For the 11 patients whose re-normalized Type-C plans
showed worsened RTOG dosimetric criteria compliance
for R50%, D2cm and/or R100%, re-optimization was
performed using the Type-C algorithm. While keeping
the original beam arrangements and collimator angles,

Table 3 PTV coverage (defined as V100%), Paddick conformity
index (PCI), and homogeneity index (HI) averages and standard
deviations over all patients for the original Type-B plans and re-
calculated as well as re-normalized Type-C comparison plans

PTV Coverage (V100%) (%) PCI HI

Original Type-B 92.2 ± 3.3 0.9 ± 0.1 1.1 ± 0.1

Re-calculated Type-C 84.8 ± 14.6 0.8 ± 0.1 1.2 ± 0.1

Re-normalized Type-C 92.7 ± 2.5 0.8 ± 0.1 1.2 ± 0.1

Table 4 RTOG criteria compliance (numbers of cases with
deviations) for the original Type-B plans and re-calculated as
well as re-normalized Type-C comparison plans

R100% R50% D2cm

Original Type-B 0 deviation 30 minor deviations 16 minor deviations

Re-calculated
Type-C

0 deviation 27 minor deviations 11 minor deviations

Re-normalized
Type-C

3 minor
deviations

29 minor deviations,
5 major deviations

16 minor deviations,
1 major deviation

Fig. 1 Distribution of the magnitude for PTV D95% reduction on
re-calculated Type-C plans

Fig. 2 PTV coverage loss (as in D95% and V100% reductions) on
re-calculated Type-C plans over PTV size
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new optimization objectives were necessary for Type-C
optimization, different from those used for the original
Type-B optimization. On these 11 patients, the ratios of
the re-optimized Type-C plan over the original Type-B
plan were listed for PTV dosimetric parameters, RTOG
criteria, and other plan quality indexes in Tables 5, 6,
and 7, respectively. The PTV volumes and the PTV
D95% reduction revealed by the re-calculated plans are
also listed alongside as a reference. The original levels of
compliance on the original Type-B plans were restored
by the re-optimization for all but one patient, Patient

#11, who continued to have a minor R50% deviation after
re-optimization while the original Type-B plan had no
deviation.
As an example of comparing the 4 plans of the same

patient, the isodose distributions in the axial view at the
isocenter for Patient #3 (in Tables 5, 6, and 7) are placed
side by side in Fig. 4. Compared with the original Type-
B plan (a), the PTV underdose on the re-calculated
Type-C plan (b) is apparent. While the re-normalized
Type-C plan (c) restored the target dose coverage, the

Fig. 3 The ratios of the re-calculated and re-normalized Type-C plans over the original Type-B plans are plotted against PTV volume for RTOG
dosimetric parameters (a) R100%, (b) R50%, (c) D2cm, and (d) lung V20

Table 5 PTV dosimetric parameter ratios of the re-optimized
Type-C plan over the original Type-B plan for the 11 re-optimized
patients

Pt # PTV Volume
(cm3)

D95% Reduction
(%)

Ratio
Dmin

Ratio
Dmean

Ratio
Dmax

Ratio
D95%

Ratio
D90%

1 6.1 12.5 0.9 1.1 1.2 1.0 1.0

2 6.5 2.3 0.9 1.1 1.2 1.0 1.0

3 13.0 10.6 1.0 1.1 1.1 1.0 1.0

4 13.6 15.1 0.9 1.1 1.1 1.0 1.0

5 14.1 7.4 1.0 1.0 1.1 1.0 1.0

6 17.0 4.1 1.0 1.1 1.2 1.0 1.0

7 18.0 4.5 1.0 1.0 1.0 1.0 1.0

8 35.4 9.1 1.0 1.0 1.0 1.0 1.0

9 37.1 4.7 1.0 1.0 1.0 1.0 1.0

10 48.8 9.7 0.9 1.2 1.4 1.0 1.0

11 58.4 16.7 1.0 1.1 1.1 1.0 1.0

Also listed are the PTV volumes and PTV D95% reduction revealed by the
corresponding re-calculated Type-C plans as a reference. The patients are
sorted by the PTV size

Table 6 RTOG dosimetric parameter ratios of the re-optimized
Type-C plan over the original Type-B plan for the 11 re-optimized
patients

Pt # PTV Volume
(cm3)

D95% Reduction
(%)

Ratio
R100%

Ratio
R50%

Ratio
D2cm

Ratio
V20

1 6.1 12.5 1.0 1.2 1.1 1.2

2 6.5 2.3 1.0 0.8 1.0 0.8

3 13.0 10.6 0.9 0.9 1.0 1.0

4 13.6 15.1 1.0 0.9 1.0 1.0

5 14.1 7.4 0.9 0.8 1.0 0.9

6 17.0 4.1 1.0 0.8 1.0 0.9

7 18.0 4.5 1.0 1.1 1.0 1.2

8 35.4 9.1 1.0 1.1 0.9 1.2

9 37.1 4.7 0.9 1.0 1.0 1.0

10 48.8 9.7 1.0 1.0 1.0 1.0

11 58.4 16.7 1.0 1.2a 1.0 1.2

Also listed are the PTV volumes and PTV D95% reduction revealed by the
corresponding re-calculated Type-C plans as a reference. The patients are
sorted by the PTV size
aPatient# 11 had a minor deviation on R50% even after Type-C re-optimization,
while the corresponding original Type-B plan was fully compliant
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target conformity was compromised, leading to worsened
R100%, R50%, and D2cm values. As a result, R100% deviation
increased from no deviation to minor deviation, R50% devi-
ation increased from minor to major deviation, and D2cm

deviation increased from minor to major deviation, which
necessitated re-optimization using the Type-C algorithm.
On the re-optimized Type-C plan, the target conformity
was restored, and the compliance to the relevant RTOG
criteria was also restored to the levels previously achieved
by the original Type-B plan.

Discussion
Our study investigated target dose, RTOG compliance,
and other plan quality indexes on 52 lung SBRT patients
by comparing between the original Type-B plan, the re-
calculated Type-C plan, the re-normalized Type-C plan,
and the re-optimized Type-C plan. Although previous
studies in the literature have examined dosimetric differ-
ences arising from re-calculating Type-B treatment plans
with the Type-C algorithm, discordant recommendations
have been made regarding the applicability of current
RTOG dosimetric criteria on Type-C calculated lung
SBRT plans. Specifically, the study by Li et al. using
Monaco [29] and the studies by Pokhrel et al. using
Voxel Monte Carlo [39, 40] suggested that the RTOG
dosimetric criteria, such as R100%, R50%, and D2cm, might
need to be up-adjusted to be more loose. In contrast,
the study by Rana et al. using AXB showed comparable
or even better compliance for the above criteria [27].
Our study shed some light on the conflicting results

above. Similar to Rana et al.’s study [27], the re-calculated
Type-C plans also showed comparable or even better
compliance to RTOG dosimetric criteria, such as R100%,
R50%, and D2cm. However, what their study failed to con-
sider was that Type-C re-calculation using the same MLC
patterns and MUs would also lead to insufficient target
dose coverage and hence sub-optimal plan quality for
many patients. In fact, about 13.5% of our patient cohort
showed a PTV D95% reduction over 5%, and about 34.6%
showed a PTV V100% reduction over 5%. When the target
coverage loss was made up by re-normalizing the MUs,
not surprisingly, compliance to the above RTOG dosimet-
ric criteria worsened for some patients (about 21.2% of

Table 7 Plan quality ratios of the re-optimized Type-C plan over
the original Type-B plan for the 11 re-optimized patients on PTV
coverage (V100%), Paddick conformity index (PCI) and homogeneity
index (HI)

Pt # PTV Volume
(cm3)

D95% Reduction
(%)

Ratio
V100%

Ratio
PCI

Ratio
HI

1 6.1 12.5 1.0 1.0 1.2

2 6.5 2.3 1.0 1.0 1.2

3 13.0 10.6 1.0 1.0 1.1

4 13.6 15.1 1.0 1.0 1.1

5 14.1 7.4 1.0 1.0 1.1

6 17.0 4.1 1.0 1.0 1.2

7 18.0 4.5 1.0 1.0 1.0

8 35.4 9.1 1.0 1.0 1.0

9 37.1 4.7 1.0 1.1 1.0

10 48.8 9.7 1.0 1.0 1.4

11 58.4 16.7 1.0 1.0 1.1

Also listed are the PTV volumes and PTV D95% reduction revealed by the
corresponding re-calculated Type-C plans

Fig. 4 Axial isodose distributions at the isocenter for an example patient (Patient 3 in Tables 5, 6, and 7) comparing (a) the original Type-B plan,
(b) the re-calculated Type-C plan, (c) the re-normalized Type-C plan, and (d) the re-optimized Type-C plan. The PTV is outlined in red colorwash,
the 100% isodose line is marked in yellow, and the 50% isodose line is marked in white
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our cohort) compared with the original Type-B plans.
However, re-optimization using the Type-C algorithm was
able to restore the original RTOG compliance for all but
one of these patients. Current RTOG dosimetric criteria
hence appear to remain appropriate for lung SBRT plans
calculated with Type-C algorithms, provided that such
algorithms are employed for plan optimization.
Pokhrel et al. recommended up-adjustments on the

values for RTOG dosimetric criteria, such as R100%, R50%,
and D2cm, by about 10% in order for their Type-C plans
to comply with the criteria [39, 40]. However, this was
based on the premise that all plans need to fully comply
with the criteria. Since in their studies the patients were
planned with the Type-C algorithm, and no comparison
was made with Type-B plans, it was not considered that
for some of these 20 patients, RTOG criteria deviations
could have resulted even if planned using Type-B algo-
rithms. In fact, it is not uncommon in current clinical
practice for Type-B lung SBRT plans to have minor or
even major deviations from these RTOG protocols
due to specific patient and tumor anatomy. For ex-
ample, in the study by Rana et al., among the 14 clin-
ical Type-B plans, 6 plans recorded minor deviations
for R100%, 9 plans recorded minor deviations for R50%,
4 plans recorded minor deviations for D2cm, and 1
plan recorded minor deviation for V20. Similarly, in Li
et al.’s series of 15 patients, Type-B plans also resulted
in deviations on these RTOG criteria for some of
them, such as the 5 minor deviations and 2 major de-
viations on D2cm [29].
By designing a comprehensive comparison between

original Type-B plan, the re-calculated Type-C plan,
the re-normalized Type-C plan, and the re-optimized
Type-C plan, we have clearly outlined in our study the
dosimetric necessity as well as impact of re-calculation,
re-normalization, and re-optimization using Type-C
algorithms. While Li et al.’s study also considered re-
optimization using the Type-C algorithm, the conven-
tional conformal beam treatment technique was used in
their study, and their re-optimization involved only
adjusting the relative beam weights while keeping all
other beam parameters the same as the original Type-B
plans [29]. Furthermore, we performed our investiga-
tion on a much larger patient cohort compared with
the above three studies.
Of our 52 patients, 11 (21.2%) resulted in worsened

RTOG dosimetric criteria compliance on the re-normalized
Type-C plans and hence necessitated re-optimization with
the Type-C algorithm. These patients included all 7 patients
with a PTV D95% reduction over 5%. For the remaining 4
patients, 3 had a PTV D95% reduction over 4% and 1 had a
reduction of 2%. This indicates that for those patients on
whom Type-B algorithms will lead to large PTV coverage
dose overestimations, optimization by Type-C algorithms

will likely be necessary to achieve similar levels of RTOG
dosimetric criteria compliance currently achieved by
Type-B algorithms. For patients on whom Type-B algo-
rithms will lead to small PTV coverage dose overesti-
mations, plans optimized with Type-B algorithms will
likely only need to be re-normalized with Type-C calcu-
lation to ensure sufficient and accurate target dose
coverage, as well as to achieve similar levels of RTOG
compliance. In a small number of these patients, if the
RTOG compliance of the Type-B plans are borderline,
optimization with Type-C algorithms may also be neces-
sary to achieve the same compliance goal.
For one patient, re-optimization using the Type-C

algorithm was unable to fully restore the RTOG dosimet-
ric criteria compliance (Patient #11 in Tables 5, 6, and 7).
For this patient, the original plan was fully compliant, and
the re-normalized plan resulted in minor deviation in both
R50% and D2cm. The re-optimized plan restored D2cm com-
pliance to no deviation, but on R50% the re-optimized
Type-C plan still had a minor deviation. Among our
cohort, this patient was also the one with the highest mag-
nitude of PTV D95% reduction on the re-calculated Type-
C plan, with a reduction of 16.7%. This large discrepancy
in target dose calculation between Type-C and Type-B
algorithms might have partially contributed to the diffi-
culty of re-optimizing a fully-compliant plan with the
Type-C algorithm. In addition, the R50% value of the ori-
ginal Type-B plan for this patient, 3.4, was somewhat close
to the minor deviation threshold of 3.8. The re-optimized
plan had a value of 4.0, and hence scored as a minor
deviation.
For all other patients, re-normalization or re-

optimization with the Type-C algorithm achieved simi-
lar levels of RTOG compliance for these plans and
notably higher target dose heterogeneity as seen in the
higher HI values. The higher HI might result partially
from the fact that the Type-B algorithm overestimates
target peripheral dose but underestimates maximum
target dose relative to the Type-C algorithm, and
partially from the fact that target dose homogeneity
was not heavily constrained during re-optimization.
Since the current RTOG protocols recommend a wide
range of prescription isodose levels from 60 to 90%,
the HI values on the Type-C plans for all patients fell
within this range.
Since their introductions into commercial treatment

planning systems, many clinical studies have been
conducted to compare dose calculation of Type-C algo-
rithms to algorithms of previous generations [22, 23,
25, 31, 44–47]. However, their utilization in clinic prac-
tice is still very limited [5]. Two factors contributing to
the lack of clinical utilization that motivated our study
were: (1) the large patient-to-patient variation of error
magnitudes for the current algorithm left it unclear if it is
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necessary to clinically switch the algorithm at the cost of
increased computational time. (2) the four existing
studies on the applicability of current dosimetric guide-
lines for Type-C algorithms had apparent disagree-
ments in their findings [27, 29, 39, 40]. On the first
issue, our study using a large patient cohort provided
distribution data of target dose errors associated with
Type-B calculation for different patients. Clinicians
may use these data to assist making decision whether
the algorithm switching is necessary. On the second
issue, our study resolved the paradox from the existing
literature by demonstrating the difference between re-
calculated and re-normalized Type-C plans. In addition,
the results on re-optimized plans shed additional light
on the Type-C applicability of current RTOG guide-
lines, and further provided clinicians with information
on different levels of Type-C involvement in treatment
planning necessary to satisfy the dosimetric constraints.
One limitation of our work was that, although exten-

sively comparing the original Type-B and re-calculated,
re-normalized and re-optimized Type-C plans on a
large patient cohort and with a rich pool of important
dosimetric endpoints, our comparison was conducted
using one Type-B algorithm, AAA, and one Type-C
algorithm, AXB. In particular, although usually consid-
ered as a Type-B algorithm and currently used as a
major clinical treatment planning algorithm [19–21, 28,
48–50], AAA has been shown to perform less accur-
ately in heterogeneous environment than some other
Type-B algorithms such as CCC [18, 28, 30]. However,
due to the limitations of the treatment planning system,
namely Pinnacle does not allow importing plans from
other treatment planning systems for re-calculation and
it also does not have a Type-C algorithm, a comparison
to additional Type-B and Type-C algorithms could not
be performed on our cohort.
It would be an interesting direction for future studies

to assess the clinical impact of switching from Type-B
to Type-C algorithms for lung SBRT. For example, on a
cohort of patients treated with Type-B plans, the local
failure rates can be compared between those patients
with large PTV D95% or V100% reductions upon Type-C
re-calculation and those patients with small reductions.
This way the clinical significance of the dosimetric
differences can be determined. However, due to the
relatively small percentage of patients with large dose
differences between Type-B and Type-C calculations
(for example, in our cohort, 13.5% with a PTV D95% re-
duction over 5%, or 34.6% with a PTV V100% reduction
over 5%) and the very high local control rates usually at
around 90%, a very large cohort with sufficient longitu-
dinal follow-up would be necessary to power such a
study and illustrate the clinical significance of the dosi-
metric effects.

Conclusions
Type-B dose calculation considerably overestimates target
dose coverage in lung SBRT for some patients, necessitat-
ing Type-C re-normalization or re-optimization. Current
RTOG dosimetric criteria appear to remain appropriate in
the setting of Type-C calculations.
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