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Abstract

Sulforaphane is a new and effective anti-cancer component that is abundant in broccoli. In

the past few years, the patterns of variability in glucosinolate content and its regulation in A.

thaliana have been described in detail. However, the diversity of glucosinolate and sulfo-

raphane contents in different organs during vegetative and reproductive stages has not

been clearly explained. In this paper, we firstly investigated the transcriptome profiles of the

developing buds and leaves at bolting stage of broccoli (B52) to further assess the gene

expression patterns involved in sulforaphane synthesis. The CYP79F1 gene, as well as

nine other genes related to glucorahpanin biosynthesis, MAM1, MAM3, St5b-2, FMO GS-

OX1, MY, AOP2, AOP3, ESP and ESM1 were selected by digital gene expression analysis

and were validated by quantitative real-time PCR (qRT-PCR). Meanwhile, the compositions

of glucosinolates and sulforaphane were detected for correlation analysis with related

genes. Finally the RNA sequencing libraries generated 147 957 344 clean reads, and 8 539

unigene assemblies were produced. In digital result, only CYP79F1, in the glucoraphanin

pathway, was up-regulated in young buds but absent from the other organs, which was con-

sistent with the highest level of sulforaphane content being in this organ compared to mature

buds, buds one day before flowering, flowers and leaves. The sequencing results also pre-

sented that auxin and cytokinin might affect glucoraphanin accumulation. The study

revealed that up-regulated expression of CYP79F1 plays a fundamental and direct role in

sulforaphane production in inflorescences. Two genes of MAM1 and St5b-2 could up-regu-

lated glucoraphanin generation. Synergistic expression of MAM1, MAM3, St5b-2, FMO GS-

OX1, MY, ESP and ESM1 was found in sulforaphane metabolism. This study will be benefi-

cial for understanding the diversity of sulforaphane in broccoli organs.
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Introduction

In recent years, sulforaphane has attracted much interest due to its anti-cancer activity, and a

growing body of epidemiological evidence has shown that increased consumption of sulfo-

raphane or cruciferous vegetables rich in sulforaphane can lower the risk of lung [1], colon [2],

pancreatic [3], breast [4], bladder [5] and prostate [6] cancers as well as some geriatric diseases

such as Alzheimer’s disease [7] and cardiovascular disease [8, 9]. The chemoprotective func-

tion of sulforaphane is due to its ability to induce phase II detoxification enzymes [10, 11],

directly resulting in cancer cell apoptosis [12, 13].

Sulforaphane is an isothiocyanate, and it can be synthesized from glucoraphanin through

hydrolysis by myrosinase when broccoli is chewed, mechanically damaged, digested by

humans, or bitten by insects [14, 15]. Glucoraphanin (4-Methylsulfonylbutyl glucosinolate) is

a glucosinolate mostly found in Brassica vegetables, such as broccoli, cabbage (green and red),

Chinese kale, Brussels sprouts, kohlrabi, collards, and turnip [16–18]. Among the crucifers

tested, broccoli has been reported to be rich in glucoraphanin, and the regulation of glucosino-

late synthesis has been largely reported in A. thaliana [19–22].

Glucosinolates are mainly synthesized from amino acids Met, Phe and Trp, which accord-

ingly give rise to three groups of glucosinolates: aliphatic glucosinolates, benzenic glucosinolates

and indolic glucosinolates [15, 22–24]. Regulation genesof glucosinolate and the pathway have

been successfully identified in Arabidopsis [23, 25–27].Glucoraphanin belongs to aliphatic glu-

cosinolate derived from Met. In the process of chain elongation, it starts with deamination by

a BCAT4 giving rise to a 2-oxo-4-methylthiobutanoic acid. The 2-oxo-4-methylthiobutanoic

acid then enters a cycle of three successive transformations: condensation with acetyl-CoA

by MAM1 and MAM3, isomerization by IPMI-SSU2, 3, and oxidative decarboxylation by

IPM-DH, generating 2-Oxo-6-methylthiohexanoic acid [16, 28].

A total of 13 enzymes, representing five different biochemical steps in the formation of the

glucosinolate core structure, have been characterized [24, 29]. For the core biosynthetic path-

way of aliphatic glucosinolates, CYP79F1 (Met1-6), CYP79F2 (Met 5, 6), CYP83A1, GSTF11,

GSTU20, GGP1, SUR1 (C-S lyase), UGT74C1, SOT17 (AtSTb), and SOT18 (AtSTb) play dis-

tinct roles in oxidation, conjugation, C-S cleavage, glucosylation and sulfation functions, then

2-oxo-6-methylthiohexanoic acid and dihomomethionine are transferred to 4-methylthiobutyl

glucosinolate (glucoerucin). Finally, glucoerucin is oxidized and changed into glucoraphanin

by FMO-GSOX1-5 [26, 30].

The following process is secondary modification, and the biological activity of glucosinolates

is determined by the structure of the side chain [22, 27]. In aliphatic glucosinolates, 4-methylthio-

butyl actually is the precursor of glucoraphanin, is catalyzed to generate 3-pentenyl glucosinolate

(gluconapin) by GS-ALK, as well as 4-benzoyloxybutyl glucosinolate by GS-OHB. Glucoraphanin

can also be hydrolyzed to sulforaphane catalyzed by myrosinase (MY) or, depending on pH,

more sulforaphane is generated in an alkaline environment [28, 31, 32]Together with side-chain

elongation, secondary modifications are responsible for more than 132 known glucosinolate

structures [33, 34], of which there have been 56 putative genes identified in glucosinolate pathway

of B. oleracea (http://www.ocri-genomics.org/cgi-bin/bolbase/pathway_detail.cgi?entry=

map00966) [35], and 110 in B. rapa (http://brassicadb.org/brad/glucoGene.php) [36, 37].

By 2010, approximately 29 genes have been found in aliphatic glucosinolate pathway [26,

38–40]. Glucosinolate synthesis and its regulation mechanism has been revealed mostly in

Arabidopsis. However, glucosinolates are affected by many factors, such as genotypes, organs,

development stages, cultivation conditions, soil microbes, and environments [22, 27, 31].

Some research and our previous work have reported that the significant differences of sulfo-

raphane and glucoraphanin happened in different organs of Brassica vegetables [16, 28, 41].
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But there are few reports that can explain the diversity of sulforaphane contents in different

broccoli organs at various developmental stages [42, 43]. And one of the best methods to eluci-

date these mechanisms is to study them at the molecular level by transcriptome analysis.

In our study, it was found that the contents of glucoraphanin and sulforaphane were both

in a high level with significant differences in developing buds. So the buds at bolting stage

were chosen and carried out by transcriptome analysis for exploring the gene expression pat-

terns of sulforaphane. The aims of our research were to (i) identify and validate differential

expression of specific genes in developing buds (LN_B1-B4) and leaves (LN_F) individually,

and (ii) find genes related to sulforaphane metabolism. Our results would provide new insights

into explanation of sulforaphane accumulation in different organs of broccoli.

Materials and methods

Plant material

Broccoli inbred line B52 was cultured and treated using the method described in our previous

research, and this inbred line was bred at the Institute of Vegetables and Flowers, Chinese

Academy of Agricultural Sciences (CAAS-IVF) [41]. All plants were planted in greenhouse on

August 2, 2015, florets formed on October 15 and bolting on November 22. At the same time,

the developmental buds and leaves (LN_F) were collected at bolting stage, and the organs were

young buds (LN_B1), mature buds (LN_B2), buds one day before flowering (LN_B3) and

flowers (LN_B4) (Fig 1).

Library construction, sequencing and bioinformatics analysis

Total RNA was extracted from each sample by using TRIzol reagent (Invitrogen, CA, USA),

and its quality was monitored on 1% agarose gels and assessed by a Bioanalyzer 2100 system

(Agilent Technologies, Santa Clara, CA, USA) with a minimum RNA integrity number (RIN)

of 7.0. Sequencing libraries were generated using the NEBNext Ultra RNA Library Prep Kit for

Illumina (NEB, USA), and index codes were assigned to each sample. Library quality was

assessed on the Agilent Bioanalyzer 2100 system. Clustering of the index-coded samples was

performed on a cBot Cluster Generation System using the TruSeq PE Cluster Kit v3-cBot-HS

(Illumina). After cluster generation, the prepared libraries were sequenced on an Illumina

HiSeq 2500/4000 platform (Illumina, Inc., San Diego, CA, USA), which was conducted by Bei-

jing Allwegene Technology Co., Ltd, China. Before assembly, raw reads of the cDNA libraries

were filtered to remove adaptor sequences, low-quality reads containing poly-N and sequences

with more than 5% unknown nucleotides. After transcriptome assembly, each unigene was

annotated using five databases [44, 45]: NCBI non-redundant protein (Nr), Eukaryotic Ortho-

log Groups (KOG), Protein family (Pfam), Swiss-Prot, and Kyoto Encyclopedia of Genes and

Genomes (KEGG) databases. Blast all software was used to predict and classify the KOG and

KEGG pathway-associated unigenes [46, 47], employing BlastX (v.2.2.28C) with an E-value of

less than 1e-5. Gene Ontology (GO) annotations were analyzed using GOseq [48].

Analysis of differentially expressed genes

All quenching reads for five samples were remapped to the reference sequences using RSEM

software, and the abundance of each assembled transcript was evaluated using FPKM [49–50].

For genes with more than one alternative transcript, the longest transcript was selected to cal-

culate the FPKM. The DESeq package (ver.2.1.0) was employed to detect DEGs between sam-

ple pairs (LN_B1 versus LN_F, LN_B2 versus LN_F, LN_B3 versus LN_F and LN_B4 versus

LN_F [51, 52]. The false discovery rate (FDR) was applied to correct the p-value threshold in

Regulation of CYP79F1 gene in broccoli buds

PLOS ONE | https://doi.org/10.1371/journal.pone.0213902 March 25, 2019 3 / 20

https://doi.org/10.1371/journal.pone.0213902


multiple tests [52]. An FDR-adjusted p-value (q-value)� 0.05 and a |log2 Fold Change| > 1

were used as the thresholds for identifying significant differences in gene expression. For con-

venience, DEGs with higher expression levels in buds compared to leaves were designated up-

regulated, whereas those with lower expression were designated down-regulated [50].

Candidate glucosinolate genes selection and certification of relative

expression

To verify the reliability of the expression analysis, ten candidate glucosinolate genes of MAM1,

MAM3, CYP79F1, St5b-2, FMO GS-OX1, MY (TGG1), AOP2 and AOP3, ESP and ESM1 were

selected and quantified by real-time PCR. The primers for these genes were listed in Table 1.

Samples of developing buds and leaves were gathered, and qRT-PCR analysis was performed

by the method described in our previous study [41], qRT-PCR was carried out using SYBR

Premix Ex TaqII (Tli RNaseH Plus; TAKARA BIO, Inc., Shiga, Japan) on an ABI 7900HT

(Applied Biosystems, Carlsbad, CA, USA).

Investigation of glucosinolate genes associated with sulforaphane

To gain overall insight into differential gene expression patterns between developing buds and

leaves. Ten regulated genes related to the sulforaphane pathway were chosen for confirmation

Fig 1. The developmental buds of young buds (A), mature buds (B), buds one day before flowering (C) and flowers (D) at bolting stage.

https://doi.org/10.1371/journal.pone.0213902.g001
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by quantitative real-time PCR (qRT-PCR). These genes are MAM1, MAM3, CYP79F1, St5b-2,

FMO GS-OX1, AOP2, AOP3, MY, ESP and ESM1.

Extraction and determination of sulforaphane and glucoraphanin

Five samples were pretreated and dried in a lyophilizer, HPLC and UHPLC–Triple–TOF–MS

methods were used for determination of sulforaphane and glucoraphanin separately. The

extraction and determination methods of sulforaphane are thoroughly described in our previ-

ous study [41, 53].

The methods for analysis of glucoraphanin and the other glucosinolates was carried out by

using UHPLC-Triple-TOF-MS. Samples were extracted using 70% methanol and injected

after concentration of the standard glucoraphanin. UPLC BEH C18 (2.1 mm × 100 mm,

1.7 μm) column was selected with acetonitrile-water (both 0.1% formic acid) as mobile phase.

Chromatographic separation was achieved under gradient elution in 10 min. In ESI negative

ion mode, TOF-MS scan-IDA-Product ion scan was performed to acquire both MS and MS/

MS information from one injection. Based on high resolution TOF-MS, accurate masses of

molecular ions and fragment ions were obtained for high accuracy-identification.

Results

Sequencing, assembly and functional annotation

A pooled cDNA library of five samples of developing buds and leaves was analyzed on the Illu-

mina HiSeq 2500/4000 platform (Illumina, Inc., San Diego, CA, USA). The library generated

147.96 million raw reads (Tables 2 and 3), and the assembled raw reads (>95.23%) had Phred-

Table 1. The qRT-PCR genes related sulforaphane metabolism and their primers.

No Gene names Primer sequences

1 MAM1 Forward primer GAGTAGACATCATGGAAGTCGGTT

MAM1 Reverse primer AAGTCGCCTCAATGTCTCTATGTT

2 MAM3 Forward primer CGAAGTGACGATCAACGGAA

MAM3 Reverse primer GACATTTCAAAGCCATCACGAC

3 CYP79F1 Forward primer GTCACGCCAGACGAAATCAAA

CYP79F1 Reverse primer GCACAAGCCTGTCTTTTCCAACT

4 FMO GS-OX1 Forward primer GGAAAGCAGATCCATAGCCACA

FMO GS-OX1 Reverse primer CATAGATTGTTTTGGGGCACTG

5 AOP2 Forward primer AGTAAGAGTGACCGAGAAAAAGAGG

AOP2 Reverse primer GCGACCAGCTTCTGAGTGATAG

6 AOP3 Forward primer (homologous domain) AGGTGAAGACCAAAGAGGGGAA

AOP3 Reverse primer (homologous domain) TCGGTGATACGGTGAAGGGA

7 MY Forward primer GCTGTGAGGTGTGAGCGGTAA

MY Reverse primer GTCTCATAAGTTAGAATTGACGCCA

8 St5b-2 Forward primer CCCATATACCCAACGGGTCG

St5b-2 Reverse primer CCCATGAACTCAGCCAACCT

9 ESP Forward primer GATCAAGGTGGGGCAGAAAG

ESP Reverse primer AAGGTTTCGCTCCTGTAGTCTCTA

10 ESM1 Forward primer AAGATCTTCCACAAACCTATTG

ESM1 Reverse primer TTTGTATTCTTGTCTCACGATC

11 actin-12 Forward primer GGCTCTATCTTGGCTTCTCTCAGT

actin-12 Reverse primer CCAGATTCATCATACTCGGCTTT

https://doi.org/10.1371/journal.pone.0213902.t001
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like quality scores at the Q20 level (an error probability of 0.01–0.02%). Finally 48 852 unigenes

of 150 bp generated based on PE150. The Gene Ontology (GO) database assigned 27 606 uni-

genes into 30 functional categories. The largest proportion was represented by biological pro-

cess (GO 0008150, 11.86%) and metabolic process (GO 0008152, 12.39%; S1 Fig). In total,

6656 unigenes were categorized into 4 Clusters of Orthologous Groups of Proteins (COG)

classifications (S2 Fig), which was shown and validated by Venn diagram comparisons (Fig

2A) and cluster analysis of differentially expressed genes between leaves and developmental

buds (Fig 2B). The 3450 assembled sequences were mapped to the reference canonical pathway

in the Kyoto Encyclopedia of Genes and Genomes (KEGG). In the top 20 KEGG pathways, the

pathway most strongly represented by the mapped unigenes was biological process and metab-

olism (KO 03010, 263 unigenes) (Fig 3).

Identification and annotation of differentially expressed genes

Approximately 29.88–51.52 million 150 bp paired-end reads were generated through RNA sequenc-

ing (S3 Fig). Transcript levels were calculated using fragments per kilobase per million reads

(FPKM; Table 3). The GC content from the 10 libraries ranged from 45.09 to 46.23%, and the Q30

values (reads with an average quality scores> 30) were all in the range of 89.81 to 97.90%, indicat-

ing that the quality and accuracy of sequencing data were sufficient for further analysis (Table 2).

The percentage of sequenced reads from all libraries that remapped to the assembled reference tran-

scripts was nearly� 70% (Table 1). According to the cabbage reference genome, 8539 genes of

45758 unigenes were functionally annotated with an e-value� 1e-5 in at least one database.

Differential expression in young buds (LN_B1), mature buds (LN_B2), buds one day before

flowering (LN_B3), flowers (LN_B4) and leaves (LN_F) of broccoli at bolting stage (FPKM >

5.0 in at least one treatment group, fold change�2.0, P� 0.05) was found for 4775 to 5956

genes. Of these, 2534 to 3101 were up-regulated and 2000 to 2974 were up-regulated in all four

groups of developing buds versus leaves (Table 4). The detailed gene numbers at different

interval are shown in Table 5, and most genes were within an FPKM Interval 0~1 (49.85%-

58.35%), particularly in leaves, followed by the buds one day before flowering, flowers and

mature buds (Table 4). As shown in Fig 4A, we found that low expression genes were enriched

in leaves, followed by buds one day before flowering, flowers, mature buds and young buds.

However, young buds had higher overall gene expression, the second was mature buds, flow-

ers, buds one day before flowering, and leaves showed the least (Fig 2A). Pearson correlations

between five organs were calculated to investigate relationship of developing buds and leaves

(Fig 4B). There was a gradual decrease in developing buds from young buds to flowers

(LN_B1~4), which was consistent with the phenotype. In contrast, leaves displayed a varying

relationship, which were most similar to young buds. All the differentially expressed genes

were annotated by the databases described above.

Investigation of the glucosinolate genes associated with sulforaphane

metabolism

The expression of the glucosinolate genes, including glucosinolate core genes and secondary

metabolic genes were confirmed by qRT-PCR. Most of these genes showed similar trends in

RNA sequencing and qRT-PCR (Fig 5). In this study, ten genes were investigated and com-

pared with sulforaphane concentrations measured by HPLC. It was found that unlike

CYP79F1 and AOP3, the genes MAM1, MAM3, St5b-2, FMO GS-OX1, MY, AOP2, ESP and

ESM1 displayed a low expression level compared to the leaf control. There was a significantly

higher expression of CYP79F1 in the young buds compared to the other organs at this stage,

following by flowers and mature buds and buds one day before flowering, and leaves had at
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the lowest expression level (Fig 5). AOP3 also showed a high gene expression similarly to

CYP79F1, but the highest-expressing organ was flowers, and second were young buds followed

by mature buds and buds one day before flowering, with leaves having the lowest level.

The same changing trends of sulforaphane and glucoraphanin happened to B52 at bolting

stage, and there was an obvious decrease in sulforaphane and glucoraphanin concentrations

from young buds to leaves (Fig 6A). Also there was a sharp decrease to mature buds from

young buds, then another decrease from flowers to leaves. The corresponding sulforaphane

contents were 3370.44, 2140.34, 1323.98, 1090.46, 235.82 mg/kg DW, respectively (Fig 6A and

6C). The corresponding contents of glucoraphanin were 43.83, 21.82, 24.65, 11.14 and

2.27 μM/g DW (Fig 6A and 6D). So the generation efficiency of sulforaphane from glucora-

phanin was 30.3% to 58.6% in these organs. Except the buds one day before flowering, the

other organs showed the similar efficiency, suggesting there should be no difference of myrosi-

nase activity (ESM1) in catalyzing glucoraphanin into sulforaphane. At the same time, another

11 glucosinolates were detected in our study (Fig 6B), and gluconapin, glucotropaeolin, pro-

goitrin and sinigrin were not determination. The result provided a good evidence for previous

reports. This result showed the pattern of sulforaphane accumulation in different organs was

consistent with our previous reports [41, 53].

Discussion

The glucosinolate pathway and sulforaphane metabolism

In the past 30 years, 16 natural glucosinolates in broccoli and 26 glucosinolates in A. thaliana
have been elucidated. The total number of documented glucosinolates from plants has been

122 types [54–56].

Table 2. Comparison of reads and reference sequence.

Sample LN_F LN_B1 LN_B2 LN_B3 LN_B4

Total reads 70435770 79567320 51953284 45781558 48176756

Total mapped 50627502 (71.88%) 57043101 (71.69%) 37400419 (71.99%) 33219629 (72.56%) 33514062 (69.56%)

Multiple mapped 1760525 (2.5%) 1385966 (1.74%) 1048692 (2.02%) 894641 (1.95%) 740476 (1.54%)

Uniquely mapped 48866977 (69.38%) 55657135 (69.95%) 36351727 (69.97%) 32324988 (70.61%) 32773586 (68.03%)

Read-1 25396488 (36.06%) 28907373 (36.33%) 18828753 (36.24%) 16742405 (36.57%) 17539166 (36.41%)

Read-2 23470489 (33.32%) 26749762 (33.62%) 17522974 (33.73%) 15582583 (34.04%) 15234420 (31.62%)

Reads map to ’+’ 24496371 (34.78%) 27873454 (35.03%) 18184082 (35%) 16172019 (35.32%) 16390884 (34.02%)

Reads map to ’-’ 24370606 (34.6%) 27783681 (34.92%) 18167645 (34.97%) 16152969 (35.28%) 16382702 (34.01%)

Non-splice reads 32180436 (45.69%) 34794098 (43.73%) 23101224 (44.47%) 21927513 (47.9%) 21693113 (45.03%)

Splice reads 16686541 (23.69%) 20863037 (26.22%) 13250503 (25.5%) 10397475 (22.71%) 11080473 (23%)

https://doi.org/10.1371/journal.pone.0213902.t002

Table 3. Sequencing and assembly statistics for the 10 transcriptomes of the B52 inbred line at bolting stage.

Sample Raw Reads Raw Bases Clean Reads Clean Bases Error Rate Q20 Q30 GC Content

LN_F_1 36374237 5.45Gb 35217885 5.28Gb 0.01% 99.26% 97.90% 46.15%

LN_F_2 36374237 5.45Gb 35217885 5.28Gb 0.01% 97.27% 94.13% 46.23%

LN_B1_1 41132570 6.16Gb 39783660 5.97Gb 0.01% 99.27% 97.94% 45.84%

LN_B1_2 41132570 6.16Gb 39783660 5.97Gb 0.01% 97.31% 94.23% 45.90%

LN_B2_1 26796422 4.01Gb 25976642 3.9Gb 0.01% 99.26% 97.90% 45.70%

LN_B2_2 26796422 4.01Gb 25976642 3.9Gb 0.01% 97.46% 94.51% 45.75%

LN_B3_1 23634550 3.54Gb 22890779 3.43Gb 0.01% 99.22% 97.81% 45.09%

LN_B3_2 23634550 3.54Gb 22890779 3.43Gb 0.01% 97.45% 94.49% 45.17%

LN_B4_1 25283977 3.79Gb 24088378 3.61Gb 0.01% 98.75% 96.66% 45.49%

LN_B4_2 25283977 3.79Gb 24088378 3.61Gb 0.02% 95.23% 89.81% 45.75%

https://doi.org/10.1371/journal.pone.0213902.t003

Regulation of CYP79F1 gene in broccoli buds

PLOS ONE | https://doi.org/10.1371/journal.pone.0213902 March 25, 2019 7 / 20

https://doi.org/10.1371/journal.pone.0213902.t002
https://doi.org/10.1371/journal.pone.0213902.t003
https://doi.org/10.1371/journal.pone.0213902


The aliphatic pathway, encompassing 29 genes in Arabidopsis, was reviewed in 2010 [23,

31, 57]. Homologs for most of these genes can be found in broccoli, but different copies and

variations are usually found in Brassica plants, such as AOP family genes [58, 59], which are

responsible for the conversion of glucoraphanin to gluconapin in Arabidopsis. There are 3

AOP copies in broccoli, of which one is functional and two are mutated, whereas three genes

in B. napa are functional [35]. According to sequence alignments acids, the AOP1 gene has an

extra intron in exon 2, produces a smaller predicted protein and may not be functional [58,

60]. The AOP2 gene has few base changes and no function, and there is a large deletion in

exon 2 in AOP3, but this gene might still retain its function. AOP3 was not found in B. napa
[58, 60, 61]. Another gene, FMO GS-OX1, is responsible for the conversion of glucoerucin into

glucoraphanin, which is important for sulforaphane generation. However, there are few differ-

ences between broccoli plants [39]. In Arabidopsis, the MAM family contains three tandemly

duplicated and functionally diverse members (MAM1, 2, 3). MAM1 and MAM2 catalyze the

condensation of the first two elongation cycles for the synthesis of the dominant C3 and C4

side chain aliphatic glucosinolates, respectively [62, 63], whereas MAM3 is assumed to contrib-

ute to the production of all glucosinolate chain lengths [22]. However, in B. rapa and B. olera-
cea, MAM1/MAM2 genes experienced independent tandem duplication to produce C6 and C5

orthologs, respectively [24, 35]. In addition to the MAM3 homologs in Brassica, at least two

MAM3 genes seem to be involved the C-side chain size: BoGSL-PRO and BoGSL-ELONG,

determining glucosinolate of C3 and C4 side chains, respectively [60, 64].

Fig 2. Venn diagram comparisons (A) and cluster analysis of differentially expressed genes between leaves and developmental buds (B). Venn diagram

comparison of differentially expressed genes between leaves and developmental buds at bolting stage. Hierarchical cluster analysis of differentially expressed

genes among genotypes. The color key represents Lg (RPKM + 1). Red indicates high relative expression and blue indicates low relative expression. LN_F

denotes leaves and LN_B (1~4) denotes developmental buds of broccoli at bolting stage.

https://doi.org/10.1371/journal.pone.0213902.g002
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In this study, the genes of MAM1, MAM3, CYP79F1, St5b-2, FMO GS-OX1, MY, AOP2,

AOP3 (homologous domain), ESP and ESM1 were detected and analyzed by qRT-PCR.

Fig 3. The top 20 KEGG pathways with the highest representation of common DEGs from pairwise comparisons between developmental buds and

leaves.

https://doi.org/10.1371/journal.pone.0213902.g003

Table 4. The number of differentially expressed genes between different pairs samples.

Groups/samples Total number Up-regulated Down-regulated

LN_B1 vs LN_F 4775 2775 2000

LN_B2 vs LN_F 5454 3101 2353

LN_B3 vs LN_F 5956 2982 2974

LN_B4 vs LN_F 4874 2534 2340

https://doi.org/10.1371/journal.pone.0213902.t004
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Combined with the transcriptome data, the study would help us to reveal the gene expression

patterns of sulforaphane in the developmental buds at bolting stage.

Glucoraphanin belongs to C4 glucosinolate, which might be produced by MAM1/MAM2
genes. In B. rapa, MAM3 plays an important role in accumulation of C5 glucosinolates, such

as glucobrassicianapin [35, 37]. However, our results showed that leaves had a higher level of

MAM1 gene expression than the developing buds, which was depending on the cultivar of

broccoli (Fig 5), and all the materials in this study had a low level of MAM1 as well as MAM3
expression, with the exception of the flowers, which had a slightly higher expression. This was

consistent with the transcriptome results, which showed no significant differences between

MAM1 and MAM3. In this study, the sulforaphane and glucoraphanin contents in developing

buds were inversely correlated with the developmental stages,which might be caused by low

MAM1 gene expression after bolting [31, 65].

A. thaliana with the CYP79F2 gene knocked out showed substantially reduced long-chain

aliphatic glucosinolates and increased short-chain aliphatic glucosinolates, and CYP79F1

Table 5. The statistics of gene numbers at different interval level.

FPKM Interval LN_F LN_B1 LN_B2 LN_B3 LN_B4

0~1 35975(58.35%) 30733(49.85%) 32042(51.97%) 33284(53.99%) 33231(53.90%)

1~3 4779(7.75%) 5840(9.47%) 5558(9.02%) 5628(9.13%) 5349(8.68%)

3~15 10372(16.82%) 12451(20.20%) 12218(19.82%) 12405(20.12%) 12054(19.55%)

15~60 7365(11.95%) 9008(14.61%) 8396(13.62%) 7332(11.89%) 7832(12.70%)

>60 3159(5.12%) 3618(5.87%) 3436(5.57%) 3001(4.87%) 3184(5.16%)

https://doi.org/10.1371/journal.pone.0213902.t005

Fig 4. Violin plot of the normalized FPKM values for gene expression in different groups (A). Absolute magnitude (log) of the divergence of absolute

magnitude of log (FPKM+1) resulting from leaves (LN_F), young buds (LN_B1), mature buds (LN_B2), buds one day before flowering (LN_B3) and flowers

(LN_B4) of broccoli at bolting stage. Pearson correlation between samples of developmental buds (LN_B1~4) and leaves (LN_F) (B).

https://doi.org/10.1371/journal.pone.0213902.g004
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Fig 5. RNA sequencing and qRT-PCR results of the expression genes related with sulforaphane metabolism.

https://doi.org/10.1371/journal.pone.0213902.g005
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increases both long- and short-chain aliphatic glucosinolates [26, 29]. In our study, CYP79F1
(Bo5g021810-4.2906) was only significantly up-regulated in aliphatic glucosinolate biosynthe-

sis, howeverthis up-regulation was not found in the other developing buds and leaves. There-

fore, up-regulation of the CYP79F1 gene might be one of the reasons for causing sulforaphane

content being higher in young buds than mature buds, blossom buds, flowers and leaves at

bolting stage, and this result was also supported by qRT-PCR. So up-regulation of the

CYP79F1 gene might directly affect glucoraphanin accumulation [22, 31]. In growing and

developing buds, because there is no up-regulation of the CYP79F1 gene, so the intermediates

and precursors of glucoraphanin are gradually consumed. Therefore, the results of our study

support de novo synthesis of glucoraphanin in young buds. Recent studies have identified two

mechanisms of glucosinolate metabolism in plants: transport and de novo synthesis. The first

mechanism is the transport of glucosinolate via the phloem from mature leaves to inflores-

cences and fruits [66, 67]. Other studies have shown that reproductive organs are likely to gen-

erate specific and unique glucosinolates by de novo synthesis in these organs [22, 68]. In fact,

divergent glucosinolate composition of seeds and other organs have been widely detected, and

there are obviously different amounts in the seeds, higher than the other oranges, which also

supports the possibility of de novo synthesis in reproductive organs [69]. Our study provided

for evidence in synthesis of glucosinolate in reproductive organs.St5b-2 is numbered K11821

in the KEGG orthology pathway, and it is responsible for tryptophan metabolism, glucosino-

late biosynthesis, biosynthesis of secondary metabolites, and 2-Oxocarboxylic acid metabo-

lism. In our study, this gene referred to 4-methylthiobutyl-glucosinolate biosynthesis.

According to sequence analysis, another gene in this family, ST5a-1, has similar function in

tryptophan metabolism, glucosinolate biosynthesis, biosynthesis of secondary metabolites, and

2-Oxocarboxylic acid metabolism. ST5a-1 and St5b-2 have been reported in B. rapa, and their

sequences have been analyzed by shotgun sequencing, but still no similar sequence was found

in broccoli [35, 37]. In this result, there was a lower level of gene expression in developmental

buds compared with in leaves. This might indicate that it supported the accumulation of

Fig 6. Sulforaphane and glucoraphanin concentrations detected in different organs of broccoli at bolting stage (A). Chromatography of sulforaphane (C) and

TIC Chromatograph of glucosinolate (B) corresponding to glucoraphanin spectrum (RT) (D).

https://doi.org/10.1371/journal.pone.0213902.g006
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4-methylthiobutyl glucosinolate (glucoerucin) for glucoraphanin generated by oxidation by

FMO GS-OX1 gene [58].

The FMO GS-OX family (flavin-monooxygenase) contains five genes of FMO GS-OX1~5,

two genes of FMO GS-OX2 and FMO GS-OX5 [70–72], and FMOGS-OX1 has been identified

as an enzyme in the biosynthesis of aliphatic glucosinolates in Arabidopsis, catalyzing the S-

oxygenation of methylthioalkyl to methylsulfinylalkyl glucosinolate. In sulforaphane synthesis,

FMOGS-OX1 catalyzes the conversion of 4-methylthiobutyl glucosinolate (glucoerucin) to

4-methylsufinylbutyl glucosinolate (glucoraphanin), the precursor of sulforaphane [72–73].

Five FMO genes At1g65860 (FMO GS-OX1), At1g62540 (FMO GS-OX2), At1g62560 (FMO
GS-OX3), At1g62570 (FMO GS-OX4), and At1g12140 (FMO GS-OX5) have been found within

a subclade of the FMO phylogeny [31, 57]. In the study, the gene expression of FMO GS-OX1
was at a low level in developing buds comparing to in leaves, which was similar to the genes of

MAM1 and St5b-2, suggesting the similar gene expression patterns of St5b-2 and FMO
GS-OX1. Most of studies have reported the hydrolysis products of glucosinolate are controlled

by epithiospecifier protein (ESP), myrosinase (MY), and potentially free iron and pH [21, 74].

Previous conclusions have shown that the system of glucosinolate hydrolysis is complex, and

some results suggest that the ESP runs functions via interactions with myrosinase [32]. Myro-

sinase can catalyze the hydrolysis of the thioglucoside linkage and release a glucose and an

unstable aglycone. The aglycone moiety subsequently rearranges to form various products

depending on the aglycone structure, myrosinase, pH, ferrous ion, zinc and magnesium con-

centrations [24, 75–77]. Our results showed a high consistency of the gene expression among

MY, FMO GS-OX1, St5b-2 and MAM1. Therefore, the correlations of ten genes in expression

level and the contents of sulforaphane and glucoraphanin were analyzed by Pearson correla-

tion test. The result revealed that six genes of MAM1, St5b-2, FMO GS-OX1, AOP2, ESP and

ESM1 were highly correlated with correlation coefficients from 0.887 to 0.999 (P<0.01)

(Tables 6 and 7). From the contents and consistent changes of gulcoraphanin and sulforaph-

ane, it could be proved that myrosinase and ESP had not influence on sulforaphane generation

at bolting stage.

So far, three AOP2 genes have been identified in B. oleracea, two are non-functional due to

the presence of premature stop codons, and no AOP3 gene has been found [35]. In contrast,

all three AOP2 copies are functional in B. rapa, resulting in conversion of glucoraphanin into

gluconapin, which explains why glucoraphanin is abundant in B. oleracea, but not in B. rapa
[31, 35]. AOP3 also does not exist in B. rapa, which contains three AOP loci orthologs, each

containing two tandem duplicated genes [21, 60]. Studies in Arabidopsis have shown differen-

tial AOP leaf expression, whereby a particular accession expresses either AOP2 or AOP3 but

not both [70, 78], which has been reported to be due a complete inversion of the AOP2 and

AOP3 structural genes in some accessions, causing the AOP3 gene to be expressed from the

AOP2 promoter [79]. This conclusion is in conflict with the absence of an AOP3 gene in cab-

bage [35], but our results support this conclusion in Arabidopsis based on AOP3 gene expres-

sion in this study.

According to the gene expression patterns of AOP2 and AOP3, it was found that AOP2
gene, likely MY, FMO GS-OX1, St5b-2 or MAM1, showed a lower level of expression in devel-

oping buds than in leaves (Fig 5). However, there was significantly higher AOP3 expression in

developmental buds compared to leaves (Fig 5), the highest being in flowers, followed by

young buds, mature buds and buds one day before flowering, and leaves were at the lowest

level. AOP3 should be present in broccoli plant, however it was detected in the expression of

the AOP3 domain, which might provide us new evidence for explaning the diversity of sulfo-

raphane in different broccoli organs. Meanwhile the AOP3 gene plays a role in hydroxylation

of glucoraphanin, which might partly explain why there was lower accumulation of
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glucoraphanin in flowers compared to the other developmental buds, resulting in low concen-

tration of sulforaphane [41, 60].

Plant hormones in pathways affecting glucoraphanin accumulation

Some studies have reported glucoraphanin and sulforaphane are influenced by genotype,

developmental stages and environment effects, and others state that plant hormones, such as

IAA and jasmonic acid (JA), also affect glucoraphanin production, resulting in changes in sul-

foraphane levels in broccoli [22–24, 57]. Several reports indicate that the loss function of

CYP79F1 in mutations could end the formation of short-chain methionine-derived glucosino-

lates, but increase the amounts of IAA and cytokinin [80]. Glucosinolate syntheses also con-

versely affect the levels of auxin and cytokinin [27, 80]. JA is an elicitor and signaling molecule

for glucosinolate biosynthesis, it has been shown to enhance both the production of indolic

glucosinolates and their biosynthetic gene transcript levels in Arabidopsis, and the accumula-

tion of glucoraphanin in broccoli could be up-regulated by JA related genes [38, 81].

Table 6. The correlation analysis of sulforaphane contents and related genes in different organs.

Pearson Correlation Sulforaphane MAM1 IMS2 CYP79F1 FMO GS-OX1 AOP2 AOP3 MY St5b-2 ESP ESM1
Sulforaphane 1 -0.61 -0.373 0.796 -0.581 -0.51 0.125 -0.468 -0.63 -0.141 0.039

MAM1 -0.61 1 0.06 -0.198 .994�� .967�� -0.484 .979�� .999�� 0.868 0.757

IMS2 -0.373 0.06 1 -0.022 0.093 -0.002 0.828 -0.002 0.055 -0.124 -0.144

CYP79F1 0.796 -0.198 -0.022 1 -0.123 -0.045 0.248 -0.015 -0.224 0.282 0.464

FMOGS-OX1 -0.581 .994�� 0.093 -0.123 1 .985�� -0.443 .990�� .993�� .887� 0.79

AOP2 -0.51 .967�� -0.002 -0.045 .985�� 1 -0.502 .992�� .967�� .907� 0.828

AOP3 0.125 -0.484 0.828 0.248 -0.443 -0.502 1 -0.498 -0.493 -0.494 -0.426

MY -0.468 .979�� -0.002 -0.015 .990�� .992�� -0.498 1 .975�� .939� 0.862

St5b-2 -0.63 .999�� 0.055 -0.224 .993�� .967�� -0.493 .975�� 1 0.855 0.74

ESP -0.141 0.868 -0.124 0.282 .887� .907� -0.494 .939� 0.855 1 .980��

ESM1 0.039 0.757 -0.144 0.464 0.79 0.828 -0.426 0.862 0.74 .980�� 1

Note: �. Correlation is significant at the 0.05 level (2-tailed) and

��. Correlation is significant at the 0.01 level (2-tailed).

https://doi.org/10.1371/journal.pone.0213902.t006

Table 7. The correlation analysis of glucoraphanin contents and related genes in different organs.

Pearson Correlation glucoraphanin MAM1 IMS2 CYP79F1 FMO GS-OX1 AOP2 AOP3 MY St5b-2 ESP ESM1
glucoraphanin 1 -.634 -.444 .768 -.587 -.473 .061 -.470 -.647 -.183 .000

MAM1 -.634 1 .060 -.198 .994�� .967�� -.484 .979�� .999�� .868 .757

IMS2 -.444 .060 1 -.022 .093 -.002 .828 -.002 .055 -.124 -.144

CYP79F1 .768 -.198 -.022 1 -.123 -.045 .248 -.015 -.224 .282 .464

FMOGS-OX1 -.587 .994�� .093 -.123 1 .985�� -.443 .990�� .993�� .887� .790

AOP2 -.473 .967�� -.002 -.045 .985�� 1 -.502 .992�� .967�� .907� .828

AOP3 .061 -.484 .828 .248 -.443 -.502 1 -.498 -.493 -.494 -.426

MY -.470 .979�� -.002 -.015 .990�� .992�� -.498 1 .975�� .939� .862

St5b-2 -.647 .999�� .055 -.224 .993�� .967�� -.493 .975�� 1 .855 .740

ESP -.183 .868 -.124 .282 .887� .907� -.494 .939� .855 1 .980��

ESM1 .000 .757 -.144 .464 .790 .828 -.426 .862 .740 .980�� 1

Note: �. Correlation is significant at the 0.05 level (2-tailed) and

��. Correlation is significant at the 0.01 level (2-tailed).

https://doi.org/10.1371/journal.pone.0213902.t007
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In this study, plant hormone signal transduction was analyzed by RNA sequencing, and

there were 95, 89, 97 and 86 corresponding DEGs with the same 521 background genes based

on the developing buds (LN_B1- 4) versus leaf expression. According to the differences in

plant hormone signal transduction gene expression among four organs in developmental

buds, 2 DEGs were found in the auxin signaling pathway, one was up-regulated (Bo5g027930)

only in young buds. This finding reminded us the association of young buds with higher sulfo-

raphane content and higher expression of Bo5g027930 only occurring in this organ, which

might provide evidence for the importance of CYP79F1. The specific mechanism driving these

observations still needs further research. The other auxin signaling gene was down regulated

(Bo9g151530), and it occurred in buds one day before flowering and flowers. Thus, it could be

inferred that different auxin response might affect the accumulation of glucoraphanin [27, 41].

In the cytokinin signaling pathway, 3 up-regulated genes and 2 down-regulated genes were

different in developing buds. A total of 3 up-regulated genes, Bo8g091410, Bo3g107060 and

Bo3g035110, only showed higher expression in young buds and were absent in the remaining

developing buds. In contrast, 2 genes, Bo5g027070 and Bo8g059410, were down-regulated in

buds one day before flowering and flowers, and absent from in young and mature buds. These

5 genes belong to the two-component response regulator ARR-A family, which might be

potential genes in affecting glucoraphanin generation [29].

Conclusions

In the study, it was found that CYP79F1 plays a fundamental and direct role in sulforaphane

production of inflorescences at differential developmental stages, and a low expression level

resulted in a decrease of this compound or the precursor glucoraphanin due to competition

for the intermediates, such as 2-oxo-6-methylthihexanoic acid or 4-methylthiobutyl (glucoeru-

cin). These genes of MAM1, MAM3, St5b-2, FMO GS-OX1 were in favor of glucoraphanin,

MY, ESP and ESM1 played a high efficiency function in sulforaphane generation although

with low expression level in this stage. At the same time, the plant hormones auxin and and

cytokinin might affect glucoraphanin accumulation. The knowledge gained from this study

provides a way to study different molecular mechanisms and the diversity of sulforaphane in

different organs during broccoli development stages.
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S1 Fig. The most enriched GO terms.

(TIF)

S2 Fig. Patterns of gene expressions in the developmental buds and leaves of B52 by STEM

analysis (P< 0.05). The green line represents the expression pattern of all the genes. The

number of genes belonging to each pattern is labeled above frame.

(TIF)

S3 Fig. The distribution of clean reads, containing N, low quality and adapter related reads

in the raw reads.

(TIF)
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