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Chromatin accessibility, as measured by ATACseq, varies between hematopoietic cell
types in different lineages of the hematopoietic differentiation tree, e.g. T cells vs. B cells,
but methods that associate variation in chromatin accessibility to the lineage structure of
the differentiation tree are lacking. Using an ATACseq dataset recently published by the
ImmGen consortium, we construct associations between chromatin accessibility and
hematopoietic cell types using a novel co-clustering approach that accounts for the
structure of the hematopoietic, differentiation tree. Under a model in which all loci and cell
types within a co-cluster have a shared accessibility state, we show that roughly 80% of
cell type associated accessibility variation can be captured through 12 cell type clusters
and 20 genomic locus clusters, with the cell type clusters reflecting coherent components
of the differentiation tree. Using publicly available ChIPseq datasets, we show that our
clustering reflects transcription factor binding patterns with implications for regulation
across cell types. We show that traditional methods such as hierarchical and kmeans
clusterings lead to cell type clusters that are more dispersed on the tree than our tree-
based algorithm. We provide a python package, chromcocluster, that implements the
algorithms presented.
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1 INTRODUCTION

The development of the ATACseq technique over the past decade has spurred a broad investigation
of chromatin accessibility across cell types (Buenrostro et al., 2013; Klemm et al., 2019). In particular,
chromatin accessibility has been intensively studied using ATACseq across many hematopoietic cells
types (Lara-Astiaso et al., 2014; Corces et al., 2016; Scott-Browne et al., 2016; Lau et al., 2018;
Calderon et al., 2019; Yoshida et al., 2019; Sun and Barreiro, 2020; Xiang et al., 2020). Hematopoiesis,
which involves the differentiation of a single hematopoietic stem cell into the different blood cell
types, is well characterized and the lineages through which the differentiation occurs can be described
by a differentiation tree (Seita andWeissman, 2010). Chromatin accessibility has been shown to vary
across different hematopoietic cell type lineages, and these differences have been shown to be
essential to cell differentiation and cell function, e.g. (Heinz et al., 2010; Shea et al., 2010; Song et al.,
2011; Huang et al., 2016; Lau et al., 2018; Sun and Barreiro, 2020).

While many studies have shown differences of accessibility across hematopoietic cell types, we
lack a quantitative description of how variation in accessibility across the hematopoietic cell types
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reflects the form of the differentiation tree. In this context, many
questions remain unanswered. Are most accessible genomic loci
accessible only in a specific, cell type or are a significant number
of loci accessible jointly across a particular collections of cell types
(e.g. all T cells)? If many loci are accessible across a particular
collection of cell types, do those cell types form connected
components of the differentiation tree, or are they dispersed?
More generally, how do we quantitatively find and describe
associations between chromatin accessibility and the
differentiation tree? And finally, if such associations exist, how
do they shape cellular regulation? Answering these questions
would provide a context in which to analyze the chromatin
accessibility of particular hematopoietic cell types and to
understand differences in cellular regulation across the
hematopoietic cell types.

Here, we address these questions using a recently completed
ImmGen (Shay and Kang, 2013) consortium dataset published by
Yoshida et al. (Yoshida et al., 2019). Yoshida et al. characterized
accessibility through bulk ATACseq across 90 murine cell types,
including 78 immune cell types descending from bone marrow
derived, hematopoietic stem cells. The availability of bulk
ATACseq across such a large number of cell types using
consistent protocols provides a novel opportunity to
investigate accessibility patterns in hematopoietic cell types.
Typically, in ATACseq studies across multiple cell types, the
ATACseq workflow ends with the formation of an accessibility
matrixM, with the rows ofM corresponding to genomic loci and
the columns corresponding to cell types. M can be binary,
reflecting a call of accessible or not-accessible for a particular
genomic locus in a particular cell type or can take a range of
values, for example if the height of the ATACseq peak is used to
quantify accessibility. Describing chromatin accessibility across
cell types can then be framed as describing the structure ofM. In
our context, we are interested in understanding how the structure
of M, which is built from the Yoshida et al. ATACseq dataset,
reflects the hematopoietic differentiation tree.

In a general setting, the most common way to describe the
structure of a matrix, M, is to construct another matrix, ~M, with
some simple form that is a good approximation of M. Standard
approaches, such as the svd, are difficult to interpret, and have not
been commonly used in the context of genomics data. Starting
with gene expression datasets in the early 2000s (Eisen et al., 1999;
Perou et al., 2000; Saelens et al., 2018) and extending to current
ATACseq datasets, clustering has been the most common
approach to describing M.

In the case of chromatin accessibility datasets, a common
clustering analysis involves clustering of the columns (i.e. cell
types), typically by dimension reduction followed by k-means or
by hierarchical clustering, which identifies cell types with similar
chromatin accessibility patterns across the genome, e.g.
(Cusanovich et al., 2018; Collins et al., 2019; Sciumè et al.,
2020). Column clustering has the advantage of decomposing
the cell types of the differentiation tree into distinct clusters
that can then be analyzed. However, cell type clustering provides
little information about the overall structure ofM which typically
has many more rows than columns. Row (i.e. locus) based
clustering, which identifies loci with similar cell type

accessibility patterns, is also common, e.g. (Song et al., 2011;
Lara-Astiaso et al., 2014; Scott-Browne et al., 2016; Lau et al.,
2018; Yoshida et al., 2019). Lara-Astiaso et al. (2014) used
k-means to row cluster a dataset involving 16 hematopoietic
cell types. They noted that loci in different row clusters were
accessible across different cell types (see their Figure 1). For
example, in one of their locus clusters, the loci were accessible in
stem cells, but not in other cell types. Yoshida et al. used t-SNE to
project rows (i.e. loci) onto 2-d and then identified loci that
cluster in the 2-d space and are either accessible across all cell
types or are accessible within a single cell type. Both these
examples reflect an association between M and the
differentiation tree, but restriction to row clustering limits
investigation of the association.

Biclustering, which involves specifying a paired cluster of rows
(i.e. loci) and columns (i.e. cell types), received significant
attention during the 2000s in the context of gene expression
data (Cheng and Church, 2000; Lazzeroni and Owen, 2002;
Shabalin et al., 2016). Biclustering is particularly effective at
finding substructure within M and multiple biclusters can be
found and used to construct an approximating matrix ~M, but the
resulting approximating matrix ~M can be difficult to interpret
and its computation is often unstable (Pontes et al., 2015).

Here, we take a middle ground between row or column based
clustering and biclustering by considering the structure of M
through co-clustering. By co-clustering, we mean selecting row
clusters and column clusters whose pairings provide a grid-like
structure to the approximating matrix ~M. While in bi-clustering a
particular row cluster is paired with a particular column cluster,
so that rows in different clusters can have their columns clustered
in different ways, in co-clustering every row cluster is paired with
every column cluster, so that every row has its columns clustered
in the same way. In some sense, our work is an extension of the
row clustering results of Lara-Astasio et al. (discussed above)
which suggested that the structure ofM can be well approximated
by co-clustering. Our approach is to first row cluster, using the
well-known Louvain algorithm, (Blondel et al., 2008), which
allows for scaling to large number of loci, a typical situation in
chromatin studies. We then column cluster. But importantly, we
develop a novel clustering algorithm that restricts column
clustering to clusters that are composed of coherent
components of the hematopoietic differentiation tree. This co-
clustering provides a simple and biologically meaningful
structure to ~M in which a particular column cluster is a
coherent hematopoietic phenotype and the overall structure of
M can be viewed through the accessibility of these hematopoietic
phenotypes across multiple locus clusters. Further, the
construction allows us to characterize the variance in M that
is associated with the differentiation tree.

Previous authors have considered clustering loci in the context
of a cell type network such as the hematopoietic differentiation
tree, but typically with the goal of annotating loci (Biesinger et al.,
2013; Sohn et al., 2015; Zhang et al., 2016). For example,
treeHMM (Biesinger et al., 2013) infers a hidden state at each
genomic locus for each of the cell types through a hidden Markov
model, with the hidden state serving as an annotation of the locus.
From our perspective, these methods serve to construct a matrix
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M-which is the starting point of our analysis-with the value ofM
being the hidden state of the HMM across cell types and loci. In
contrast to our setting, in which we just have ATACseq data,
these methods allow for multiple assays for each cell type-for
example ChIPseqs of different histone modifications-in which
case constructing M is complex.

We show that roughly 1/2 of accessible loci in the Yoshida
et al. dataset are accessible in only one or 2 cell types in the
differentiation tree. Putting aside these cell type specific loci, we
show that the other loci fall into roughly 20 locus clusters. Each of
these locus clusters can be characterized by cell types in which the
accessibility is relatively high and cell types that are relatively low,
and the cell types with high accessibility compose a coherent
component of the differentiation tree. We show that with 12 cell
type clusters (i.e. column clusters) that decompose the
differentiation tree, we can capture roughly 80% of the cell
type specific variation in M. We also investigate transcription
factors (TFs) in the context of this co-clustering, showing that the
co-clustered structure of M is reflected in the motif and binding
patterns of TF across loci and cell types.

2 MATERIALS AND METHODS

In a Python package available for download, chromcocluster, we
have implemented the algorithms described here. The package
also includes all files needed to reproduce the particular
clusterings of the Yoshida et al. dataset that we present here.
The package can be accessed through PyPI at https://pypi.org/
project/chromcocluster/ or through Github at https://github.
com/SLeviyang/chromcocluster.

2.1 Construction of the M Matrix
We downloaded the Yoshida fastq files from GEO accession
GSE100738. We used the standard ENCODE ATACseq
workflow to call peaks at a particular IDR. We collected all peaks
called by the ATACseq workflow across all cell types. Each peak was
associated with a locus on the murinemm10 genome centered at the
peak summit and extended 250 base pairs up and down stream,

forming a 500 base pair window. To each window, we associated the
quality score of the peak summit that defined it. Then for each
chromosome, moving 5′–3′, we sequentially evaluated the loci and
formed a master list of loci. We did this in a greedy manner. When
we encountered a locus that did not intersect with a locus already in
our master list, we gathered the current locus and, moving 5′–3′, we
gathered all subsequent loci not in the master list that intersected
with the current locus. From these gathered loci, we selected the
locus with the highest quality score and added it to the list. Then we
moved on to the next locus that did not intersect with the added
locus. Previous authors used a similar approach (Lara-Astiaso et al.,
2014; Corces et al., 2016; Yoshida et al., 2019). Given the master list
of loci, we then formedM. A locus contained a peak for a given cell
type if any of the cell types peaks intersected with the locus.

2.2 Locus Clustering
As an input graph to the Louvain algorithm, we let each row ofM
be a node and placed edges between rows (i.e. nodes) at a
particular FDR. Each row consisted of 78 ones and zeros.
Given two rows with n and N ones, respectively, we let s be
the number of columns in which the two rows shared a 1. We
assumed that s had a hypergeometric distribution (78 balls, N
white balls and n draws), which corresponds to a null in which we
permute the column of one of the rows. We then calculated the
p-value cutoff that would lead to the particular FDR given the
matrix M. Once the graph was constructed, we used the Python
sklearn package implementation of the Louvain algorithm to
perform the clustering.

2.3 Cell Type Clustering
To precisely define the notion of a cell type cluster that respects
the differentiation tree, let U be a set of vertices (i.e. cell types or
columns ofM) on the differentiation tree. Let Vj for j � 1, 2, . . . , ℓ
be the partition of U into its ℓ connected components. If ℓ � 1,
then U is connected and respects the tree. If ℓ > 1, let r1, r2, . . . , rℓ
be the roots of the connected components V1,V2, . . . ,Vℓ ,
respectively. Then U respects the tree if there is a single node
p in the differentiation tree for which r1, r2, . . . , rℓ are all children.
Note that the rj need not be all the children of p.

FIGURE 1 | Locus accessibility across locus clusters reveals cell type specific patterns. Shown is the fraction of loci that were accessible within a locus (i.e. row)
cluster across each of the cell types in the differentiation tree. Trees correspond to locus cluster (A) 5, (B) 7, and (C) 9. Within each tree, the size of a vertex provides the
fraction of loci in the cluster that were accessible for the corresponding cell type. For example, cluster 5 had 5,947 loci with 87 and 2%accessible in the DC.4+ (red vertex)
and ILC2 cell types, respectively, as shown in panel A (Figure 4 provides the same data, but in a heatmap format).
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Choosing a partitioning of the differentiation tree into k
clusters that respect the tree is equivalent to selecting k − 1
nodes pi for i � 1, 2, . . . , k − 1 and for each pi selecting ℓi nodes
that are children of pi: ri,1, ri,2, . . . , ri,ℓi. Importantly, the pi need
not be distinct, but the ri,j must all be unique. This allows a
particular parent node to associated with more than one cluster.
For example, in Figure 2C, the MPP4 cell type is a parent node to
two clusters, the grey NK cluster and the aqua ILC cluster. In this
example, p1 and p2 could both be the MPP4 cell type, the children
of p1, i.e. r1,1, r1,2, . . . , r1,4, would be the four ILC nodes and the
children of p2, r2,1 and r2,2, would be the two NK nodes that are
children of MPP4.

Given a particular choice for the pi and ri,j, the differentiation
tree can be partitioned into disjoint clusters Ui for i � 1, 2, . . . , k
that respect the tree as follows.

1. Remove the edges in the differentiation tree between each pi and
its child nodes ri,j for i � 1, 2, . . . , k−1 and j � 1, 2, . . . , ℓi. This
will form a connected component Vi,j for each i � 1, 2, . . . , k−1
and j � 1, 2, . . . , ℓi and an additional connected component Vk

that has the root of the differentiation tree as its root.

2. For i � 1, 2, . . . , k−1, the cluster Ui is formed by the union of
the connected components Vi,j for j � 1, 2, . . . , ℓi. And the
cluster Uk is simply the connected component Vk.

Note that each cluster Ui respects the tree because it is formed
by connected components with roots ri,1, ri,2, . . . , ri,ℓi that are
children of a single parent node pi.

Cell type clustering partitions the column indices (i.e. cell types)
into the k sets U1, U2, . . . , Uk. As described above, the Louvain
algorithm forms row clusters, let those be W1, W2, . . . , Wn. Then
each pairUi,Wj specifies a co-cluster composed of all elements ofM
with row index in Wj and column index in Ui and we build an

approximation toM, ~M
(k)
, which has the same dimensions asM but

for which elements in a co-cluster are replaced by the co-cluster

mean. We measure fit through the sum of squared differences

between M and ~M
(k)
, i.e., the squared Frobenius norm of the

difference between these two matrices, ‖M − ~M
(k)‖22.

For a given clustering, we refer to the set of pi as cut vertices
(since we cut the edges emanating from them to form our
clusters) and for a given pi, we refer to the vertices ri,j for

FIGURE 2 | Differentiation tree. We considered 78 hematopoietic cell types and assumed the shown tree structure. The tree structure is the same as Figure 3A in
Yoshida et al. Cell types names have been shortened for readability, see Supplementary Figure S1 for full names corresponding to Yoshida et al.
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j � 1, 2, . . . , ℓi as the cut group of the cut vertex pi. Note that a cut
vertex can have multiple cut groups, as noted in the
example above.

To minimize ‖M − ~M
(k)‖2, we take an iterative approach.

First, we construct an initial, random clustering. We choose the
cut vertices p1, p2, . . . , pk−1 randomly without replacement from
the non-leaf vertices of the differentiation tree and for each pi we
choose a single cut group composed of all of its children. We then
iteratively attempt to improve the fit of the clustering through two
types of modifications:

1. Cut group modifications:

We choose a cut vertex v and enumerate all modifications to
the cut groups of v that involve adding a single child of v to a cut
group, removing a vertex from a cut group, or transferring a
vertex between cut groups if v has more than 1 cut group. We
update our clustering to the best fit modification, if it is lower than
the current fit.

2. Cut vertex modifications:

We choose a cut vertex v and a vertex v′ ≠ v. We then consider
deleting a cut group of v and adding a cut group to v′. The new cut
group in v′ is chosen by selecting a single child of v′ that is not in a
cut group, and we consider all the modifications formed by the
different children of v′. We update our clustering to the best fit
modification, if it is lower than the current fit.

We iteratively improve the fit by applying the cut group
modification in a cycle through all cut vertices v, followed by
applying the cut vertex modifications in a cycle through all
combinations of pairs v, v′ where v is a cut vertex. We stop
the algorithm when we complete both these cycles without
improvement in fit. Since the optimization is non-convex, we
applied this iteration using 20 different initial clusterings to
determine the clusterings presented in the Results.

2.4 ANOVA Decomposition
For notational convenience, let M and ~M

(k)
be the matrices M

and ~M
(k)

restricted to rows in a particular locus cluster. Then a
standard ANOVA analysis decomposes the variation of M into a
portion predicted by ~M

(k)
and a residual portion. The associated

R-squared is given by,

R2
total � 1 − ‖M − ~M

(k)‖22
‖M − μ‖2 ,

where μ is the mean of the entries of M. R2
total is exactly the

standard R-squared of a linear predictor. The means of the
columns of M are not affected by column clustering. With this
in mind, we consider the prediction of the column means of M,
which we write as M·,i, by ~M

(k)
. Then the portion of variation

of M·,i predicted by ~M
(k)

is given by the R-squared expression,

R2
cell type � 1 − ‖M·,i − ~M

(k)‖22
‖M·,i − μ‖22

.

We calculate R-squared over the whole matrixM by averaging
the R-squared values over the locus clusters.

2.5 TF Motif Analysis
Most of our TF analysis followed the workflow described in Schep
et al. in (Schep et al., 2017). We downloaded motif descriptions
using the R package chromVARmotifs and then used the R
package motifmatchR to call motifs on the DNA sequences
spanned by our loci at a p-value of 5E-6. This gave us a
binary matrix, A, analogous to M except that columns
corresponded to motifs and a 0 and 1 value in an entry
corresponded to the absence or presence of a motif at a locus,
respectively.

To determine motif enrichment for a co-cluster, for each cell
type in the co-cluster, we calculated the fraction of accessible loci
that contained the motif and then averaged over all cell types in
the cluster. This gave us a raw co-cluster score r. We computed an
analogous raw null score n using all loci and cell types not in the
co-cluster. Finally, we computed an enrichment score,

enrichment score � r − n

r + n
. (1)

Schep et al. computed a similar score, except that they
normalize r−n by a variance term. We found that the variance
term was often small, leading to statistical instability, so instead
we normalized by r + n. We then permuted columns to find a
cutoff to our enrichment score that gave a 0.05 FDR. We called a
motif as enriched for a co-cluster if its enrichment score exceeded
the cutoff.

2.6 ChIPseq Workflow
We downloaded fastq files from Revilla-I-Domingo et al. (2012),
with GEO accessions GSM932921, GSM932922 GSM932925, and
GSM932926. We downloaded the fastq files from Wagner et al.
(2020) and Istaces et al. (2019) with GEO accessions
GSM3900380, GSM3900381 and GSM3559328, GSM3559327,
respectively. We aligned the fastq to the murine mm10
genome using bowtie2 (-X1000 was the only non-standard
flag) (Langmead et al., 2009), filtered for poorly aligned reads
and duplicates using samtools and Picard, and called peaks using
MACS2 (Zhang et al., 2008) using all standard settings in the
macs2 callpeak executable except with the quality cutoff set to
0.10 (-q 0.10). We called a locus from our ATACseq analysis as
containing a ChIPseq peak if the ChIPseq peak summit was
within the locus 500 base pair window.

3 RESULTS

We downloaded the ATACseq data of Yoshida et al. from the
NCBI GEO database (Barrett et al., 2013). The Yoshida et al.
dataset includes ATACseq libraries across 90 cell types, but we
restricted our attention to the 78 cell types derived from adult,
bone marrow derived, hematopoietic stem cells, i.e. HSCs (Seita
andWeissman, 2010). The other 12 cell type, which do not derive
from HSCs, include 5 stromal cell types and seven embryonic

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7071175

George et al. Co-Clustering Hematopoietic Chromatin Accessibility

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


yolk sak derived, macrophage cell types. The differentiation tree
we assume is shown in Figure 3 and is exactly that of Yoshida
et al., as shown in their Figure 3A. (In our Figure 3, cell names
are shortened for readability. See Supplementary Figure S1 for
full names corresponding to Yoshida et al.). We applied the
ENCODE ATACseq pipeline (Davis et al., 2018) to the Yoshida
et al. ATACseq samples for each of the cell types, resulting in a
collection of peaks representing accessible loci for each cell type.
Then, following the approach of previous authors, e.g. (Lara-
Astiaso et al., 2014; Corces et al., 2016; Yoshida et al., 2019), we
constructed a master list of loci, composed of non-overlapping
500 base pair windows that intersected with every ATACseq peak
across all cell types. We then formed the chromatin accessibility
matrix M with the rows corresponding to each of the loci in the
master list and the columns corresponding to the 78 cell types. An
entry of M was 1 if the cell type had a peak that intersected with
the corresponding 500 base pair locus, otherwise the entry was 0.

An important issue in constructing M is the sensitivity,
specificity trade-off in calling locus accessibility. We
modulated this tradeoff by choosing different IDR values (Li
et al., 2011) in the ENCODE pipeline. The IDR is similar to an
FDR and is used to determine reproducible peak calls. We
considered IDR values of 0.01, 0.05, 0.10 and 0.15 which led
to roughly 159, 246, 331, and 424 thousand loci which were
accessible, respectively, in one or more of our 78 cell types. As
comparison, Yoshida et al. considered roughly 512 thousand loci

over their 90 cell types. We defined a cell specific locus as a locus
which was accessible in 2 or less cell types; we found that 38, 43,
51, and 57% of the loci for the respective IDR values were cell
specific. The increasing level of cell specific loci with increasing
IDR may reflect increasing noise. Alternatively, cell specific
accessible loci may have lower levels of accessibility, leading to
their being called only at larger IDR values. Regardless of the
specific IDR, the number of cell specific and non-cell specific loci
both constituted a substantial fraction of the total accessible loci.
Below we present results for an IDR of 0.01, taking a conservative
approach to calling accessibility. Under this IDR, 94% of our loci
intersected with the midpoint of a Yoshida et al. locus. Our results
were essentially unchanged using other IDR, see Materials and
Methods for further details.

3.1 Locus Clustering
We clustered the rows (i.e. loci) of the accessibility matrix M
using the Louvain algorithm (Blondel et al., 2008). Importantly,
we only clustered the rows corresponding to non-cell specific loci,
of which there were 98,848 under 0.01 IDR. The Louvain
algorithm takes a graph (i.e nodes and edges) as input and
clusters the nodes to maximize a measure of community
structure. In our setting, the rows (i.e. loci) of M form the
nodes. To form edges, we placed an edge between two nodes
if the corresponding rows had a statistically significant number of
columns with equal entries (i.e.the two loci shared accessibility
states across a statistically significant number of cell types). We
clustered nodes with edges placed at an FDR of 0.0001, 0.001,
0.01, 0.05, and 0.10, respectively. As shown in Table 1, the
fraction of nodes connected by an edge to some other node
fell as edge FDR was lowered, reflecting the existence of loci with
cell type accessibility patterns that did not closely match any other
loci. As the table further shows, the Louvain algorithm formed
between 16 and 21 clusters with 30 or more nodes across all FDR,
except in the case of an FDR of 0.0001. The results for an edge
FDR of 0.0001 suggest an overly conservative approach in placing
edges, leading to too many clusters and many isolated nodes.
Below, we present results for the edge FDR of 0.001, choosing a
relatively conservative value as we did for the IDR. Our results are
essentially unchanged using the larger edge FDR values, see
Materials and Methods for details.

FIGURE 3 | Cell type clusterings that respect the hematopoietic differentiation tree. Shown are the column (i.e. cell type) clusters for (A) k � 3 (B) k � 8, and
(C) k � 12. In panel C, clusters are specified by color and this color scheme is used throughout the text. In panels A and B, clusters are specified by number.

TABLE 1 | The effect of edge FDR on locus clustering. To apply the Louvain
clustering algorithm, we constructed a graph in which loci were represented
by nodes and edges between nodes represented loci with similar accessibility
patterns. We placed edges between two nodes at different FDR. Shown are the
percent of loci that were connected to another locus (connected loci), the
number of clusters with more than 30 loci (number of large clusters), and the
fraction of loci that fell within a large cluster (loci in large clusters).

FDR Connected loci Number
of large clusters

Loci
in large clusters

0.0001 57% 36 87%
0.001 72 20 97
0.01 89 21 98
0.05 97 17 99
0.10 99 16 99
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At an edge FDR of 0.001, the Louvain algorithm produced
100s of clusters, but the top 20 clusters included 95% of the nodes
in the graph with the remaining clusters all containing less than
30 nodes and most containing only 2 nodes. The smaller clusters
could reflect noise in calling loci and edges or they could reflect
loci with uncommon patterns of accessibility. Table 2 shows the
number of loci in each of the largest 20 locus clusters. Of the loci
in these 20 clusters, 97% intersected with the midpoint of a
Yoshida et al. locus. The first 13 clusters have greater than 2000
loci and the rest of the clusters have 100s of loci, except for cluster
19 which has 45 loci. Figure 4 shows the fraction of loci in each
row cluster that are accessible within each of the 78 cell types.

Notably, clusters 0 and 3 contained loci that are accessible in
almost all cell types. As shown in Table 2, most of the loci in these
clusters are proximal to transcription start sites (TSS), which we
define as within 500 base pair of a TSS. Most of the loci in the
other locus clusters, accessible in only a subset of the cell types,
were distal to TSS, which we defined as greater than 3,000 base
pair from a TSS. Yoshida et al. noted a similar pattern, with loci
close to TSS (what they term TSS OCR) accessible across most cell
types and loci far from TSS (what they term DE OCR) accessible
in only certain cell types.

To investigate locus functionality, we downloaded the list of
mouse promoters and active enhancers maintained by the
FANTOM consortium (FANTOM5 version) (Lizio et al.,
2015). As shown in Table 2, across almost all clusters, greater
than 70% of the proximal loci were identified as promoters by
FANTOM. For distal loci, roughly between 10 and 40% were
identified as active enhancers by FANTOM. The lower fraction of
distal loci identified by FANTOM may reflect cell types not
sampled by FANTOM, non-active enhancers, or accessible loci
that are not enhancers. However, both proximal and distal loci
were statistically enriched for loci identified by FANTOM,
supporting a functional role for the clustered loci.

The clustering reveals clear associations between cell
phenotype and accessibility. As an example, Figure 1 shows
the fraction of loci in row clusters 5, 7, and 9 called as
accessible for each cell type. The figure gives the same data as
rows 5, 7, and 9 of the heatmap in Figure 4, but in the context of

the differentiation tree. In row cluster 5, roughly 50–80% of loci
are accessible in macrophages and DCs, while in other cell types
accessibility of these loci is less than 2%. In row cluster 7, between
40 and 80% of loci are accessible in macrophages, dendritic cells,
and most B cells, while in other cell types less than 10% of loci are
accessible. In row cluster 9, all B cells except pro-B cells and
plasma B cells have between 60 and 95% of loci as accessible,
while in all other cell types less than 10% are accessible. These
three row clusters reflect a decomposition of accessible loci in
macrophages, DC and B cells into loci that are accessible only in
macrophages and DC, only in B cells and jointly. Some of the
smaller row clusters, which reflect a more specific cell phenotype,
have a more definitive separation of accessibility across cell type.
For example, all 704 loci in cluster 14 are accessible in ILC3 cell
types and inaccessible in all other cell types. The less definitive
separation in cell type accessibility we see in clusters 5, 7, and 9
may reflect experimental noise in the ATACseq workflow, but
particular loci within a cell typemay also vary in their accessibility
over time due to unstable positioning of nucleosomes or due to a
variation of cell state (Natoli et al., 2011; Wang et al., 2012).

3.2 Cell Type Clustering
With the row clustering fixed, we next applied a column (i.e. cell
type) clustering. For column clustering, we chose the number of
column clusters as a particular value, k, and produced a column
clustering for each k � 2, 3, . . . , 12. Since one of our main
motivations was to quantify the degree to which accessibility
associates with the differentiation tree, we restricted column
clusters to reflect the structure of the tree through a novel
algorithm.

Given a graph (i.e. nodes and edges), a set of nodes is said to be
connected if there is a path along the tree connecting every pair of
nodes in the set. Importantly, restricting cell type clusters to
connected components did not give good results. As an example,
consider accessibility in locus (i.e. row) cluster 5, as shown in
Figure 1. Only 5% of loci in the cluster are accessible in the MPP3
progenitor cell type, but 80% the loci are accessible in
macrophage and DC, which are children of the MMP3 cell
type. However, for pDC (plasmacytoid DC) and GN

TABLE 2 | Row clusters. Twenty row clusters generated by the Louvain clustering contained 95% of the non-cell specific loci. Shown are the number of loci in each cluster
(size), the fraction of cluster loci within 500 base pair (prox, i.e. proximal) andmore than 3,000 base pair (dist, i.e. distal) of a transcription start site (TSS), and the fraction of
the cluster’s proximal loci and distal loci that were in the FANTOMdatabase of promoters (prom) and active enhancers (enhan). Row clusters 0 and 3 had loci largely proximal
to TSS, while all other clusters were largely composed of loci distal to TSS. In most clusters, greater than 70% of the proximal loci and 10–40% of distal loci were labeled as
promoters and active enhancers, respectively.

Location Fantom Location FantomCluster Size

Prox Dist Prom Enhan

Cluster Size

Prox Dist Prom Enhan

0 5,960 0.92 0.06 0.81 0.42 10 3,449 0.09 0.86 0.73 0.13
1 9,289 0.08 0.85 0.67 0.18 11 2,453 0.05 0.85 0.76 0.25
2 6,931 0.06 0.88 0.70 0.09 12 2,152 0.34 0.59 0.78 0.38
3 6,293 0.60 0.35 0.78 0.43 13 704 0.03 0.93 0.50 0.05
4 5,979 0.19 0.75 0.71 0.30 14 673 0.02 0.91 0.71 0.16
5 5,947 0.05 0.87 0.66 0.17 15 441 0.05 0.91 0.55 0.12
6 5,549 0.10 0.83 0.77 0.23 16 304 0.04 0.87 0.77 0.28
7 5,172 0.14 0.78 0.75 0.30 17 292 0.02 0.93 0.20 0.11
8 3,689 0.04 0.88 0.53 0.10 18 173 0.04 0.91 0.86 0.08
9 3,557 0.04 0.88 0.61 0.12 19 45 0.02 0.93 0.00 0.17
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(neutrophil), which are also children of MMP3, the loci are
relatively inaccessible (<30%). To account for this dynamic, we
say a set of nodes respects the differentiation tree if

1. The nodes form a single connected component or,
2. The nodes form multiple connected components, but the root

nodes of the connected components are all children of a
common parent node.

As an example, consider the clustering shown by the node
coloring in Figure 2C. The rose colored cluster is composed of
T.4 and T.8 cell types, each of which forms a separate connected
component of the tree. But the root nodes of the T.4 and T.8
connected components are both children of the T.DP cell type, so
that the cluster respects the tree. As another example, consider the
grey colored cluster composed of NK cells. The cluster is
composed of two connected components, but the two roots of
the connected components are both children of the MPP4 cell

type, so that cluster respects the tree. See Methods for further
details.

For a given k, our clustering algorithm selects the cell type
clustering that respects the tree with the best co-clustering
approximation of M, see Methods for algorithm details.
Figure 2 shows the column clustering produced for k � 3, 8,
12 on the differentiation tree. When k � 3, our clustering splits the
differentiation tree into a stem/progenitor cell and myeloid
cluster, a B cell cluster, and a T cell cluster. This clustering
shows that the general division of immune cell types intomyeloid,
B, and T phenotypes is reflected in accessibility differences.
Further, stem cell and progenitor cell types are most similar to
myeloid cell types in their accessibility. Increasing to k � 8, splits
stem cells and progenitor cells into separate clusters, puts the NK
and ILC cell types into separate clusters, introduces a cluster
containing plasma and memory B cells, and splits the myeloid
compartment. Interestingly, neutrophils are grouped with stem
cells, while DC, monocytes, and macrophages are split into their

FIGURE 4 | Row clustering using the louvain algorithm. We used the Louvain algorithm to cluster 98,848 rows (i.e. loci) of the M matrix, giving 20 main row (i.e.
locus) clusters. Each row in the heatmap corresponds to a row cluster and each column to a cell type. The number of loci in each row cluster is given in Table 2. Heatmap
colors show the fraction of loci within a row cluster that were accessible for the particular cell type. Column groupings by cell type are based on our column clustering for
k � 12 discussed below.
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own compartment. By k � 12, the T cell compartment is split into
a CD8 and CD4 cluster and an early T cell cluster.

3.3 Co-Clustered Approximation of the
Accessibility Matrix
For a particular k value, the combination of row and column
clusters divided M into a grid of 20 × k co-clusters. While M is a
binary matrix, we built the co-clustered approximation of M,
~M
(k)
, by setting all the entries in a co-cluster to the mean value of

the co-cluster entries. As an analogy, in the kmeans algorithm,
many data points are approximated by the k means associated
with the k clusters. Similarly. ~M

(k)
approximates the many entries

of M through the means of the co-clusters. Figure 5A visualizes
~M
(k)

for k � 12.
As an application of the clustering, we compared the

accessibility patterns of stromal and embryonic macrophage
cell types to the 78 cell types included in the differentiation
tree. Figure 5A shows the mean values for stromal and embryonic
cell types across the 20 locus clusters. Locus cluster 0 and 3 are
accessible in stromal cells, suggesting that these clusters are
composed of globally accessible promoters. In contrast, for
stromal cells no other cluster has a significant level of
accessibility, while embryonic macrophages have an accessibility
pattern similar to bone marrow derived macrophages.

In constructing the matrix ~M
(k)
, we allowed each co-cluster to

take on a different value. As a more restrictive model, we assumed
that a cell type within a particular row (i.e. locus) cluster can be
either in an relatively inaccessible 1) or accessible 1) state, rather

than in a continuum of accessibility states. Biologically, this more
restrictive model supports a single regulatory mechanism shaping
the accessibility structure of the loci in each locus cluster. To examine
the impact of this model, we built a matrix ~M

(k)
i/a which had the same

co-clusters as ~M
(k)
, but with co-clusters sharing the same locus

cluster restricted to have one of two values, representing either an
inaccessible or accessible state. Figure 5B visualizes ~M

(k)
i/a for k � 12.

We applied an ANOVA analysis to calculate the variation ofM
captured by the co-clustered matrices ~M

(k)
and ~M

(k)
i/a . We

calculated two R-squared values, R2
total and R2

cell type, for the
fraction of the total variation in M captured by the co-
clustering and the fraction of cell type (i.e. column) associated
variation in M captured by the cell type clustering, respectively;
see Methods for details. If each cell type was in a separate cluster,
then R2

cell type would equal 1 and if all cell types were in a single
cluster then R2

cell type would equal 0. Since we constructed our
column clusters to respect the differentiation tree, we used
R2
cell type as a measure of the association between accessibility

and the structure of the differentiation tree. Figure 6 shows the
R-squared values for different values of k. Also included in the
figure are co-clusterings in which cell types were clustered using
hierarchical and kmeans clustering, respectively. We used the
R-squared values for these two commonly used clustering
methods as a baseline against which to compare our clustering
approach, which is constrained by the tree.

As seen in Figure 6A, the fraction of variation captured by the
co-clustering varied between 0.20 and 0.40 as the number of cell
type clusters k rose from 2 to 12. In contrast, as shown in
Figure 6B, the fraction of cell type associated variation

FIGURE 5 | Co-clustered approximation of the accessibility matrix M. Heatmaps of (A) ~M
(12)

and (B) ~M
(12)
i/a . Panel A also includes cluster means for embryonic

macrophages (MF) and stromal cells, which are not part of ~M
(12)

. The co-clustered matrices ~M
(12)

and ~M
(12)
i/a approximate M. Compare the heatmaps of this figure

to the heatmap ofM given in Figure 4. Only locus clusters 0 and 3 are accessible in stromal cells, while embryonic MF have similar accessibility patterns to bone marrow
derived MF.
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captured by the cell type clusters rose from 0.20 to 0.80, meaning
that our cell type clustering captured most of the association
between accessibility and cell type, at least for the higher k values.
The large fraction of the total variation in accessibility not
captured by our co-clustering (roughly 0.6 for k � 12) is
associated with the row clustering. As discussed above and
reflected in Figure 4, within a row (i.e. locus) cluster, cell
types tended to have either a high or low fraction of loci in an
accessible state, but the high and low fraction were often
intermediate, e.g. 0.50 and 0.10, instead of extreme, e.g. 1.0
and 0. This within cell type variation could reflect noise in the
ATACseq workflow, stochasticity in the accessibility state of the
loci, or row clusters that are too broad.

The R2
total and R2

cell type values based on the ~M
(k)

co-clusterings
were similar to values based on ~M

(k)
i/a and hierarchical and kmeans

column clusterings. The similarity of the R-squared values
between ~M

(k)
and ~M

(k)
i/a provides support for viewing

accessibility within a particular locus (i.e. row) cluster as
falling into one of two states for all the cell types. The
similarity of the R-squared values based on hierarchical and
kmeans clusterings to our co-clusterings demonstrates that
there is not a significant component of cell type variation that
does not respect the differentiation tree.

While the R2 values of our algorithm and kmeans and
hierarchical clustering were similar, the cell type clusters
differed substantially in form. To characterize cluster form, we
decomposed each cell type cluster into components that respected
the tree and connected components and then summed the total
components of each decomposition across all clusters. As seen in
Figures 7A,B, our algorithm generated clusters that could be
decomposed into less components that respect the tree and less
connected components across all k values. Kmeans and
hierarchical clustering led to dispersed clusters. As an
example, Figure 7C shows the hierarchical clustering for k �

FIGURE 6 |Decomposition of accessibility variation. Using an ANOVA analysis, we calculated an R-squared value giving the fraction of (A) total variation and (B) cell
type associated variation in M captured by our co-clustered approximation matrices ~M

(k)
and ~M

(k)
i/a as well as co-clustering in which columns were clustered using

hierarchical and k-means methods without taking the differentiation tree into account.

FIGURE 7 | Comparison of cell type clustering across methods. To compare the form of clusters between our tree based method and hierarchical and kmeans
methods, we decomposed clusters into components that respected the tree and that were connected. Shown are the sum across clusters of components that (A)
respect the tree and (B) are connected relative to the tree. The number of components generated by our method is less across all values of k. (C) Shown are the clusters
formed using hierarchical clustering for k � 12. As an example of the component counts, the blue cluster is formed from 3 components that respect the tree and six
connected components. Note that the clusters are more dispersed on the tree than the clusters of Figure 4C.
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12. Importantly, the higher number of components in the cluster
decompositions for hierarchical and kmeans clustering did not
lead to better fits, as the R2 results show.

3.4 TFMotif Enrichment Across Co-Clusters
Using methods introduced by Schep et al. (2017), Yoshida et al.
computed an accessibility score measuring the enrichment of a
TF motif on accessible loci within a particular cell type relative to
the presence of the TF motif on accessible loci across all cell types.
From the perspective of a matrix analysis, this is a column (i.e. cell
type) based approach because enrichment is assessed over all
accessible loci for a single cell type. To adapt the method of Schep
et al. to co-clusters, we defined 20 co-clusters formed by the
combination of each locus cluster and the cell types in the
accessible state of ~M

(12)
i/a for that locus cluster, see Figure 8.

We refer to these co-clusters as accessibility co-clusters. There is
one accessibility co-cluster for each locus cluster. For example,
accessibility co-cluster 9 is formed by the loci in locus cluster 9
and the cell types in our B cell, cell type cluster while accessibility

co-cluster 5 is formed by the loci in locus cluster 5 and the DC and
macrophage cell type clusters. For each accessibility co-cluster, we
adapted the method of Schep et al. by considering enrichment of a
TF motif over accessible loci in the accessibility co-cluster against
a background of accessible loci over all other loci and cell types,
see Materials and Methods for computational details.

Importantly, since loci near TSS tended to be accessible across
all cell types, we restricted our analysis to loci greater than 3,000
base pair from a TSS. This had the advantage of restricting our
analysis to regulatory features specific to putative enhancers,
which are likely different than regulatory features specific to
promoters. For TF motifs, we used the 76 TF motifs identified
by Yoshida et al. as significantly associated with accessibility (see
their Supplementary Table S5). Of these TF motifs, we found
that 43 were statistically enriched in at least one of the 20
accessibility co-clusters (FDR 0.05).

Figure 9 shows enrichment across the 43 significant motifs
and the 20 accessibility co-clusters. Of the 43 TF motifs that we
found to be enriched in at least one accessibility co-cluster, the

FIGURE 8 | Accessibility co-clusters. To investigate enrichment of TF motifs, we defined a collection of accessibility co-clusters formed through the combination of
locus clusters and all cell types in the accessible state of ~M

(12)
i/a . In the heatmap, accessibility co-clusters are the yellow blocks within each of the 20 rows, compare to ~M

(k)
i/a

in Figure 2B. As an example, accessibility co-cluster 5 is formed by the loci in locus cluster 5 and the DC and macrophage cell type clusters.
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sevenmotifs BCL11A, BCL11B, NFE2, NFKB1, RUNX1, RUNX2,
RUNX3 were enriched in more than 3 accessibility co-clusters.
The TF BCL11A is an instructive example. Yoshida et al. found
BCL11A motifs enriched in accessible loci in B cells and myeloid
cell types (see their Figure 5F). Similarly, we find BCL11A to be
enriched in four accessibility co-clusters: the co-cluster formed by
locus cluster 5 and myeloid cell types; the co-cluster formed by
locus cluster 7 and stem cells, myeloid cells and B cells; the co-
cluster formed by locus cluster 9 and B cells; and the co-cluster
formed by locus cluster 12 and myeloid cells and B cells. Our
enrichment analysis extends the results of Yoshida et al. by
decomposing the cell type enrichment of BCL11A. For
example, the enrichment of BCL11A in accessible B-cell loci
reflects enrichment in loci that are jointly accessible across
myeloid and B cells, but also in loci that are accessible only
within B cells or myeloid cells, respectively.

There were 13 motifs enriched for a single accessibility co-
cluster with the most significant enrichment occurring for
TCF12, TBX21, NFKB2, EBF1, and GATA3. EBF1 and
GATA3 are instructive examples. Yoshida et al. also generated
RNAseq datasets for each of their cell types. Based on these
RNAseq datasets, EBF1 is expressed solely in B cells while
GATA3 is expressed in ILC, NK, and T cells. Reflecting these
expression patterns, EBF1 is known as a master regulator of B cell
differentiation (Nechanitzky et al., 2013) and GATA3 is a
regulator of T cell differentiation (Ho et al., 2009). We found

the EBF1 motif enriched in the co-cluster formed from locus
cluster 9 and B cell types, matching the known regulation role of
EBF1. In contrast, GATA3 was enriched in the co-cluster formed
from locus cluster 13 and ILC3 cell types. This result matched at
least part of the expression pattern of GATA3, but did not reflect
the regulatory role of GATA3 in T cell differentiation. For
GATA3, our enrichment shows that ILC3 cells have accessible
loci that are more enriched for the GATA3 motif than T cells, but
the regulatory significance of this result is unclear.

The remaining 23 TF were enriched in 2 or 3 co-clusters. The
transcription factors PAX5 and EOMES are instructive examples.
PAX5 is a master regulator of B cell differentiation (Horcher et al.,
2001). We find PAX5 enriched in the co-clusters formed by locus
cluster 7 and myeloid and B cells and by locus cluster 9 and
B cells. Yoshida et al.’s RNAseq data show that PAX5 is expressed
solely in B cells, so PAX5 motifs in locus cluster 7 are not bound
by PAX5 in myeloid cell types, but these loci are accessible,
suggesting an association with other TFs. EOMES regulates
effector NK and T cells (Gordon et al., 2012) and, in line with
this regulation, Yoshida et al.’s RNAseq data shows EOMES
expressed in NK cells and CD8 T cells. We find EOMES
enriched in two accessibility co-clusters, one formed by locus
cluster 1 and T cells and one formed locus cluster 8 and NK cells.
EOMES motifs are enriched in two locus clusters with loci that
are accessible in disjoint cell clusters, T and NK cell types,
respectively. In contrast, PAX5 motifs were enriched in co-
clusters that spanned multiple cell clusters, e.g. B cells and
myeloid cells, over which the loci were jointly accessible.

3.5 Association of TF ChIPseq Peaks and
Co-Clusters
To validate and explore the functional consequences of our TFmotif
analysis, we collected publicly available ChIPseq datasets from the
GEO database for PAX5 and EOMES.We used PAX5 ChIPseq data
from Revilla-I-Domingo et al. (2012), that sampled pro-B cells and
mature B cells, and we used EOMES ChIPseq data from Wagner
et al. (2020) and Istaces et al. (2019) that sampled NK cells and CD8
thymocytes, respectively. Briefly, we downloaded fastq files from
GEO and applied a standard peak calling workflow to call peaks.We
then identified intersections between our master collection of 159
thousand accessible loci and the TF peaks, see Materials and
Methods for accessions and workflow details.

Figure 10A shows a scaled count of the number of loci that
contained a PAX5 peak across different locus clusters for the
mature-B and pro-B cell types. Since locus clusters differ in size,
the raw count is not directly informative. Instead, we scaled the
raw count by the expected count under the null of equal
distribution of peaks across loci. A scaled count above one
represents an enrichment of peaks in the locus cluster. Only
locus clusters with a scaled count greater than 1 for either the
mature B or pro-B ChIPseq datasets are shown. Our TF motif
analysis showed enriched motifs in accessibility co-clusters 7 and
9 and, correspondingly, for both the pro-B and mature-B cell
ChIPseqs, locus clusters 7 and 9 had enriched counts.

The mature B cell type falls within our B cells, cell type cluster.
B cells are present in the accessibility clusters formed by locus

FIGURE 9 | TF motif enrichment associates with particular accessibility
co-clusters. We evaluated enrichment of each TF motif (columns) within each
accessibility co-cluster (rows). At an FDR of 0.05, we found 43 TF motif, co-
cluster pairings that were enriched (white coloring). As a particular
example, the BCL11A motif (far left column) was enriched in six accessibility
co-clusters, in particular co-cluster 9. Accessibility co-cluster 9 is formed by
loci in row cluster 9 and B cell types. The co-cluster is visualized in Figure 8 by
the yellow block within row 9.
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clusters 0, 3, 7, 9 and 12 (see the B cell columns of Figure 8). All of
these locus clusters had enriched PAX5 peak counts, and only locus
cluster 19 had an enriched count without associated accessibility in
B cells. Overall, there was a statistically significant association
between PAX5 peaks and accessibility (p-value 0.001,
hypergeometric test). The pro-B cell type falls within our
progenitor (pro) cell type cluster. Progenitor cells are present in
10 of the accessibility clusters and PAX5 peaks had enriched counts
in four of these, reflecting a marginally significant association
between peaks and accessibility (p-value 0.08). Interestingly, in
locus cluster 19, PAX5 peak counts were enriched in the mature
B cell ChIPseq but not the pro-B cell ChIPseq. We would expect the
reverse because accessibility cluster 19 is specific for progenitor cells.
This deviation might reflect differences in cell state between the
ChIPseq studies and Yoshida et al.

Figure 10B shows analogous results for EOMES ChIPseq
peaks in the NK and CD8 thymocyte cell types. Our motif
analysis showed enrichment of EOMES in co-clusters formed
by locus clusters 1 and 8. Locus cluster 1 and 8 had enriched
EOMES ChIPseq peak counts for both NK and CD8 thymocyte
cell types and only the NK cell type, respectively. In-line with
these results, early T cells - of which CD8 thymocytes are a
member - and NK cells are both accessible in locus cluster 1 but
only NK cells are accessible in locus cluster 8. Both NK and CD8
thymocytes had a statistically significant association between
their accessibility co-clusters and the locus clusters at which
EOMES peak counts were enriched (p-values 0.0003 and 0.001
respectively). For both PAX5 and EOMES ChIPseq datasets, we
also calculated the fraction of loci with peaks that were cell
specific. Recall, cell specific loci were accessible in 2 or less of
the Yoshida et al. cell types we considered. For PAX5 and
EOMES, roughly 15 and 5% of loci with peaks were cell
specific, respectively. In contrast, roughly 80 and 70% of loci
with peaks fell within one of our 20 locus clusters, demonstrating

that accessibility patterns across multiple cell types capture the
dominant portion of TF binding, at least for EOMES and PAX5
and for the accessible loci we consider.

4 DISCUSSION

The recently published ATACseq dataset of Yoshida et al.
provides a valuable resource through which to investigate
patterns of chromatin accessibility across immune cell types.
Here, we used this dataset to investigate the degree to which
co-clustering of genomic loci and cell types can capture and
describe patterns of chromatin accessibility. Some genomic loci
were accessible in only 1 or 2 cell types, and we found that roughly
half of accessible loci over immune cell types were of this type, in
line with previous analyses of datasets encompassing non-
hematopoietic cell types (Song et al., 2011). The other half of
the accessible loci, which are accessible in multiple cell types, were
the focus of our study. We found that essentially all of these loci,
>95%, can be grouped into 20 locus clusters. Within each locus
cluster, the cell types showed roughly two states of accessibility
reflecting a relatively high and low percentage of the loci that were
accessible, respectively. For example, in locus cluster 1 which was
composed of roughly 9,000 loci, we found that in most T cell
types, roughly 60% of the loci were accessible while in most other
cell types roughly 0–10%were accessible. The dichotomy between
cell types was more extreme in some locus clusters. For example,
in locus cluster 8, we found all loci were accessible in NK cells but
not in any other cell type. Ideally, in terms of cluster coherence,
locus clustering might lead 100% or 0% of loci being accessible
within a cell type. Certainly some of the locus cluster incoherence
we see results from noise in the ATACseq workflow. But
chromatin accessibility is not static, and some portion of the
incoherence may reflect stochasticity in nucleosome positioning,

FIGURE 10 | Distribution of PAX5 and EOMES ChIPseq peaks across locus clusters. The bar graphs show a scaled count (y-axis) of the number of loci in a locus
cluster (x-axis) that contained a ChIPseq peak for (A) PAX5 and (B) EOMES ChIPseq datasets. Scaled counts took into account the different sizes of our 20 locus
clusters. A scaled count above 1 represents an enrichment of peaks above an expectation under a uniform null. The locus clusters enriched for PAX5 ChIPseq peaks had
a statistically significant association with accessibility in pro-B and mature B cell types and we found an analogous association for EOMES peaks, see text for
details.
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binding of TF complexes, or other dynamic effects (Natoli et al.,
2011; Wang et al., 2012). It could also be that more locus clusters
would result in greater coherence. Changing the graph we used as
input to the Louvain clustering did not lead to more coherent
locus clusters, but further work is needed to explore this issue.

Given the locus clusters, we found that a modest number of
cell type clusters could capture a large fraction of the variation in
accessibility associated with cell types. Using 12 cell type clusters,
we were able to capture 80% of the cell type associated variation.
Further, the cell type clusters we formed reflected coherent
phenotypes as defined by the hematopoietic differentiation
tree. When we formed cell type clusters using methods that
were insensitive to the differentiation tree, the fraction of
variance captured did not improve. Our cell type clustering
extends the results of Lara-Astiaso et al. (2014) describing an
association between accessibility and hematopoietic cell type.

Ultimately, we characterize chromatin accessibility to better
understand cellular regulation. In particular, chromatin
accessibility is strongly associated with TF binding (Klemm et al.,
2019). Using both TFmotif analysis and existing ChIPseq studies, we
have shown that TF binding patterns associated with our co-clusters.
Importantly, our results show that some TFs act across co-clusters.
For example, we found that PAX5 motifs are enriched in two sets of
loci. One set is accessible only in B cells while the other is accessible
in both B cells and some myeloid cell types. Our ChIPseq analysis
confirmed that PAX5 bound to both types of loci in B cells. Myeloid
cell types do not express PAX5, at least at homeostasis, but the loci
that are accessible in myeloid cell types and that are bound by PAX5
in B cells may regulate myeloid cells through other TFs or under
non-homeostatic conditions. We found a different binding pattern
for the transcription factor EOMES. In our ChIPseq analysis, we
found that EOMES bound loci in NK and T cells, but that loci bound
in NK cells were inaccessible in T cells and vice-versa. Our motif
analysis suggests that many TF act across several co-clusters, in a
manner similar to PAX5 and EOMES. These results suggest that
analyzing patterns of chromatin accessibility through co-clustering
may be essential in understanding the overlap and divergence of
regulation in different cell types.

From a computational viewpoint, our work provided two
insights. First, we found that co-clustering, rather than
biclustering, provided a relatively stable and scalable means of
analyzing ATACseq datasets across many cell types. We initially
attempted a biclustering approach but found that solutions depended
on starting conditions of the algorithm, that the algorithms did not
scale well to the large number of accessible loci, and that
interpretation was difficult. Second, we developed a novel graph
based clustering algorithm to account for the hematopoietic
differentiation tree. In this context, the most significant insight is
the form that we assumed for the clusters. Initially, we formed
clusters as connected components of the differentiation tree, but we
found that the clusters created did not approximate the Yoshida et al.
data well. Certain cell types have accessibility patterns that are
different than the patterns of their parent cell type and connected
components force the parent to be included with the children.
Accounting for this effect vastly improved the fit of our clustering
and points to the need for clustering approaches that account for the
specifics of differentiation biology.

Our analysis involved several computational choices that may
affect our results. We made binary calls of whether a locus was
accessible or inaccessible. Using a continuous measure may better
reflect chromatin accessibility biology and may affect our clustering
results. From a computational perspective, we depended on the
binary nature of the data to construct the input graph to the Louvain
algorithm. We have also not explored an iterative co-clustering
approach, e.g (Cheng and Church, 2000). Our two-step clustering of
loci followed by cell types makes our approach simple and scalable,
but an iterationmay lead to better results. Biologically, we are limited
to the cell types given in the Yoshida et al. dataset and our
assumption of a particular form to the differentiation tree. More
generally, our algorithm depends on the input of a differentiation
tree, which is not typically available outside of well characterized cell
types such as hematopoietic cells. However, tools exist to form
differentiation trees from samples across cell types, most commonly
from RNAseq data, e.g. monocle, and such tools could be applied
upstream of our algorithm and analysis. Further, while our
algorithm currently requires a tree structure, extension to
arbitrary graphs is possible and represents a direction for
future work.

Overall, we have demonstrated a co-clustering approach that
quantifies and delineates the association between chromatin
accessibility and immune cell type. Our results provide a
context in which to assess chromatin accessibility of other
immune cell types. With the increased application of single
cell ATACseq and the likely generation of even larger bulk
ATACseq datasets, computational approaches to characterize
chromatin accessibility patterns over an increasingly broad set
of hematopoietic cell types will be needed.
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