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Background: Nuclear factor kB (NFkB) has a critical role in the pathophysiology of multiple myeloma. Targeting NFkB is an
important strategy for anti-myeloma drug discovery.

Methods: Luciferase assay was used to evaluate the effects of DETT on NFkB activity. Annexin V–PI double staining and
immunoblotting were used to evaluate DETT-induced cell apoptosis and suppression of NFkB signalling. Anti-myeloma activity
was studied in nude mice.

Results: DETT downregulated IKKa, b, p65, and p50 expression and inhibited phosphorylation of p65 (Ser536) and IkBa.
Simultaneously, DETT increased IkBa, an inhibitor of the p65/p50 heterodimer, even in the presence of stimulants
lipopolysaccharide, tumour necrosis factor-a, or interleukin-6. DETT inhibited NFkB transcription activity and downregulated
NFkB-targeted genes, including Bcl-2, Bcl-XL, and XIAP as measured by their protein expression. Deregulation of NFkB signalling
by DETT resulted in MM cell apoptosis characterised by cleavage of caspase-3, caspase-8, and PARP. Notably, this apoptosis was
partly blocked by the activation of NFkB signalling in the presence of TNFa and IL-6. Moreover, DETT delayed myeloma tumour
growth in nude mice without overt toxicity.

Conclusion: DETT displays a promising potential for MM therapy as an inhibitor of the NFkB signalling pathway.

Multiple myeloma (MM) is a malignancy derived from plasma
cells and is characterised by malignant monoclonal plasma cell
proliferation, multiple bone lesions, and hypercalcemia. It accounts
for 2% of all cancers and leads the second place in hematological
malignancies (Raab et al, 2009). In the past decade, several novel
drugs have been marketed for MM therapy, including proteasome
inhibitors bortezomib and carfilzomib, and immunomodulators
thalidomide and its analogs. However, MM remains incurable
because of its complicated pathophysiology. Novel anti-MM drugs
are in high demand.

Nuclear factor kB (NFkB) is a nuclear transcription factor that
regulates the expression of a number of genes critical for cell

proliferation, viral replication, tumourigenesis, inflammation, and
various autoimmune diseases (Aggarwal et al, 2006). In mammals,
the NFkB family is comprised of five different members: c-Rel, p65
(Rel A), Rel B, p50/p105 (NFkB1), and p52/p100 (NFkB2). The
heterodimer p50/p65 is the most common complex in many cell
types (May and Ghosh, 1998; Barkett and Gilmore, 1999). In non-
stimulated cells, inactive NFkB complexes are bound with a class of
inhibitor proteins called IkB, including IkBa, IkBb, IkBg, and the
product of the putative proto-oncogene bcl-3 (Whiteside et al,
1997; May and Ghosh, 1998). When IkB is phosphorylated and
subsequently degraded by the proteasome, NFkB is released from
IkB and is translocated to the nucleus where it modulates gene
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expression (Barkett and Gilmore, 1999). Nuclear translocation of
NFkB can be induced by a variety of stimuli, including tumour
necrosis factor-a (TNFa), lipopolysaccharide (LPS), and inter-
leukins (Bitzer et al, 2000).

Recent evidence indicates that NFkB and its signalling pathways
are constitutively activated in both myeloma cell lines and primary
myeloma cells (Annunziata et al, 2007; Demchenko and Kuehl,
2010). Inhibition of NFkB signals by the proteasome inhibitor
bortezomib induces MM cell apoptosis, suggesting that NFkB is a
potential target for anti-MM drug discovery. In the present study,
we found that one of the tetrahydro-2H-1,3,5-thiadiazine-2-thione
derivatives displayed potent anti-myeloma activity by inhibiting
the NFkB signalling pathway.

MATERIALS AND METHODS

Cell culture and chemicals. Human MM cell lines KMS11, LP1,
OCI-My5, OPM2, RPMI-8226, and U266 were obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA)
and were grown in Iscove’s Modified Dulbecco’s Medium as
described previously (Mao et al, 2007). DETT or 3,5-diethyl-1,3,
5-thiadiazinane-2-thione (Figure 2A) was purchased from May-
bridge, Tintagel, UK.

Determination of apoptosis. Cell apoptosis was measured by flow
cytometry (BD FACSCalibur, San Jose, CA, USA) with Annexin
V–FITC/PI Apoptosis Detection Kit (BD Pharmingen, San Jose,
CA, USA) as described previously (Ling et al, 2012).

Cell lysates preparation. Whole-cell lysates were prepared in an
ice-cold lysis buffer containing 50 mM Tris, 1% Triton X-100, 0.1%
sodium dodecyl sulfate (SDS), 150 mM NaCl, 2 mM Na3VO4, 2 mM

EGTA, 12 mM b-glycerol phosphate, 10 mM NaF, 16 mg ml� 1

benzamidine hydrochloride, and cocktail protease inhibitors
(10 mg ml� 1 phenanthroline, 10 mg ml� 1 aprotinin, 10 mg ml� 1

leupeptin, 10 mg ml� 1 pepstatin, and 1 nM phenyl methyl sulfonyl
fluoride; Mao et al, 2011). Cell lysates were then clarified at high
speed at 4 1C.

To isolate cytoplasmic and nuclear proteins, cytoplasmic and
nuclear extracts were prepared using the Nuclear and Cytoplasmic
Extraction kit (Beyotime, Nantong, China) according to the
manufacturer’s instructions. Protein concentrations were deter-
mined by the BCA protocol (Beyotime).

Western blotting. Forty micrograms of total proteins were subject
to fractionation on a SDS polyacrylamide gel electrophoresis, and
followed by immunoblotting assay as described previously (Li et al,
2013). Primary antibodies, including PARP, CCND2, Bcl-2, XIAP,
Bim, caspase-3, caspase-8, NFkB, IkBa, phospho-IkBa, p105, p50,
p65, phospho-p65, IKKa, IKKb, and Histone H3 were purchased
from Cell Signaling Technologies Inc. (Danvers, MA, USA). The
GAPDH antibody was obtained from Sigma (St Louis, MO, USA).
Secondary horseradish peroxidase-conjugated goat anti-mouse and
goat anti-rabbit IgG were purchased from Beyotime. Signal
detection was performed by the Enhanced Chemical Luminescence
method (Beyotime) or by the SuperSignal West Pico Chemilumi-
nescent kit (Pierce, Rockford, IL, USA) according to the
manufacturer’s instructions.

Transient transfection, luciferase, and b-galactosidase assays.
HEK293T cells were seeded in 60-mm dishes (Nest Biotechnology
Co., Wuxi, China). When cells were 60% confluent, the medium
was replaced with serum-free Opti-MEM (Gibco BRL, Shanghai,
China). Cells were cotransfected with the pNFkB-Luciferase
reporter plasmid (pNFkB-Luc, Clontech, Mountain View, CA,
USA) and the pGL4-b-galactosidase vector (Promega, Beijing,
China) using 25KD PEI (Sigma) as the gene carrier. Twenty-four
hours after transfection, cells were trypsinised, and equal numbers

of cells were plated in 24-well plates for 12 h. Cells were then
treated with 0, 15, or 30 mM of DETT for 9 h, followed by
stimulation with or without LPS (5 mg ml� 1) for 3 h. Luciferase
assays and b-gal enzyme assays were performed 12 h after addition
of DETT according to the manufacturer’s protocol (Promega).
Firefly luciferase activity was normalised to b-gal expression for
each sample (Mao et al, 2007). All transfection experiments were
performed in duplicate.

Multiple myeloma xenograft model. Female BALB/c nude mice
(5–6 weeks old) were obtained from Shanghai Slac Laboratory
Animal Co. Ltd, Shangai, China (Zhang et al, 2013). All animal
studies were conducted according to the protocols approved by the
Ethical Committee of Experimental Animals of Soochow Uni-
versity. All mice were subcutaneously inoculated with RPMI-8226
cells (3� 107 cells per injection) in the right flank in 200 ml of
sterile PBS containing 100 ml of Matrigel (BD Pharmingen). When
tumours were measurable, mice were randomly assigned into two
groups, one group was orally administrated DETT (50 mg kg� 1

day� 1, 1/12 LD50) and the other received vehicle. Tumour sizes
and mice body weights were monitored every other day as
described previously (Mao et al, 2011). Mice were killed 20 days
after treatment with DETT, and all tumours were excised. After
weighing and size measurement, tumour samples were snap-frozen
in liquid nitrogen and then stored at � 80 1C for further study. To
examine the NFkB signals in tumour tissues after DETT treatment,
tumour tissues were subject to western blotting assay against p65,
p50, and PARP as described previously (Mao et al, 2008).

Statistical analysis. When it was applicable, statistical significance
was analyzed by using the Student’s t-test.

RESULTS

DETT inhibits the NFkB signalling pathway in MM cells. NFkB
is critical for MM cell proliferation and survival (Annunziata et al,
2007; Demchenko and Kuehl, 2010), but there was little evidence
to visualise NFkB expression in MM cells, therefore we first
evaluated NFkB components in a panel of MM cells. Immunoblot-
ting analysis on six MM cell lines revealed that both p105 and p65
were universally highly expressed in all the cell lines. IKKa, b, p50,
IkBa, and phosphorylated p65 were highly expressed in four of the
six cell lines examined (Figure 1), suggesting that NFkB were
important for MM cell proliferation and survival.

Because NFkB is a ubiquitous transcription factor, we next
designed a NFkB responsive element–driven luciferase reporter to
evaluate DETT activity. A luciferase reporter specifically respon-
sive to NFkB was transfected into HEK293T cells followed by
DETT treatment in the presence or absence of 5 mg ml� 1 LPS.
As shown in Figure 2B, DETT suppressed baseline activity of
NFkB-driving luciferase. More impressively, it suppressed
LPS-induced NFkB activity by 80% compared with the control.
To further understand how DETT blocked the NFkB pathway, we
measured the changes of protein expression of the NFkB-
associated members in MM cell lines OCI-My5 and RPMI-8226
after treatment with increasing concentrations of DETT for 24 h.
As shown in Figure 2C, all components, including IKKa, b, p65,
phospho-p65, and phospho-IkBa, were downregulated by DETT.
In contrast, total IkBa was significantly increased following
DETT treatment (Figure 2C).

Phosphorylation of p65 (Ser536) mediated by IKKs (Sakurai
et al, 1999) facilitates p65 nuclear translocation and DNA binding
(Zhong et al, 2002). Because both IKKa and b were downregulated
by DETT (Figure 2C), we wondered whether DETT could suppress
p65 phosphorylation in the presence of NFkB signalling stimulants
TNFa and LPS. To determine this, MM cells were treated with
DETT for 24 h followed by addition of TNFa (20 min) or LPS (3 h).
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Immunoblotting assays revealed that both TNFa and LPS induced
p65 phosphorylation, but it was completely abolished by DETT
(Figure 2D). Notably, consistent with the change of phospho-p65,

phospho-IkBa was also decreased, whereas total IkBa was
increased by DETT (Figure 2D).

DETT suppressed NFkB activity in a manner different from
bortezomib. Bortezomib is a potent anti-MM drug by inhibiting
the proteasomes, stabilising IkBa, and suppressing p65/p50
activation. Because DETT was also able to inhibit NFkB signals,
we wondered whether these two agents act in a similar manner. To
this end, OCI-My5 and RPMI-8226 were treated with DETT or
bortezomib followed by analysis of the NFkB signalling. Immuno-
blotting revealed that DETT and bortezomib exerted similar effects
on p65, p50, and phospho-p65. Both agents decreased phospho-
p65, p65, and p50 in the cytosol and suppressed p65 phosphoryla-
tion in the nuclear fragment, while total p65 and p50 were not
affected (Figure 3A). However, their effects on IkBa were different.
As shown in Figure 3B, bortezomib stabilised phospho-IkBa, while
DETT decreased phospho-IkBa in a concentration-dependent
manner (Figure 3B); accordingly, total IkBa was increased by
DETT but not by bortezomib (Figure 3B). This result suggested
bortezomib stabilises IkBa protein by inhibiting proteasomes
(Murray and Norbury, 2000), while DETT probably inhibits IKKs,
thus decreasing phosphorylation of IkBa and preventing it from
degradation (Figure 2).

DETT significantly induces MM cell apoptosis. As a ubiquitous
transcription factor, NFkB modulates a broad panel of signal
transduction involved in cell proliferation, survival, and anti-apoptosis,
therefore inhibition of NFkB can lead to MM cell death (Yinjun et al,
2005; Fabre et al, 2012). To check whether DETT was able to induce
MM cell apoptosis, six MM cell lines, including KMS11, LP1, OCI-

p105

LP
1

82
26

M
y5

U26
6

OPM
2

KM
S11

p-p65

p65

p50

IKK�

IKK�

GADPH

I�B�

Figure 1. Constitutive expression of the NFkB signalling components
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b-gal expression plasmids. Twenty-four hours later, cells were trypsinised, and equal numbers of cells were plated in 24-well plates and cultured for
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Targeting NFkB signalling for multiple myeloma BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2013.711 65

http://www.bjcancer.com


My5, OPM2, RPMI-8226, and U266, were treated with DETT (20mM)
for 24 h, followed by Annexin V and PI double staining and flow
cytometric analyses. As shown in Figure 4, DETT induced 445%
apoptosis in LP1, OPM2, and OCI-My5 and 439% death in
RPMI-8226. In contrast, there were fewer apoptotic cells in U266
and KMS11. Interestingly, these two cell lines only expressed very
faint phospho-p65 (Figure 1), thus these results suggested that
DETT induced MM cell apoptosis wherein p65 phosphorylation
was probably critical in DETT-mediated cell death.

To confirm apoptosis induced by DETT, we next examined
the apoptotic signalling in these cell lines. Western blotting

analysis revealed that PARP was markedly cleaved by DETT in
LP1, OCI-My5, OPM2, and RPMI-8226 cells but less cleaved
in U266 and KMS11 (Figure 5A), which was consistent with the
apoptotic analysis by flow cytometry (Figure 4). Therefore,
these data further demonstrated that DETT-induced MM cell
apoptosis is highly associated with NFkB signalling. To further
characterise DETT-induced MM cell apoptosis, we evaluated
activation of caspase-3 and -8 in OCI-My5 and RPMI-8226
cells. As shown in Figure 5B, DETT induced cleavage of PARP,
caspase-3, and -8 in a concentration-dependent manner.
Concomitantly, anti-apoptotic proteins XIAP and Bcl-2 were

BZ (nM)

OCI-My5

OCI-My5

0 0 0 20

0 15 30 0

0 0 0 20
0 15 30 0

0 0 0 20
0 15 30 0

0 0 0 20

0 15 30 0

0 0 0 20

0 15 30

Nuclear

0

0 0 0 20

0 15 30 0

RPMI-8226

RPMI-8226

OCI-My5 RPMI-8226

DETT (�M)

BZ (nM)
DETT (�M)

p-p65

p-l�B�

l�B�

GAPDH

p65

p50

GAPDH

Histone H3

Cytosol

Figure 3. DETT protects IkBa in a manner different from bortezomib. RPMI-8226 and OCI-My5 cells were treated with DETT (0, 15, or 30mM) or
bortezomib (BZ, 20 nM) for 24 h, and whole-cell lysates were then prepared to isolate the nuclear and cytosolic fragments for western blotting
assays against specific antibodies. (A) Expression of p-p65, p65 and p50 in the cytosol and nuclear fragments. (B) Expression of p-IkBa and IkBa in
the whole cell lysates.

0
104

104

103

103

102

102

101

101
100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

100 104103102101100
104103102101100 104103102101100

104103102101100 104103102101100

104103102101100 104103102101100

104103102101100 104103102101100

104103102101100 104103102101100

20 (�M)

OCI-My5 LP1

RPMI-8226

KMS11

U266

OPM2

Annexin V-FITC

DETT 0 20 (�M)

P
ro

pi
di

um
 io

di
de

Annexin V-FITC

DETT

P
ro

pi
di

um
 io

di
de
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decreased, while pro-apoptotic Bim was induced by DETT
(Figure 5C).

Activation of NFkB partly suppresses DETT-induced MM cell
apoptosis. The aforementioned studies demonstrated that DETT
deregulated NFkB signalling, especially suppressed phosphoryla-
tion of both p65 and IkBa, and induced MM cell apoptosis. It
seemed that sensitivity of MM cells to DETT was associated with
NFkB signalling, especially the status of p65 phosphorylation. To
verify this hypothesis, RPMI-8226 cells were treated with DETT
alone or in combination with NFkB stimulants TNFa or IL-6 in a
series of incubation periods. As shown in Figures 6A and B, p65
phosphorylation was induced by TNFa and IL-6 but was markedly
decreased by DETT within 4 h. Without TNFa or IL-6, DETT
could markedly inhibit p65 phosphorylation and induced PARP
cleavage within 2 h. Addition of IL-6 or TNFa activated p65
phosphorylation, and it partly attenuated DETT-induced MM cell
apoptosis along with the suppression of NFkB signals (Figure 6).
This finding and above studies therefore further demonstrated that
DETT induced MM cell apoptosis, at least partly, by suppressing
the NFkB signalling.

DETT delays human MM tumour growth in nude mice
models. All the above studies have provided reliable evidence
that DETT inhibits NFkB signals and induces MM cell apoptosis.
To further investigate the effect of DETT against human MM
in vivo, a myeloma xenograft model was established by
subcutaneous injection of RPMI-8226 cells in the right flanks of
nude mice. When the tumours were palpable (around 50 mm3),
mice were orally administrated DETT with the dosage of 1/12
LD50 or 50 mg kg� 1 on a daily base for 20 days, and tumour sizes

and mice body weights were monitored every other day. The
results indicated that DETT significantly inhibited tumour growth
on the seventh day of administration (Figure 7A). At the end of the
experiment, the tumour weights in the vehicle group and DETT
treatment group were 1.55±0.438 and 0.48±0.163 g, respectively.
Tumour growth was significantly decreased by DETT with the
P value¼ 0.000234 (Figure 7B). There were no adverse effects or
aberrant behaviour or gross organ damage in DETT-treated mice,
which suggested that DETT was well tolerated (Figure 7C).
In western blotting analysis, phospho-p65, p65, and p50 were
decreased in tumours from the DETT-treated mice but not in those
from untreated mice (Figure 7D). Moreover, PARP was also
cleaved in the DETT-treated group, suggesting DETT also induced
apoptosis in vivo. Taken together, these results supported that
DETT displayed significant anti-MM activity in vivo by inhibiting
the NFkB signals.

DISCUSSION

Recent studies found that thiadiazine derivatives represent a class
of potential anti-leishmanial agents, in addition to their anti-
bacterial, antifungal, and antimicrobial activity (Monzote Fidalgo
et al, 2004). These compounds showed cytotoxic properties against
cervical cancer cell line HeLa and colon adenocarcinoma cell line
HT-29 but did not display activity against Hep G2 cells (Perez et al,
2000). This selective cytotoxicity of thiadiazine derivatives for
certain cancer cell lines suggests that these agents have a potential
for the treatment of some specific cancers. Recently, some such
derivatives have been reported to inhibit proliferation of chronic
myelogenous leukemia cell line K562 and breast cancer cell line
MDA-MB-468 as cell cycle inhibitors (Radwan et al, 2012). But the
detailed mechanisms of anti-tumour activity have not been
defined. In the current work, we found DETT, one of the
thiadiazine derivatives, displays potent activity against MM in both
in vitro and in vivo models. At a concentration of 5mM, DETT
markedly activates caspase signals in MM cells. In the presence of
MM cell activators such as IL-6, DETT still displays potent efficacy
in inducing MM apoptosis. Notably, oral administration of DETT
at 50 mg kg� 1 suppresses MM tumour growth by 470% within
3 weeks. All these results suggest DETT is potent for the treatment
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of MM. Mechanistically, anti-MM activity of DETT is associated
with the NFkB signalling pathway, especially the phosphorylation
status of p65, because those MM cell lines such as U266 and
KMS11 with only a faint phospho-p65 level are not sensitive to
DETT.

There are two NFkB signalling pathways, one is canonical in
which the IkBa/p65/p50 complex is the key player, the other one is
non-canonical in which p100/RelB is most important (Tully et al,
2012). The canonical pathway contains several strictly regulated
steps, including extracellular stimulation, IKK activation, IkBa
phosphorylation and degradation, p65/p50 nuclear translocation,
NFkB-DNA binding, and NFkB transactivation (Gilmore and
Herscovitch, 2006). The traditional concept in the NFkB signalling
is that NFkB is inhibited by association with IkBa. Once
phosphorylated by IKK upon signalling triggers such as TNFa or
IL-6 stimulation, IkBa is subsequently degraded by the 26S
proteasomes, and the p65/p50 heterodimer is then liberated and
activated followed by nuclear translocation. IkBa is the key
negative regulator of the NFkB activation (May and Ghosh, 1998;
Kim et al, 2006). Many NFkB inhibitors such as bortezomib induce
cancer cell apoptosis by suppressing IkBa degradation thus
suppressing NFkB activation (Murray and Norbury, 2000).
Bortezomib is an inhibitor of proteasomes thus stabilising hyper-
phosphorylated IkBa and maintaining its inhibitory effects on p65/
p50. However, different from bortezomib, DETT decreases IkBa
phosphorylation and increases total IkBa level (Figure 3).
Although the effects of these two agents on NFkB are distinct in
terms of phosphorylated and total IkBa proteins, the final effects
are probably the same, because bortezomib stabilises phospho-
IkBa from proteasomal degradation, while DETT suppresses IkBa
phosphorylation, which prevents IkBa from degradation by
proteasomes. In DETT-treated MM cells, this is dramatic, because
total IkBa was increased by DETT.

In addition to IkBa phosphorylation, more and more studies
demonstrated that p65 is also phosphorylated by stimulants such
as TNFa (Sakurai et al, 1999). The subunit p65 of NFkB, also called
RelA, is the key component of the functional NFkB that is
translocated into nuclei where it binds to DNA and modulates
gene transcription (Nolan et al, 1991). Phosphorylation of p65
could occur at Ser276, Ser311, Ser529, and Ser536 (Sakurai et al,
1999; Wang et al, 2000; Zhong et al, 2002; Duran et al, 2003;
Vermeulen et al, 2003), but the blockage of p65 phosphorylation at
Ser536 rather than at Ser276 or Ser529 abolishes p65 transcription
activity (Hu et al, 2004). It is believed that phospho-p65 (Ser536)
facilitates p65 nuclear translocation, improves its DNA binding,
recruits p300 to the p65 complex, and releases p65 from HDAC1
and HDAC3, thereby regulating downstream gene expression
(Buss et al, 2004; Hu et al, 2004). Our study showed that, similar to
bortezomib, DETT also suppresses p65 phosphorylation in
cytoplasm. Because DETT can downregulate the expression of
IKKa and b, as well as p65 and IkBa phosphorylation, IKKa/b are
probably the major target of DETT. We noticed that DETT leads to
concentration- and time-dependent decrease of p65 phosphoryla-
tion in both cytoplasmic and nuclear fragments. However, total
p65 protein level is only decreased in the cytoplasm but not
changed in the nuclei (Figure 3). Moreover, DETT-induced MM
cell apoptosis is dependent on p65 phosphorylation level. U266
and KMS11 cells with less phosphorylated p65 are resistant to
DETT compared with the other cell lines expressing phospho-p65
(Figures 1, 4, and 5). These findings suggest that NFkB activation
with p65 phosphorylation is required for cancer cell survival and
could be a target by some chemicals, such as DETT.

The IKKs are key kinases that phosphorylate both p65 and IkBa
(Yang et al, 2003; Viatour et al, 2005). Several studies indicate that
PI3K/Akt-dependent signalling activates NFkB activity but
depends on the relative levels of the IKKa subunit (Gustin et al,
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2004). By reviewing the effects of DETT on NFkB signalling nodes,
we can conclude that DETT might suppress NFkB activation by
inhibiting p65 and IkBa phosphorylation.

Therefore, in the present study, we found that anti-leishmanial
thiadiazine-derivative DETT could be a potential anti-myeloma
agent by targeting the NFkB signalling. The low toxicity and high
potency in MM cell apoptosis and delaying MM tumour growth
in vivo merits DETT for further evaluation.
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