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ABSTRACT

INTRODUCTION: Alzheimer’s disease (AD), Dementia with Lewy bodies (DLB), and
Parkinson’s disease (PD) represent a spectrum of neurodegenerative disorders (NDDs). Here, we
performed the first direct comparison of their transcriptomic landscapes.

METHODS: We profiled the whole transcriptomes of NDD cortical tissue by snRNA-seq. We
used computational analyses to identify common and distinct differentially expressed genes
(DEGsS), biological pathways, vulnerable and disease-driver cell subtypes, and alteration in cell-
to-cell interactions.

RESULTS: The same vulnerable inhibitory neuron subtype was depleted in both AD and DLB.
Potentially disease-driving neuronal cell subtypes were present in both PD and DLB. Cell-cell
communication was predicted to be increased in AD but decreased in DLB and PD. DEGs were
most commonly shared across NDDs within inhibitory neuron subtypes. Overall, we observed
the greatest transcriptomic divergence between AD and PD, while DLB exhibited an
intermediate transcriptomic signature.

DISCUSSION: These results help explain the clinicopathological spectrum of this group of
NDDs and provide unique insights into the shared and distinct molecular mechanisms underlying

the pathogenesis of NDDs.
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LIST OF ABBREVIATIONS

AD (Alzheimer’s disease), PD (Parkinson’s disease), DLB (dementia with Lewy bodies), NDD
(neurodegenerative disease), NFT (neurofibrillary tangle), fPD (familial PD), GWAS (genome-
wide association study), snRNA-seq (single-nucleus RNA sequencing), TC (temporal cortex),
NC (normal control), QC (quality control), OPC (oligodendrocyte precursor cell), DEG
(differentially expressed gene), PMI (postmortem interval), FDR (false discovery rate), TF
(transcription factor), Astro (astrocyte), Exc (excitatory neuron), Inh (inhibitory neuron), Micro
(microglia), Oligo (oligodendrocyte), PCA (principal component analysis), UMAP (uniform
manifold approximation and projection), ER (endoplasmic reticulum), APP (amyloid precursor
protein), SN (substantia nigra), KPBBB (Kathleen Price Bryan Brain Bank), BSHRI (Banner
Sun Health Research Institute), USSLB (Unified Staging System for Lewy Body Disorders), IRB
(institutional review board), NIH (National Institutes of Health), NINDS (National Institute of

Neurological Disorders & Stroke), NIA (National Institute on Aging).
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93 1.BACKGROUND
94  Age-associated neurodegenerative diseases (NDD) such as Alzheimer’s disease (AD),
95  Parkinson’s disease (PD), and Dementia with Lewy bodies (DLB) exhibit overlapping molecular
96 pathologies (Fig. 1A). For example, Lewy bodies are present in more than half of AD cases'?,
97  and tau neurofibrillary tangles (NFTs) have been identified in brains of patients with familial PD
98 (fPD)®. Tau also appears to be a common component of Lewy bodies in association with
99  SNCA®’. Tau NFTs and AB plaques are also associated with DLB in approximately 70% of
100  cases®’, indicating convergence of underlying pathological mechanisms of both AD and PD in
101  DLB®. Evidence suggests that these co-pathologies of tau, AR and SNCA aggregates are not
102  merely coincidental but that these molecules are also likely involved in seeding the aggregation
103  of one another®.
104 In addition to co-pathologies, commonalities are evident in the underlying genetic
105  architectures of these three NDDs. Genome-wide association studies (GWAS) focusing on each
106  of these NDDs have identified variants separately associated with increased risk for AD'**?,
107  PD™™, and DLB™ and overlap in genetic risk factors between the NDDs has also been
108 observed. For example, mutations in APOE, the primary risk factor for AD, have also been
109  linked to increased risk of DLB™ and cognitive decline in PD*". Additionally, SNCA mutations
110  have been similarly linked to both AD'® and DLB™ risk. Furthermore, mutations in GWAS AD
111  risk genes including APP®, PSEN1*?! and PSEN2"*#, and GWAS PD risk genes including
112 LRRK2%? MAPT?, and SCARB2* have also been experimentally linked to DLB. However,
113  numerous loci with positive risk correlations for either AD or PD are not correlated with DLB
114  risk®™. These data indicate unique as well as shared genetic underpinnings for each of these

115 NDDs.


https://doi.org/10.1101/2024.12.13.628436
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.13.628436; this version posted December 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

116 The majority of disease-associated SNVs are located in noncoding genomic regions,
117  suggesting that in many cases allelic disease effects may derive from altered gene regulation
118 rather than altered protein coding, and therefore additional information is required to determine
119 the relevant target genes impacted. The development of single-cell transcriptomics has helped
120 elucidate these changes in gene regulation by enabling examination of expression patterns within
121  individual brain cells of NDD patients at an unprecedented cell type and subtype resolution. This
122 methodology has been applied individually to AD*% and PD?***, but for DLB only bulk
123  transcriptomic studies have been previously performed® . Moreover, no study to date has
124  compared the transcriptional profiles across these NDDs. In this work, we used single-nucleus
125 RNA sequencing (SnRNA-seq) to directly compare and contrast for the first time the
126  transcriptomic signatures of these three prevalent NDDs in order to elucidate shared and unique
127  dysregulated genes and networks among these pathologies (Fig. 1B). We compared gene
128  expression in 12 temporal cortex (TC) samples of donors diagnosed with each NDD: AD, PD
129 and DLB, to 12 neurologically normal control (NC) samples. Moreover, we performed
130  examinations of differential gene expression between each pair of NDDs (i.e. AD vs. PD, AD vs.
131 DLB, PD vs. DLB), all at a granular cell subtype level of precision. We furthermore identified
132  and characterized specific cell subtypes depleted in each of the NDDs, and predicted changes in
133  cell-to-cell communication patterns associated with each disorder. Our findings yield novel
134  insights into pathology-associated changes in gene expression that may facilitate the
135 development of new detection and treatment strategies targeting specific NDDs or potentially
136  effective in the treatment of a range of disorders.

137

138
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139

140

141 2. METHODS

142 2.1 Human post-mortem brain tissue samples

143  The demographics, pathological notes, and other metadata for this study cohort are detailed in
144  Table S1. Extensive pathology information for PD samples is provided in Table S2. Frozen
145  human TC tissue samples from donors clinically diagnosed with AD (n =12), DLB (n = 12) and
146  NC donor samples (n = 12) were obtained from the Kathleen Price Bryan Brain Bank (KPBBB)
147  at Duke University. Samples from donors diagnosed with PD (n = 12) were obtained from the
148  Banner Sun Health Research Institute (BSHRI)®. Normal controls were derived from donors
149  with no clinical history of neurological disorder and samples had no neuropathological evidence
150  of neurodegenerative diseases. Clinical diagnosis of AD was pathologically confirmed using
151 Braak staging (AT8 immunostaining) and amyloid deposition assessment (4G8 immunostaining)
152  for all AD samples. All AD tissue donors were in Braak & Braak Stage IlI-V. DLB clinical
153  diagnoses were pathologically confirmed based on criteria described by McKeith et al.” All DLB
154  donors were confirmed to exhibit Lewy-related pathology within the neocortical, limbic, or
155  brainstem regions and showed low levels of AD neuropathologic change (Braak stages | or II),
156  with the exception of donor 1097 which exhibited Braak stage Il pathology. Donor patient PD
157  diagnoses were defined by the presence of two of the three cardinal clinical signs of resting
158 tremor, muscular rigidity and bradykinesia. Additionally, diagnoses of all PD samples were
159  confirmed in autopsy by observation of pigmented neuron loss and the presence of Lewy bodies
160 in the SN. Neuropathological states of PD samples were confirmed postmortem using established

161  clinical practice recommendations for McKeith scoring® and staging via the Unified Staging
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162  System for Lewy Body Disorders (USSLB)®. All PD samples for which information was
163  available had McKeith scores ranging from moderate to severe (2-4) in both the amygdala and
164  SN. Where available, TC McKeith scores for most of the PD samples were either 0-1, with one
165 sample each receiving scores of 2 and 3, indicating mild or absent PD pathology in this region
166  for the majority of samples. USSLB stages of PD samples ranged from II-1V. PD samples 96-36
167 and 96-49 were lacking specific USSLB stage determination due to harvesting prior to BSHRI
168  standardization of stage determination protocol. All tissue donors were Caucasians with the
169  APOE e3/e3 genotype. The project was approved for exemption by the Duke University Health
170  System Institutional Review Board. The methods described were conducted in accordance with
171  the relevant guidelines and regulations.

172

173 2.2 Nuclei isolation from post-mortem human brain tissue

90,91 and

174  The nuclei isolation procedure has been described®, and was based on previous studies
175  optimized for single-cell experiments. 100-200 mg of human TC brain tissue samples were
176  thawed in Lysis Buffer (0.32 M Sucrose, 5 mM CaCl,, 3 mM Magnesium Acetate, 0.1 mM
177 EDTA, 10 mM Tris-HCI pH 8, 1 mM DTT, 0.1% Triton X-100) and homogenized with a 7 ml
178  dounce tissue homogenizer (Corning) and filtered through a 100 um cell strainer, transferred to a
179 14 x 89 mm polypropylene ultracentrifuge tube, and underlain with sucrose solution (1.8 M
180  Sucrose, 3 mM Magnesium Acetate, 1 mM DTT, 10 mM Tris-HCI, pH 8). Nuclei were separated
181 by ultracentrifugation for 15 minutes at 4°C at 107,000 RCF. Supernatant was aspirated, and
182  nuclei were washed with 1 ml Nuclei Wash Buffer (10 mM Tris-HCI pH 8, 10 mM NaCl, 3 mM
183  MqgCly, 0.1% Tween-20, 1% BSA, 0.2 U/uL RNase Inhibitor). Resuspended nuclei were

184  centrifuged at 300 RCF for 5 minutes at 4°C, and supernatant was aspirated. Nuclei were then
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185  resuspended in Wash and Resuspension Buffer (1X PBS, 1% BSA, 0.2 U/uL RNase Inhibitor),
186 then filtered through a 35 um strainer. Nuclei concentrations were determined using a
187  Countess™ Il Automated Cell Counter (ThermoFisher) and nuclei quality was assessed at 10X
188  and 40X magnification using an Evos XL Core Cell Imager (ThermoFisher).

189

190 2.3 snRNA-seq library preparation and sequencing

191  snRNA-seq libraries were constructed as previously?® using the Chromium Next GEM Single
192  Cell 3 GEM, Library, and Gel Bead v3.1 kit, Chip G Single Cell kit, and i7 Multiplex kit (10X
193  Genomics) according to manufacturer’s instructions. For each sample, 10,000 nuclei were
194  targeted. Library quality control was performed on a Bioanalyzer (Agilent) with the High
195  Sensitivity DNA Kit (Agilent) according to manufacturer’s instructions and the 10X Genomics
196  protocols. Libraries were submitted to the Sequencing and Genomic Technologies Shared
197  Resource at Duke University for quantification using the KAPA Library Quantification Kit for
198  Illlumina® Platforms and sequencing. Groups of four snRNA-seq libraries were pooled on a
199  NovaSeq 6000 S1 50bp PE full flow cell to target a sequencing depth of 400 million reads per
200 sample (Read 1 = 28, i7 index = 8, and Read 2 = 91 cycles). Sequencing was performed blinded
201  to age, sex, and diagnosis.

202

203 2.4 snRNA-seq data processing

204  Raw snRNA-seq sequencing data were converted to FastQ format, aligned to a GRCh38 pre-
205 mRNA reference, filtered, and counted using CellRanger 4.0.0 (10X Genomics). Subsequent
206  processing was done using Seurat 4.0.1%. Filtered feature-barcode matrices were used to

207  generate Seurat objects for the individual samples. For QC filtering, nuclei below the 1% and
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208  above the 99" percentile for number of features were excluded. Nuclei above the 95" percentile
209  for mitochondrial gene transcript proportion (or >5% mitochondrial transcripts if 95™ percentile
210  mitochondrial transcript proportion was <5%) were also excluded. Because experiments were
211  conducted in nuclei rather than whole cells, mitochondrial genes were subsequently removed.
212  The individual sample Seurat objects were merged into one, and were iteratively normalized
213 using SCTransform® with glmGamPoi, which alleviates bias from weakly-expressed genes™.
214  Batch correction was performed using reference-based integration®** on the individual sample
215 normalized datasets, which improves computational efficiency for integration.

216

217 2.5 Doublet/Multiplet detection in sSnRNA-seq data

218  Multiplets comprising different cell types (heterotypic) were excluded from snRNA-seq data by
219  considering the “hybrid score”, as described previously?®. The hybrid score is calculated as (x; —
220 Xo) / X1, where x; is the highest and x, is the second highest prediction score®™. Heterotypic
221  multiplets would be expected to exhibit competing cell type prediction scores due to the presence
222  of transcriptomic/epigenomic profiles from multiple cell types. Multiplets composed of one cell
223  type (homotypic) were identified based on the number of features per cell. sSnRNA nuclei with
224 feature counts > 99" percentile were excluded. Removal of homotypic multiplets in this manner
225 is expected to also aid in filtering of heterotypic multiplets.

226

227 2.6 Cdll type and subtype cluster annotation

228  Cell type annotation was conducted using a label transfer method** and a previously annotated
229  reference dataset from human M1. Batch-corrected data from both our dataset and the human M1

230 dataset were used for label transfer. Nuclei with maximum prediction scores of <0.5 were
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231  excluded. Nuclei with a percent difference of <20% between first and second highest cell type
232  prediction scores were termed “hybrid” and excluded®. Endothelial cells and VLMCs were in
233 low abundance and did not form distinct UMAP clusters and were thus excluded. Following
234  PCA, dimensionality was examined using an Elbow plot and by calculating variance contribution
235 of each PC. UMAP was then run using the first 30 PCs, and nuclei were clustered based on
236 UMAP reduction. The resolution levels for cluster delineation were selected after comparison of
237 a range of values as it was determined to provide optimal distinction between populations of
238 nuclei displaying unique gene expression profiles as evidenced by their separation from one
239  another in UMAP space. Counts of predicted major cell types based on the label transfer were
240  examined for each of the clusters, and clusters were manually annotated based on the majority
241  cell type for each cluster (e.g., ‘Excl’, ‘Exc2’, etc.).

242

243 2.7 Human M1 reference data processing

244 To optimize label transfer, we re-processed previously published human primary motor cortex
245  (M1) snRNA-seq data®™ to map it to GRCh38 Ensembl 80 as we did with our data®®. FastQ files
246  were obtained from the Neuroscience Multi-omic Data  Archive (NeMO:

247  https://nemoarchive.org/) and were aligned to the same GRCh38 pre-mRNA reference used for

248  our data, filtered, and counted using CellRanger 4.0.0 (10X Genomics). Filtered feature-barcode
249  matrices were used to generate separate Seurat objects for each sample, with nuclei absent from
250 the annotated metadata excluded. Seurat objects were merged and iteratively normalized using
251  SCTransform®® with glmGamPoi. Batch correction was performed using reference-based

252  integration®* on the normalized datasets. The 127 transcriptomic cell types in this data were

10
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253 grouped into 8 broad cell types including astrocytes, endothelial cells, excitatory neurons,
254 inhibitory neurons, microglia, oligodendrocytes, OPCs, and VLMCs.

255

256 2.8 Covariate selection for differential analyses

257  Prior to differential analysis, as previously described, ® we estimated the impact of multiple
258  technical variables as well as donor-level characteristics separately for the sSnRNA-seq
259  experiments (Table S1). Read counts were summed for all nuclei in each donor sample, resulting
260 in only one expression value per sample per gene, as all nuclei from a particular donor would
261  have identical donor characteristics. Genes with no expression for >20% of samples were
262  subsequently removed, and all values were mean-centered and scaled prior to covariate analysis.
263  PCA was then performed for genes using prcomp in R. We then carried out linear regression
264  using glmin R for PCs explaining >10% of the variability in global expression on both nuclei-
265  and donor-specific metadata variables to identify factors that should be included as covariates in
266  differential analyses. Specifically, we selected the variable most associated (surpassing
267  Bonferroni correction for multiple testing, g<0.05) with PC1 (or alternatively, the PC explaining
268  the most variability) and regressed all genes on the associated variable to obtain gene residuals
269  that are adjusted for its effect. We then performed PC analysis on the gene residuals, and in an
270  iterative process, repeating the above steps until no additional metadata variables were associated
271  with global expression (g<0.05). Following this process, age, sex, PMI, number of nuclei after
272  QC filtering, median genes per cell, and average library size were selected as covariates for
273  differential expression gene analysis.

274

275 2.9 Cedll type proportion comparisons

11
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276  To assess the selective loss of neuronal subtypes in each neurodegenerative disorder, we
277  performed a depletion analysis using a beta regression model implemented in the gimmTMB
278  package in R. The proportion of each neuronal subtype within each sample was calculated, and
279  the association between the proportion and disease status was examined while adjusting for
280  potential confounding variables such as age, sex, post-mortem interval (PMI), and the number of
281  nuclei after filtering. The significance of the depletion was determined based on the Benjamini-
282  Hochburg (FDR) adjusted p-values derived from the beta regression model.

283

284 210 Marker geneidentification

285  To identify genes differentially expressed between depleted neuronal subtypes in each disease
286  condition, we utilized the FindMarkers function from the Seurat package. The analysis was
287  performed using a likelihood-ratio test, adjusting for latent variables including age, sex, PMI,
288  and the number of nuclei after filtering. The gene expression comparison was made between the
289  depleted neuronal subtypes in the disease samples and their corresponding subtypes in the
290  control samples. Genes with a Benjamini-Hochburg (FDR) adjusted p-value less than 0.05 were
291  considered significantly differentially expressed. The differentially expressed genes were further
292  categorized into upregulated and downregulated genes based on their average log2 fold change.
293

294 211 Differential expression analysis

295 In order to identify DEGs at both the cell type and subtype levels between samples within our
296  snRNA-seq dataset, we employed the NEBULA algorithm®. Specifically, the NEBULA-HL
297  method was used as this process is optimized for estimating both nucleus-level and donor-level

45,97

298 data overdispersions Prior to running NEBULA, for each cell type and cluster, genes

12
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299  expressed in less than 10% of cells in either group (PD or Normal) were filtered out. Age, sex,
300 PMI, number of nuclei after QC filtering, median genes per cell, and average library size were
301 included as fixed effects for NEBULA and sample donor ID was included as a random effect.
302  Benjamini-Hochberg (FDR) correction for multiple testing was applied at the gene level to
303 NEBULA-derived p-values. Adjusted p-values < 0.05 were deemed significant.

304

305 2.12Vulnerablecdl typeidentification

306  For each broad cell type in each disorder, DEGs were identified using the NEBULA algorithm as
307  described above. GWAS-associated genes for each disorder were obtained from published
308  studies, considering genes located within 500 kilobases upstream or downstream of the GWAS
309  SNP chromosome locus. To create gene sets representing the convergence of genetic risk factors
310 and cell type-specific dysregulation, we intersected the GWAS-associated genes with the DEGs
311 identified for each broad cell type in each disorder. The resulting gene sets were considered as
312  the putative driving forces or risk factors for the corresponding disorder. The vulnerability of
313  each cell subtype to the disorder-specific gene sets was assessed using the AUCell package in R.

314 For each cell subtype in each disorder, the following steps were performed:

315 1. The scRNA-seq data were subsetted to include only the cells belonging to the
316 specific cell subtype.

317 2. The gene expression matrix was normalized and log-transformed.

318 3. The AUCell algorithm was applied to calculate the enrichment of the disorder-
319 specific gene set in each cell, resulting in an AUC (Area Under the Curve) score
320 for each cell.

13
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321 4. Cells were assigned to a "vulnerable” or "non-vulnerable” group based on the
322 AUC score threshold determined using the AUCell_exploreThresholds function.
323  To identify marker genes associated with the vulnerable cell subtypes, differential gene
324 expression analysis was performed using the FindMarkers function in Seurat. The analysis was
325  conducted between the vulnerable and non-vulnerable cells within each cell subtype, controlling
326  for potential confounding variables. Genes with an FDR-adjusted p-value < 0.05 were considered
327  significantly differentially expressed and were classified as marker genes.

328

329 2.3 Differential cell-to-cell communication

330 To investigate the role of cell-cell communication in the progression of neurodegenerative
331 disorders (NDDs), we used CellChat, an R package for inference and analysis of intercellular
332 communication networks from single-cell RNA sequencing (scRNA-seq) data®®. CellChat
333  integrates scCRNA-seq data with a curated database of ligand-receptor interactions to quantify
334  communication probabilities between cell populations and identify significant interactions. For
335 each disease-normal pair, we created separate CellChat objects using the normalized data matrix
336  and cell type annotations. We then applied CellChat functions to identify over-expressed genes
337 and interactions, compute communication probabilities, and filter interactions. The inferred
338  communication networks were stored in the CellChat object. To visualize the differences in cell-
339  cell communication between disease and normal conditions, we employed CellChat's plotting
340  functions.

341

342  2.14 Biological pathway enrichment analysis

14
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In order to understand the biological significance of gene sets derived from differential
expression analyses, we employed the Metascape®" algorithm (https://www.metascape.org). The
gene set of interest was input as the target gene list, and the total set of genes examined in the
corresponding differential expression analysis was input as the background gene list. GO terms
were considered significantly enriched with a fold-enrichment of at least 1.5 and an FDR-
corrected enrichment p-value < 0.01. In order to group the enriched Metascape output GO terms
into broader biological categories, Kappa similarities were determined for each pair of enriched
GO terms, forming trees of hierarchical associations between terms, which were then used to
delineate clusters of related terms. We then qualitatively assigned a major functional category
label to each cluster based on assessment of common biological processes represented by the

clustered GO terms.

2.15 Genome ver sion and coor dinates

All genomic data and coordinates are based on the December 2013 version of the genome: hg38,

GRCh38.
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367

368

369

370

371

372 3.RESULTS

373 3.1 Annotation of cell typesand subtypesin the human temporal cortex (TC) of individuals
374  with AD, DLB, PD, and neurologically normal controls

375  Nuclei were isolated from frozen post-mortem human TC tissues of 12 NC donor individuals
376  with no NDD diagnosis or pathological signs, and 12 donors each with diagnoses and
377  corresponding postmortem pathology of AD, DLB, and PD. Each diagnosis group comprised 6
378  females and 6 males (Table S1 summarizes the demographic and neuropathological phenotypes).
379  snRNA-seq was carried out on prepared gene expression libraries. After quality control (QC)
380 filtering, expression data for nuclei from all four diagnosis groups were integrated, and data from
381 396,867 nuclei were retained across all four groups (Table S2). Nuclei were then annotated
382  according to major brain cell types by label transfer®* from a pre-annotated reference snRNA-seq
383  dataset®™. These included 19,962 astrocytes, 92,322 excitatory neurons, 44,807 inhibitory
384  neurons, 25,926 microglia, 196,448 oligodendrocytes, and 17,402 oligodendrocyte precursor
385 cells (OPCs). Other cell types including endothelial cells and vascular and leptomeningeal cells
386  made up less than 1% of the total cell population and were therefore excluded from the dataset in
387  downstream analyses.

388
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389 3.2 Vulnerable neuronal types depleted in NDDs compared to neurologically normal
390 controls

391 AD, DLB, and PD are characterized by the progressive loss of neurons in the brain. To
392  characterize the specific neuronal types that are vulnerable in the temporal cortex of each
393  pathology we performed a comparison analysis of cell-type proportions for each NDD vs NC,
394  restricted to nuclei annotated as excitatory or inhibitory neuronal cells. Expression data for
395 neuronal NC cells were separately integrated with neurons of each NDD. Integrated neuronal
396  cells were then divided into numbered cell subtype clusters, with 30 neuronal subtype clusters
397  for AD, 29 clusters for DLB, and 26 clusters for PD (Fig. 2A). Examination of expression of
398  markers for specific neurotransmitter types among neuronal cell types of each NDD showed the
399  presence of only glutamatergic cell types among excitatory neuron clusters, and GABAergic cell
400  types among inhibitory neuron clusters (Fig. S1A). We then performed a depletion analysis using
401  a beta regression model and calculated the proportion of nuclei from a particular donor sample
402  within each neuronal subtype cluster compared to the total neuronal nuclei for the same sample,
403 and compared the proportions between NDD and NC donors. The results identified four
404  vulnerable neuronal subtypes significantly depleted across the three NDDs (Fig. 2A). Two of
405  these were identified in AD, including one excitatory neuron subtype, AD-EXC7 (pag=6.46e-5),
406  and one inhibitory neuron subtype, AD-Inh10 (pag=1.90e-5). In DLB, we identified one depleted
407  inhibitory neuron subtype, DLB-Inh10 (pag=1.65e-15), and in PD one depleted inhibitory neuron
408  subtype, PD-Inh6 (pag=8.53e-7). Of note, the analysis demonstrated that the same inhibitory
409  neuron subtype is depleted in both AD and DLB.

410 To characterize the unique transcriptional patterns in the context of disease of each of

411  these depleted subtypes compared to subtypes that were not depleted, we used a likelihood-ratio
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412  test to identify differentially expressed genes (DEGSs) between each depleted cluster and the
413  other clusters of the same annotated cell type (i.e. excitatory or inhibitory neurons), adjusting for
414  the latent variables age, sex, postmortem interval (PMI), and the number of nuclei after filtering.
415  The comparison was made between the depleted neuronal subtypes and non-depleted subtypes in
416  the disease samples only. DEGs (false discovery rate (FDR) adjusted p-value < 0.05) were
417  further categorized into positive (upregulated) and negative (downregulated) genes based on
418  their average log, fold change (Fig. 2B, Tables S3-S6). Strikingly, comparison of positive and
419  negative marker genes across all three depleted inhibitory neuron clusters revealed more than
420  97% marker gene identity between clusters AD-Inh10 and DLB-Inh10. Furthermore, cell
421  Dbarcode comparison revealed that over 99% of the same NC neuronal cells were present in both
422  clusters, strongly indicating that the two clusters represent the same neuronal subtype, depleted
423  in both AD and DLB. Examination of expression of canonical inhibitory neuron markers used in

424 previous studies®®**

among inhibitory subtypes of all NDDs showed the depleted Inh clusters of
425 AD and DLB to be distinguished from other subtypes by strong co-expression of VIP, TAC3,
426 PROX1, CNR1, and TSHZ2, as well as low expression of STXBP6, LHX6, CUX2, and
427 PHACTRZ2, among other marker genes (Fig. S1B). In contrast, no cell type with a comparable
428  canonical marker expression signature was identified among PD inhibitory neuron clusters.

429 In order to better understand the biological significance of differential gene expression in
430 the vulnerable neuronal clusters, we examined enrichment of particular biological pathways
431  among positive and negative markers of each depleted subtype*’, and generated networks of
432  enriched pathways grouped by shared gene membership (Fig. 2C). For all depleted clusters, we

433  primarily found common DEGs associated with functional categories relating to neuronal

434  development and organization (e.g. neuron projection development, axon guidance), synaptic
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435  structure (e.g. presynapse, postsynapse, cell-cell adhesion) and synaptic transmission (e.g.
436  regulation of membrane potential, monoatomic ion channel complex, synaptic protein-protein
437  interactions), suggesting that nuances of neuron organization and synaptic function play an
438  important role in determining susceptibility to neurodegeneration.

439 Examining specific positive and negative marker genes with the most strongly altered
440  (largest fold-change) gene expression in vulnerable neuronal subtypes (Fig. 2D), we found that
441 in AD-Exc7, glutamate receptor-encoding genes GRM8 and GRIK2 were among the most
442  strongly upregulated, while the glutamate receptor gene GRIA4 was among the most strongly
443  downregulated. The cadherin-encoding gene CDHZ20, regulating cell-cell adhesion, was also
444 strongly upregulated, while the cadherin genes CDH9 and CDH12 were downregulated, as was
445  PTPRK, also involved in cell adhesion. In order to identify marker genes more likely to be
446 involved in driving NDD pathology, we defined genes proximal (within 500Kb) to GWAS-
447  identified risk loci for a particular NDD as “GWAS genes”. Based on GWAS-identified risk loci
448  for AD™ ™, the adrenergic receptor gene ADRLA was the most strongly upregulated AD-GWAS
449  gene marker for AD-Exc7, while the cell migration regulatory gene THSD7A was the most
450  strongly downregulated AD-GWAS gene marker.

451 As noted, depleted subtypes AD-Inh10 and DLB-Inh10 largely shared the same marker
452  genes. The strongest positive markers for both these types included the transcription factor (TF)
453 gene ZBTBZ20, translational regulator PRR16, and SORCSL and SORCS3, both involved in
454 vesicle trafficking and likely playing a role in synaptic transmission. The most strongly
455  upregulated AD-GWAS gene marker was EGFR, involved in cell migration, while the most
456  strongly downregulated AD-GWAS gene marker was PTCHD4, involved in neuronal

457  development. Based on GWAS-identified risk loci for DLB*®, the most strongly upregulated
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458  DLB-GWAS gene marker was the TF-encoding FOXN3, while the most strongly downregulated
459  DLB-GWAS gene was MGATA4C, involved in protein glycosylation.

460 The subtype depleted in PD, PD-Inh6, showed marked upregulation of glutamate receptor
461 genes GRM1 and GRID2, as well as cell adhesion-regulating genes NCAM2 and SPONL1, while
462  downregulation of several developmental genes was observed, including ZNF536, VIWC2, NRGL1,
463 and ZNF804A. Notably, the most strongly upregulated PD-GWAS gene marker (based on
464  GWAS-identified risk loci for PD™) for this cluster was SNCA, suggesting that overexpression of
465 the SNCA gene correlates with vulnerability to neurodegeneration in PD. The most strongly
466  downregulated PD-GWAS gene marker was the transcriptional regulatory gene RBMS3.

467

468 3.3 Characterization of disease-driver cell subtypes with enriched expression of GWAS-
469 identified risk genes

470  We sought to identify cell subtypes that were potentially important for conferring risk of each
471  NDD, hereafter disease-driver cell types, based on increased expression of GWAS genes. First,
472  we integrated, annotated, and clustered nuclei of each NDD with NC nuclei as described above,
473  except that in this case nuclei of all cell types, including astrocytes (Astro), excitatory neurons
474  (Exc), inhibitory neurons (Inh), microglia (Micro), oligodendrocytes (Oligo), and
475  oligodendrocyte precursor cells (OPC) were included rather than neuronal nuclei alone. This
476  resulted in delineation of 32 cell subtype clusters in AD, 32 clusters in DLB, and 35 clusters in
477  PD (Fig. 3A). We next examined each subtype for enriched expression of GWAS genes using
478  AUCell*2. This program compares expression of a defined gene set (i.e. GWAS proximate genes)
479  to total genes expressed in each nucleus, and determines whether the gene set is expressed in a

480  significantly higher proportion than would be expected by chance. We defined a cluster as a
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481  disease-driver if over 99% of nuclei showed significant enrichment for GWAS gene set
482  expression. In this way we identified one disease-driver oligodendrocyte cluster in AD (AD-
483  Oligo3d), four disease-driver excitatory neuron clusters (DLB-Exc1, 5, 8, 10) and two inhibitory
484  neuron clusters (DLB-Inh1, 2) in DLB, and four disease-driver excitatory neuron clusters in PD
485  (PD-Exc4, 5, 6, 7) (Fig. 3A, B). Thus, both DLB and PD produced multiple neuronal cell types
486  that were implicated as disease drivers, while in AD only a single oligodendrocyte disease-driver
487  cell subtype was identified.

488 In order to understand the potential functional significance of risk genes expressed in
489  these disease-driver clusters, we performed marker gene analysis as above, comparing gene
490  expression in disease-driver clusters of a particular cell type to all of the other clusters of that
491 same cell type in NDD nuclei (Tables S7-S10). We then examined biological pathway
492  enrichment among GWAS genes upregulated in each set of disease-driver cell types. Finally, we
493  clustered enriched pathways based on common gene membership (Fig. 3C). In the disease-driver
494  oligodendrocyte cluster of AD, AD-Oligo3, we found enrichment of numerous pathways relating
495  to endosomal vesicle trafficking (specific strongly upregulated genes relating to this pathway
496 including SORL1, MYOLE, and PACS2 (Fig. 3D)), cytoskeletal organization (e.g. HYDIN,
497 TANC2, STRN), and regulation of proteolysis (e.g. ADAMTSA) and apoptosis (e.g. DAPK2,
498 TNFRSF21). Notably, we also observed strongly inhibited expression of the major AD risk
499  factor gene BIN1 in this cell type (Table S7). In disease-driver excitatory neuron clusters of
500 DLB, we identified enrichment of pathways relating to synaptic organization and transmission
501 (e.g. KCNN3, SLC29A4, C1QL2), cell adhesion (e.g. PCDHB8), transmembrane transport (e.g.
502 SLC2A12, MSFD4A, ATP7B), DNA damage response (e.g. CDC14B), and proteolysis. Among

503  disease-driver inhibitory neurons in DLB, we found enrichment of pathways relating to synaptic
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504 transmission (e.g. ATP2B2, CPLX1, KCNC1, SCTR), autophagy, proteolysis (e.g. UBE3A), and
505 DNA damage response (e.g. CDC148, FBXO31). In disease-driver excitatory neurons of PD, we
506  found enrichment of risk genes involved in synaptic organization and transmission (e.g. SNCA,
507 CAMK2D, RIMSL, SH3GL2, TMEM163, SYT17, KCNK10), autophagy, phospholipid
508 metabolism, and homologous recombination. It is notable that as for the PD-depleted neuron
509 cluster above, SNCA was also among the top upregulated GWAS genes within PD-disease driver
510  neuron clusters.

511

512 3.4 Altered cell to cell communication pathwaysin NDDs

513 Next, we aimed to investigate changes in interactions between different cellular subtypes
514  associated with each of the three NDDs. To accomplish this, we used the same integrated
515 datasets of NC nuclei and nuclei of each NDD used above for analysis of disease-driver
516  subtypes. We analyzed expression of known interacting ligands and receptors in each of the
517  subtype clusters to identify pairs of subtypes with likely communication using CellChat®.
518  Predicted interactions were then compared between NC and NDD nuclei to identify disease-
519  associated changes in cell-cell communication. Comparisons were made with regard to relative
520 strength of interactions between cell subtypes based on changes in gene expression levels
521  Dbetween NC and NDD nuclei of the same subtype.

522 Changes in interaction strength were varied across the three NDDs (Fig. 4A). In AD,
523 such changes were overall split between increased and decreased communication among
524  different cell types, with both large increases and decreases observed among the top 10% of
525 altered cell type interactions. The cell types with the largest increases in interaction strength

526  included several excitatory neuron subtypes, AD-Exc1, 3, and 4, and inhibitory neuron subtype
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527  AD-Inhl, as well as oligodendrocyte subtypes AD-Oligol and 4. All of these cell types showed
528  primarily increased communication with neuronal subtypes. In contrast, decreased interaction
529  strength was observed in astrocyte cluster AD-Astrol, excitatory neuron cluster AD-Exc2, and
530 oligodendrocyte precursor cell cluster AD-OPC1, all of which showed reduced communication
531  with one another as well as with several neuronal and oligodendrocyte subtypes. In DLB, by
532  contrast, overall changes primarily showed decreases in interaction strength. Among the
533  strongest effects, subtypes DLB-Astrol, DLB-Excl, 3, 5, and 6, DLB-Inh1, 2, 3, and 4, DLB-
534 Oligol and 5, and DLB-OPC1 showed reduced communication strength mainly with one
535 another. However, subtypes DLB-Oligol, 2, 3, 4, and 6 showed increased communication with
536  one another as well. In PD, overall decreased interaction strength was also observed, with the
537  strongest decreases found between the cell types PD-Astrol and 2, PD-Excl, 2, 3, 5, and 6, PD-
538 Inh2, and 4, PD-Oligol, and PD-OPC1. Increased interaction strength in PD was observed for
539  clusters PD-Oligo2, and 4, primarily with regard to other oligodendrocyte clusters. Overall the
540  results demonstrated increased interaction strength in AD driven primarily by excitatory neurons
541  and oligodendrocytes, but decreased interaction strength in DLB and PD, driven primarily by
542  both inhibitory and excitatory neurons, as well as oligodendrocytes. Thus, changes in cell-cell
543  communication strength in DLB and PD closely resembled one another, while patterns in AD
544 were more distinct.

545 To get new insights into the biological significance of cell-cell communication in the
546  three NDDs, we examined the biological pathway associations of the genes involved in altered
547  communication between each pair of cell subtypes using Metascape. Pathways enriched among
548 genes associated with the top AD-increased interactions related primarily to cell growth,

549  development, and morphology, as well as DNA damage response, stress response, and GPCR
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550 and kinase signaling (Fig. 4Bi). The pathways enriched among AD-increased interactions across
551  all cell types notably differed between neuron-to-neuron interactions and oligodendrocyte-to-
552  neuron interactions (Fig. 4Bii). Pathways strongly enriched among all interaction types were
553 associated with cell growth and morphogenesis, and GPCR and tyrosine Kkinase receptor
554  signaling, while interactions more strongly enriched in neuron-to-neuron interactions related
555  specifically to nerve morphogenesis and organization, including axon guidance, nerve
556  development, semaphorin signaling, and neurotrophin signaling.

557 In DLB, interaction strength was overall reduced compared to NC nuclei, and pathways
558 enriched among genes associated with the top DLB-decreased interactions related primarily to
559  cell growth and development, immune response signaling, and calcium homeostasis (Fig. 4Ci).
560 Pathway enrichment was strongest in DLB-decreased communications involving the Excl and
561  Exc3 excitatory neuron subtypes as the transmitting cell type, with a wide variety of receiving
562  cell types (Fig. 4Cii). Pathways enriched specifically in these types of interactions related to cell
563 growth and proliferation, cell morphogenesis, and the oxidative stress response. Pathways
564  enriched among all interacting cell types additionally included calcium ion homeostasis, immune
565  response signaling, chemotaxis, proteolysis, and general kinase signaling.

566 In PD, interaction strength was also reduced overall. Pathways enriched among genes
567  associated with the top PD-decreased interactions again related to cell growth and development,
568 and also to axon guidance and neuronal organization, synaptic membrane structure, and
569 regulation of apoptosis (Fig. 4Di). Some specific pathways were most often enriched in PD-
570  decreased communications in which neuronal subtypes were the transmitting cell type, including
571 PI3BK/AKT growth signaling, cAMP signaling, and endocrine hormone signaling (Fig. 4Dii).

572  Many pathways involved in growth and development were enriched across all interaction types,
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573 as were pathways associated with regulation of apoptosis, cell adhesion, synaptic membrane
574  organization, and enzyme-linked receptor signaling.

575 Next, to organize altered cell-to-cell communication networks with regard to the specific
576  cell types involved, individual pairs of interacting proteins in NDD and NC nuclei were grouped
577 Dby association with particular biological pathways, and each of these pathway groups were
578  further clustered based on the particular cell subtypes in communication, following principal
579  component analysis (PCA) (Fig. S2A). This led to the identification of four communication
580 clusters each in AD and DLB, and five clusters in PD. In AD and PD, each cluster contained a
581 qualitatively even distribution of pathways from both NC and NDD nuclei. However, in DLB,
582  cluster 1 was entirely composed of communication pathways identified in NC nuclei, while
583 cluster 3 was heavily dominated by pathways identified in DLB nuclei, suggesting the
584  development of distinct cell-to-cell communication networks in the context of DLB (Fig. S2B).
585

586 3.5 Shared patternsof differential gene expresson among NDDs

587  In order to identify commonalities in gene dysregulation among NDDs, we integrated SnRNA-
588 seq data from nuclei of all three NDDs and NC nuclei for each of the six major cell types and
589  grouped these into cell subtype clusters as described above. Next we further annotated these
590 clusters as more specific predicted cell types using the scMayoMap* software package (Fig.
591  5A), and employed the NEBULA® software package to perform differential gene expression
592  analysis between NC nuclei and those of each NDD at the cell subtype level. Across all three
593 NDDs, the highest numbers of DEGs were identified in inhibitory neuron subtypes, and the
594  majority were downregulated (Fig. 5B). Most excitatory neurons and astrocytes clusters in AD

595 exhibited primary gene downregulation, while, in DLB and PD both upregulated and
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596 downregulated DEGs were detected in those clusters. On the other side, microglia showed mixed
597 up- and downregulation in AD, but predominantly upregulation in DLB and PD in most
598  subtypes. OPC subtypes showed both up- and downregulation DEGs within each NDD.
599  Oligodendrocytes were also varied, with mixed distribution of up- and downregulation in AD,
600 predominant upregulation in DLB, and predominant downregulation in PD. Notably, SNCA was
601 upregulated in DLB in four separate oligodendrocyte clusters (Oligodendrocyte 1, 3, 5, and 10),
602 but not in oligodendrocyte clusters of PD, suggesting a potentially important function in
603  oligodendrocytes for this key synucleopathy gene specifically in the context of DLB.

604 Next, for each cell subtype we catalogued the shared up- and downregulated DEGs across
605 all three NDDs (Fig. 5C). As expected, inhibitory neuron subtypes exhibited the highest number
606 of DEGs and almost all were downregulated. The Interneuron 2 inhibitory neuron subtype
607  exhibited the highest number of shared downregulated DEGs (5,570; Fig. 5D, Table S10).
608 followed by the GABAergic neuron 1 subtype (3,898; Fig. 5E, Table S11). Additionally, about
609 900 downregulated DEGs were shared between each pair of pathologies in Interneuron 2 (984
610 for AD and PD, 941 for AD and DLB, 876 for DLB and PD; Fig. 5Di). Similarly, GABAergic
611 neuron 1 also exhibited additional shared DEGs between each pair of NDDs (4,713 for AD and
612 PD, 423 for AD and DLB, 102 for DLB and PD; Fig. 5Ei). Microglia 10 had the highest number
613  of shared upregulated DEGs (248; Fig. 5F, Table S12). Examination of overlap between each
614  pair of pathologies in Microglia 10 identified the largest number of shared upregulated DEGs
615 (476) between DLB and PD, and fewer shared DEGs between the other pairs (48 for AD and
616 DLB, 33 for AD and PD; Fig. 5Fi). In contrast, other major cell types shared only a relatively
617  small number of DEGs. Overall, these results suggested that the common dysregulated pathways

618  across NDDs are mainly found in inhibitory neurons.
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619 Thus, we next analyzed the enrichment of biological pathways among shared
620 downregulated DEGs in the Interneuron 2 and GABAergic neuron 1 subtypes. As these are
621  pathways enriched among downregulated DEGs they may reflect impaired biological pathways.
622 In the Interneuron 2 subtype, we identified enrichment of pathways related to synaptic vesicle
623 transport, mitochondrial function, oxidative phosphorylation, autophagy, proteolysis, and RNA
624  processing (Fig. 5Dii). These functional categories were also identified in the analysis of the top
625  enriched individual pathways (Fig. 5Diii). Specific genes that were strongly downregulated in all
626  three NDDs included the transcription factor (TF) gene ETV5, associated with the response to
627  oxidative stress, and the cell growth regulator gene NELL1, as well as the AD-GWAS gene
628  CBLN4, involved in synapse organization, the DLB- and PD-GWAS gene DPM3, involved in
629  endoplasmic reticulum (ER) function, and the autophagy-associated PD-GWAS gene RNASEK
630 (Fig. 5Div). The respective DLB- and PD-GWAS genes NEK5 and TIMPZ2, both involved in
631  regulation of proteolysis, were strongly downregulated in both DLB and PD.

632 In the GABAergic neuron 1 subtype, the identified enriched pathways based on shared
633  downregulated DEGs were overall similar to those of Interneuron 2 (Fig. 5Eii), including aerobic
634  respiration and respiratory electron transport, translation, metabolism of RNA, and
635 mitochondrion organization (Fig. 5Eiii). ETV5 and DPM3 were again among the most highly
636  downregulated genes in all three NDDs, as was the AD-GWAS gene VGF, involved in
637  regulation of neuroplasticity, and the AD- and PD-GWAS GABA-receptor interacting gene
638 GABARAP (Fig. 5Eiv). Developmental regulator WNT3, a GWAS gene for both AD and PD, was
639 also highly downregulated in those two NDDs.

640 Similarly, we analyzed pathway enrichment in upregulated DEGs of the Microglia 10

641 subtype, plausibly indicating activation of biological pathways. The results demonstrated
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642 enrichment for growth and developmental pathways, as well as pathways associated with
643  leukocyte activation, cell cycle regulation, DNA damage response, chromatin organization, and
644  cytoskeletal organization (Fig. 5Fii). The strongest enriched individual pathways included
645 chromatin organization, growth factor signal transduction, receptor tyrosine kinase signaling, and
646 NOTCH1 signaling (Fig. 5Fiii). The TF genes ELF2 and MAML3, and the deubiquitinase gene
647 USP3, all AD-GWAS genes, and the transcriptional regulator PD-GWAS gene LCORL were
648 among the most strongly overexpressed DEGs across all three NDDs, as were the actin motor
649 gene MYO9B, and the cell growth signaling gene PTPRC (Fig.4Fiv). The gene DOCKZ2, involved
650 in chemokine-responsive cytokinesis, was strongly upregulated in both AD and DLB, while the
651 DLB-GWAS gene S.CO2B1, also involved in cell growth signaling, the steroid transport gene
652 CYB5R4, the PD-GWAS gene DISC1, regulating neuronal development, and the ER
653  monooxygenase gene TBXASL, were strongly upregulated in both PD and DLB. In summary, we
654  observed high numbers of shared downregulated genes in inhibitory neuron subtypes across all
655 three NDDs, indicating impairment of pathways relating to neuronal development, synaptic
656  function, stress responses, and other categories, but more diverse expression patterns in other
657  types, with fewer shared DEGs.

658

659 3.6 Differential gene expression between NDDs

660 To advance the understanding of mechanistic diversity amongst NDDs we next studied the
661 differential transcriptomic landscape between NDDs. To accomplish this, we integrated
662 transcriptomic data for all cell types from each pair of NDDs (i.e., AD and DLB, PD and DLB,
663 and AD and PD) and performed dimensional reduction and clustering of the integrated datasets

664  to identify cell subtypes (Fig. 6A). Differential expression analysis was performed at the cell
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665  subtype level for each NDD pairing to identify distinct DEGs between the pathologies. In
666  comparing AD and DLB, we found DEGs that were upregulated in DLB in only four out of the
667 29 cell subtype clusters, including excitatory neurons (clusters 5 and 9), and oligodendrocytes
668  (clusters 1 and 2), which exhibited about 5,000 DEGs each (5347, 5030, 4630, and 4805,
669  respectively), mainly upregulated in DLB (Fig. 6B, Ci, Tables S13-S16). The only other clusters
670 that exhibited more than 100 DEGs were Exc3 and Oligo6. Biological pathway enrichment
671 analysis of DLB-upregulated DEGs in the excitatory neuron subtypes revealed enrichment of
672 genes involved in cell cycle regulation, synaptic transmission, and stress response. In
673  oligodendrocyte clusters we found enrichment for pathways associated with inclusion body
674  assembly, cellular signaling, and chromatin organization (Fig. 6Cii). In addition, genes involved
675 in DNA damage response, proteolysis, immune response, and transcriptional regulation were
676  enriched in both of these cell types. Accordingly, the strongest DLB-upregulated genes also play
677  roles in these functional categories, including GWAS risk genes for both AD and DLB (Fig.
678  6Ci). For example, RTF2, a DEG in Exc5 and Oligo2, and FBXO3L1 in Oligo 2 are involved in
679  DNA damage response, and the DEGs SUGT1 in Exc5, CCNE2 in Exc9, and GAK in Oligol and
680 2, among others, are involved in cell cycle regulation. The proteolysis associated gene MAEA is a
681  GWAS risk gene for both AD and DLB and was among the highest DLB-upregulated DEGs in
682  both Exc9 and Oligol. The growth factor signaling AD-GWAS gene PLCG2 was highly DLB-
683  upregulated in all four cell types.

684 Comparison of PD to DLB across all clusters also resulted mainly in DLB-upregulated
685 DEGs (Fig. 6B, Di, Tables S17-S20). Genes were strongly upregulated in DLB in a number of
686  oligodendrocyte clusters (2875, 4386, 3689, and 2525 in Oligol, 2, 3, and 5, respectively), with

687 fewer DEGs in excitatory neuron clusters (537 and 1404 in Excl and 4, respectively).

29


https://doi.org/10.1101/2024.12.13.628436
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.13.628436; this version posted December 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

688  Additionally, while the Micro2 cluster was annotated as a microglial cluster due to this being the
689  most prevalent cell type, excitatory neuron nuclei comprised approximately a third of the cluster
690 and >10% of the cluster was made up of oligodendrocyte cells. For this reason we separately
691  performed differential expression analysis on each of these three cell types within the cluster. We
692 identified 6.25-fold more DEGs for the excitatory neuron subset (Micro2_Exc) compared to the
693  microglial subset (Micro2_Micro), indicating excitatory neurons as the primary source of
694  differential gene expression for this cluster. Biological pathway analysis revealed that the top
695 enriched pathways across cell subtypes included synaptic transmission, neuronal morphology,
696  protein folding and proteolysis (Fig. 6Dii). The strongest enrichment was observed in Micro2
697  excitatory neurons followed by multiple oligodendrocyte and other excitatory neuron subtypes,
698 as well as Micro2 microglia. Synaptic transmission-associated pathways were most strongly
699 enriched in excitatory neuron subtypes. DLB- and PD-GWAS genes strongly upregulated in
700 DLB were also associated with these functional categories, including synaptic adhesion-related
701  genes ADAM15 and GPNMB in Exc7, and synaptic vesicle-trafficking gene RUSCL1 in Micro2
702  (Fig. 6Di). Chromatin remodeling GWAS genes were DLB-upregulated across multiple clusters,
703  including ATXN7L3 and TOX3 in Micro2, KAT8 in Oligo2, and SALL1 in Oligo3, while the TF
704  ELK4 was DLB-upregulated in all three clusters. The DNA repair-associated gene NUCKSL and
705 actin gene ATCB were highly DLB-upregulated in both oligodendrocyte clusters Oligo2 and 3.
706  Notably, SNCA and the amyloid precursor protein (APP)-processing gene LDLRAD3 were both
707  among the most highly DLB-upregulated GWAS genes in Oligo3.

708 Comparing AD to PD vyielded the most diverse pattern of transcriptional dysregulation as
709  demonstrated by the variety of cell types with DEGs and the directionality of the differential

710  expression (Fig. 6B, Ei, Tables S21-S25). Upregulation in PD was observed in astrocyte (821
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711 and 745 DEGs in Astrol and 2, respectively), excitatory (623, 749, 1064, and 2377 in Excl, 3, 5,
712 and 9) and inhibitory neuron clusters (720 in Inh6), while upregulation in AD was observed
713 primarily in oligodendrocyte clusters (949 in Oligol). The largest number of DEGs upregulated
714 in AD was observed in the Oligo7 cluster. However, this subtype represents a hybrid cluster,
715  comprised of similar numbers of nuclei annotated as oligodendrocytes and excitatory neurons
716  (42.4% and 38.4% of cluster nuclei, respectively). Thus, oligodendrocytes (Oligo7_Oligo) and
717  excitatory neurons (Oligo7_Exc) in this cluster were analyzed separately for differential gene
718  expression. Similar numbers of DEGs were identified for each of these subsets (2,530 for
719  Oligo7_Oligo and 2,905 for Oligo7_EXc).

720 Biological pathway analysis of the PD-upregulated DEGs for each cell subtype showed
721  the strongest enrichment in the Astro2 subtype, followed by other astrocyte, excitatory neuron,
722  and oligodendrocyte clusters (Fig. 6Eii). These were dominated by pathways associated with
723 neuronal morphogenesis/organization and synaptic transmission. Accordingly, the most strongly
724 upregulated AD- and PD-GWAS genes were also involved in cell morphogenesis and
725  organization, including B3GATL1 in Astro2, and GJC1, EFNA2, and PLKS5 in Exc9 (Fig. 6Ei).
726  Genes upregulated in AD over PD showed the strongest enrichment for pathways in the Oligo7
727  cluster (both Oligo and Exc subsets) as well as several other oligodendrocyte clusters (Fig.
728  6Eiii). Across these cell types, the top enriched pathways were largely associated with
729  autophagy, mitochondrial structure, membrane trafficking, and mRNA processing. However, in
730 Oligol and 7, the most strongly AD-upregulated individual GWAS genes were mainly
731 associated with different pathways, including numerous protein synthesis and maturation-
732  associated DEGs (Fig. 6Ei). These included ribosomal genes RPS11, RPS15 and RPL13A, and

733  chaperone PFDN2 in Oligol, and genes associated with cell cycle regulation (FLBXL15,
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734 RPRML), proteolysis (FLBXL15, PSMC5), and mitochondrial oxidative metabolism
735  (SLC25A39, CYCL) in Oligo7.

736 To summarize, comparison of gene expression in DLB to either AD or PD primarily
737  revealed gene upregulation in DLB within relatively few excitatory neuron and oligodendrocyte
738  cell subtypes, but comparison of AD to PD revealed more diverse patterns of differential gene
739  expression, with upregulation in PD within astrocyte, excitatory neuron, and inhibitory neuron
740  clusters, and upregulation in AD within numerous oligodendrocyte clusters.

741

742 4. DISCUSSION

743  The three major NDDs AD, PD and DLB, are defined as distinct disorders but have common
744 comorbidities, shared clinical presentation and overlapping pathological characteristics. In this
745  study, we aimed to identify shared and divergent gene expression patterns among these NDDs at
746  agranular cell subtype resolution. We thus compared the transcriptomic landscapes of AD, DLB,
747 and PD within specific cell subtype populations of the TC. We utilized snRNA-seq datasets
748  obtained from each of the three NDDs to gain insight into various aspects of pathogenesis across
749  the different NDDs including: (1) vulnerability of specific cell subtypes, (2) disease-driver cell
750 subtypes based on enriched expression of GWAS genes, (3) changes in cell-to-cell
751 communication, (4) shared and (5) differential gene expression patterns and biological pathways
752 (Fig. 1B).

753 NDDs are characterized by progressive neuronal loss. While vulnerable neuronal

754  populations have been described for individual NDDs***

, o previous work has directly
755  compared vulnerability of the same cell subtypes across NDDs. We therefore examined

756  depletion of excitatory and inhibitory neuronal subtypes in each NDD, and found that AD and
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757 DLB share a common vulnerable TC inhibitory neuron subtype. This neuronal type was
758  characterized in part by expression of the major interneuron marker VIP and lack of expression
759  of PVALB, SST, and HTR3A. Previous work has demonstrated cortical VIP" interneurons to be
760  moderators of cortical disinhibitory circuits, inhibiting PVALB" and SST' interneurons and
761  thereby preventing inhibition of pyramidal neurons, thus regulating motor integration and
762  cortical plasticity®. Loss of this subtype in AD and DLB suggests its potential involvement in
763  cognitive impairment associated with both NDDs. In PD, previous work has primarily focused
764  on characterization of vulnerable neuronal populations within the substantia nigra (SN)*.
765  However, in this work we identified a cluster of inhibitory neurons depleted within the TC that
766  was distinct from depleted populations in AD and DLB, suggesting potential association of this
767  cell type with PD-specific pathology.

768 To better understand brain cell types driving disease risk in each NDD, we took a unique
769  approach by examining enrichment of GWAS-gene expression. Multiple neuronal subtypes were
770  implicated as disease drivers in DLB and PD, but in AD we identified only a single
771  oligodendrocyte subtype. While published work has focused mainly on the role of disease-

772  associated microglia in AD pathogenesis®*>?

, more recently the involvement of oligodendrocytes
773 has also been suggested >***. Demyelination has been shown to often precede neuronal loss in
774  AD cases™, and to result in neurodegeneration through disruption of metabolic axon support and
775  maintenance™. Oligodendrocyte dysfunction causing myelin loss may thus represent a primary
776  feature of AD pathology®. Furthermore, the importance of AD risk gene expression in
777  oligodendrocytes has also been established®. For example, the major AD risk-associated gene

778  BINL1, involved in vesicle endocytosis and regulation of apoptosis, among other functions, is

779  primarily expressed in oligodendrocytes and has been implicated in AD-associated
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780  demyelination®™. Here, we identified strong inhibition of BIN1 in the disease-driver
781  oligodendrocyte cluster of AD nuclei compared to other oligodendrocyte subtypes, along with
782  highly increased expression of numerous other AD-GWAS genes associated with vesicle
783 trafficking and apoptosis, including PICALM and SNX1. Dysregulation of these processes within
784  disease-driver oligodendrocytes may contribute to oligodendrocyte dysfunction and AD
785  progression within the TC.

786 Analysis of altered cell-to-cell communication also highlighted oligodendrocyte subtypes
787 in all three NDDs, in addition to several neuronal subtypes. While in AD the strength of many
788  communication pathways was increased, overall decreased communication was observed in DLB
789 and PD. Together with our identification of the disease-driver cell types, these changes in
790  cellular communication suggest an increased involvement of oligodendrocyte-neuron interaction
791 in AD, while communication between and within these cell types may be inhibited in the context
792  of the synucleopathies.

793 Here we also studied shared dysregulation of gene expression and impaired biological
794 mechanisms across NDDs. We identified the highest numbers of shared DEGs among inhibitory
795  neuron subtypes, most of which were downregulated in the NDD state. Previous studies have
796  established an important role for inhibitory neurons in AD®*®? demonstrating that GABAergic

636> and murine AD models®®®, leading to

797  neurotransmission is impaired both in human patients
798  hyperexcitability of neural circuits and likely contributing to cognitive dysfunction. In PD, it has
799  been suggested that dysregulation of GABAergic neurotransmission is a primary driver of motor
800  control deterioration®. Overaccumulation of intracellular Ca®* along with SNCA is directly

70,71

801  associated with neuronal death in PD in part through mitochondrial stress-induced apoptosis'™ ",

802 while GABA signaling prevents Ca®* influx and thereby protects neurons from calcium
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803 toxicity’®. Loss of dopaminergic neurons in the SN is furthermore predicted to dysregulate
804  GABAergic neurotransmission’*”. These findings support the importance of inhibitory neurons
805 in both cognitive decline in AD and motor deterioration in PD, as well as presumably in the
806 combination of these clinical symptoms in DLB. Furthermore, our pathway analysis in
807 inhibitory neuron subtypes revealed altered expression of numerous genes involved in
808  mitochondrial processes across the NDDs, possibly indicating dysregulated metabolic activity
809  resulting from disease-associated neurological dysfunction.

810 While NDDs share several molecular features and underlying mechanisms, each disease
811 also displays unique molecular underpinnings associated with distinct biological pathways. We
812  investigated the diseases-specific molecular determinants by direct comparison of differential
813  gene expression between pathologies. This analysis produced several key discoveries. First, a
814  relatively small number of cell subtypes displayed strong differential gene expression in DLB
815 compared to either AD or PD. Moreover, in both these comparisons, almost all DEGs were
816  upregulated in DLB and only few were upregulated in the either AD or PD. In contrast, when
817  comparing AD vs PD, the majority of cell subtypes exhibited relatively high numbers of DEGs,
818  with greater diversity in the directionality of differential expression across cell types. These
819 observations indicate overall greater transcriptomic divergence between AD and PD than
820  Dbetween DLB and either of the other NDDs, and support a model wherein DLB is positioned
821  Dbetween AD and PD on a spectrum of neurodegenerative pathology.

822 In comparisons between all NDDs, we found that DEGs were predominantly identified in
823  excitatory neuron and oligodendrocyte subtypes. Comparisons of PD to both AD and DLB
824  identified multiple oligodendrocyte clusters with altered transcriptional profiles. Consistently,

825  previous single-cell sequencing studies have revealed enriched expression of PD-GWAS genes
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826 in oligodendrocytes of the SN’ as well as depletion of differentiating oligodendrocytes in the
827 midbrain of PD patients”. Furthermore, PD-specific oligodendrocyte populations have been
828  predicted to display aberrant myelination activity based on human transcriptomic and mouse
829  model data’. Together with these previous findings, our data suggest an important role for
830 oligodendrocyte subtypes in PD that is distinct from both AD and DLB.

831 This work provides an essential direct comparison of the molecular underpinnings of
832  three major NDDs. However, there are some limitations. First, in order to directly compare the
833  transcriptomic signatures of the three NDDs, it was necessary to examine the same brain region
834 in each context. However, brain regions are affected differently in each NDD. While
835  neurodegeneration in cortical tissue may be associated with all three diseases, it is a hallmark
836  only of AD and DLB, wherein dementia is an essential diagnostic feature. In PD, the TC region
837 s typically involved in later stages of disease progression, when cognitive decline may occur’”
838 % In this work, the majority of PD donor samples were in earlier disease stages and exhibited
839 little to no Lewy pathology within the TC, based on established metrics®. Thus, our data for PD
840 reflect transcriptional changes preliminary to major neurodegeneration. Secondly, the
841  relationships described here between gene expression and pathogenic mechanisms are predictive
842 in nature and empirical validation through controlled experimentation in model systems is
843  necessary to confirm the importance of these predicted mechanisms in the three NDDs.

844 Here we examined similarities and differences between the transcriptomic landscapes of
845 three major NDDs. However, it is important to note that each of these disease categories
846  represents a complex range of comorbid clinical symptoms and co-pathologies. Four major
847  subtypes of AD have been characterized based on tau distribution, neurodegenerative patterns,

848  and other pathological factors®. In addition, a recent multicentric study identified five molecular
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849  subtypes of AD using mass spectrometry proteomics of cerebrospinal fluids. Subtypes also
850  differed in specific AD genetic risk variants, clinical outcomes, survival times, and patterns of
851  brain atrophy®. Likewise, PD has been divided into three distinct subtypes based on both motor
852 and non-motor factors including cognitive impairment, sleep disorder, and autonomic
853  dysfunction®. DLB is particularly complex to define due to its shared clinical features with both
854  AD and PD, but specific subtypes of this disease have also been described based on patterns of
855  o-synuclein and tau distribution®”. Future studies may thus apply similar strategies as are
856  described here to elucidate the transcriptomic mechanisms underlying these pathological
857  subtypes in order to develop an even higher-resolution understanding of the specific genetic
858  factors driving diverse clinical outcomes. Because of the heterogeneity within and across NDDs,
859  there is no single “silver bullet” for fighting neurodegeneration, but our findings provide unique
860  predictive insight into the shared and distinct molecular mechanisms underlying these three
861 pathologies, and contribute to a framework for future studies aimed at the development of
862  targeted treatment strategies tailored to address the specific clinical challenges presented by each
863  of these important diseases.

864
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1133 FIGURE CAPTIONS

1134

1135 Figure 1. Elucidating similarities and differences in transcriptomic landscapes underlying
1136  shared and distinct pathologic attributes of AD, PD, and DLB. A. Convergence of disease
1137  attributes across NDDs. Dementia is a defining symptom of both AD and DLB but may also be
1138  present in PD, while motor deterioration is a primary symptom of PD and DLB but may also be
1139  present in AD. Lewy bodies are a hallmark of both PD and DLB, but are also present in over half
1140  of AD cases, while tau and Ab, hallmarks of AD, are often present in DLB, and tau is a common

1141 component of Lewy bodies. APOE variants represent the highest genetic risk factor for AD, but
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1142 mutations have also been linked to DLB risk and cognitive decline in PD. SNCA is primarily
1143  associated with PD and DLB, but mutations in this gene are also are associated with increased
1144  risk of AD. Furthermore, numerous GWAS identified risk alleles show overlap across all three
1145 NDDs. B. Comparison of NDD transcriptomic landscapes via ShDRNA-seq. TC samples from 12
1146  donors diagnosed with AD, DLB, and PD, as well as normal controls, were used for sSnRNA-seq
1147  analysis, followed by integration of transcriptomic datasets and cell type annotation. Datasets
1148  were examined for depletion of neuronal cell subtypes in each NDD compared to NC nuclei,
1149 identification of disease-driver cell types with enriched expression of GWAS genes, changes in
1150  cell-to-cell communication between cell subtypes in NDD and NC nuclei, shared genes
1151  differentially expressed in each NDD compared to NC nuclei, and differential gene expression
1152  between each pair of NDDs.

1153

1154  Figure 2. Characterization of vulnerable depleted cell subtypes in each NDD. A. UMAP
1155  dimensional reduction plots of neuronal nuclei of each NDD integrated with NC nuclei. Smaller
1156  plots are color coded to indicate excitatory neurons (Exc) and inhibitory neurons (Inh). Larger
1157  plots are color coded to indicate cell subtype clusters. Depleted clusters are circled in red and
1158 labeled. B. Unbiased volcano plots for depleted cell subtype clusters. Log2 fold change (FC)
1159  between depleted cluster nuclei and other nuclei of the same major cell type is plotted against —
1160 logl0 p-value (FDR). Points representing DEGs with statistically significant (FDR < 0.05)
1161  upregulation in NDD are shown in dark red while DEGs with significant downregulation are
1162  shown in dark blue. Genes without significantly differential expression are shown as gray points.
1163  The three DEGs with the highest absolute fold change (log2FC > 0.2) in the up- and

1164  downregulated categories are labeled in dark red and dark blue, respectively. The three DEGs
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1165  within 500kb of NDD-associated SNPs previously identified in GWAS (GWAS-DEG) with the
1166  highest absolute log2FC in the up- and downregulated categories are labeled in bright red and
1167  bright blue, respectively. C. Metascape network plots of biological pathways enriched among
1168  genes upregulated (positive markers) and downregulated (negative markers) within depleted cell
1169  subtypes compared to cell subtypes of the same major cell type that were not depleted. Nodes
1170  represent specific biological pathways clustered by shared gene membership. Clusters with
1171  similar biological function are color coded and labeled according to general function. Node sizes
1172  are proportional to the number of differential-interacting genes in the pathway, and line width
1173  connecting nodes is proportional to shared gene membership in linked pathways. D. Violin plots
1174  of log-normalized count data showing expression of the GWAS-DEGs (bordered in pink and
1175  light blue) and 9 overall DEGs (bordered in red and dark blue) with the with the highest absolute
1176  fold change in depleted clusters compared to clusters of the same major cell type that were not
1177  depleted. Basic functional category information is indicated for each gene.

1178

1179  Figure 3. ldentification of disease-driver cell subtypes with enriched GWAS risk gene
1180 expression. A. UMAP dimensional reduction plots of neuronal nuclei of each NDD integrated
1181  with NC nuclei. Smaller plots are color coded to indicate subtypes below (False) and above
1182  (True) the AUCell pass threshold for enriched expression of genes within 500kb of NDD-
1183  associated SNPs previously identified in GWAS (GWAS genes). B. Bar charts showing total
1184  numbers of cells in each subtype cluster (blue) and numbers of cells above the AUCell pass
1185 threshold for enriched GWAS gene expression (red). C. Metascape network plots of biological
1186  pathways enriched among GWAS genes upregulated within disease-driver cell subtypes

1187  compared to cell subtypes of the same major cell type that were enriched for GWAS gene
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1188  expression. Nodes represent specific biological pathways clustered by shared gene membership.
1189  Clusters with similar biological function are color coded and labeled according to general
1190  function. Node sizes are proportional to the number of differential-interacting genes in the
1191  pathway, and line width connecting nodes is proportional to shared gene membership in linked
1192  pathways. D. Violin plots of log-normalized count data showing expression of the GWAS-DEGs
1193  with the highest positive fold change in disease-driver clusters compared to clusters of the same
1194  major cell type that were not disease-driving. Basic functional category information is indicated
1195  for each gene.

1196

1197 Figure 4. Differential interaction strength between cell subtypes in NDDs vs. Normal
1198 nucled. A. i. CellChat heatmaps showing degree of overall change in interaction strength between
1199  all pairs of cell subtypes for each NDD. Red indicates increased interaction in NDD, blue
1200 indicates decreased interaction. ii. CellChat network diagram showing celltypes with the highest
1201  differential interaction strength based on fold change in receptor-ligand expression in NDD
1202  nuclei compared to NC. Lines between celltypes indicate significantly altered interaction, with
1203  red lines indicating increased interaction strength in NDD and blue lines representing decreased
1204  interaction strength. Line width is proportional to statistical significance of change in interaction
1205  strength. Larger and bold labels indicate celltypes with more prominently altered interactions. B.
1206 i. Metascape network plot of biological pathways enriched among genes associated with
1207 increased interaction strength in AD across all celltypes. Nodes represent specific biological
1208  pathways clustered by shared gene membership. Clusters with similar biological function are
1209  color coded and labeled according to general function. Node sizes are proportional to the number

1210  of differential-interacting genes in the pathway, and line width connecting nodes is proportional
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1211  to shared gene membership in linked pathways. ii. Heatmap of top 20 enriched pathways among
1212  interactions increased in AD across all celltypes. Interacting celltypes are indicated, with sending
1213  type listed first and receiving type indicated second. Color saturation is proportional to strength
1214  of enrichment. C. i. Metascape network plot of biological pathways enriched among genes
1215  associated with increased interaction strength in DLB across all celltypes. ii. Heatmap of top 20
1216  enriched pathways among interactions increased in DLB across all celltypes. D. i. Metascape
1217  network plot of biological pathways enriched among genes associated with increased interaction
1218  strength in PD across all celltypes. ii. Heatmap of top 20 enriched pathways among interactions
1219 increased in PD across all celltypes.

1220

1221  Figure 5. Differential gene expression shared by three pathologies on cell subtype level. A.
1222 UMAP dimensional reduction plots of integrated NDD and NC nuclei of each major cell type,
1223  color coded to indicate cell subtype clusters. B. Bar charts representing numbers of DEGs
1224  identified in each cell subtype within each NDD compared to NC nuclei of the same subtype.
1225 Red indicates DEGs upregulated in NDDs and blue indicates DEGs downregulated in NDDs. C.
1226  Bar chart representing numbers of DEGs shared between all 3 NDDs compared to NC nuclei for
1227 each cell subtype. Red indicates DEGs upregulated in NDDs and blue indicates DEGs
1228  downregulated in NDDs. D. i. Venn diagram showing overlap between DEGs downregulated in
1229  each NDD within the Interneuron 2 subtype. ii. Unbiased volcano plots for GABAergic neuron 1
1230  subtype gene expression in each NDD. Log2 fold change (FC) between NDD nuclei and NC
1231  nuclei of the same subtype is plotted against —log1l0 p-value (FDR). Points representing DEGs
1232 with statistically significant (FDR < 0.05) upregulation in NDD are shown in dark red while

1233  DEGs with significant downregulation are shown in dark blue. Genes without significantly
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1234  differential expression are shown as gray points. The three DEGs with the highest absolute fold
1235 change (log2FC > 0.2) in the up- and downregulated categories are labeled in dark red and dark
1236  blue, respectively. The three DEGs within 500kb of NDD-associated SNPs previously identified
1237 in GWAS (GWAS-DEG) with the highest absolute log2FC in the up- and downregulated
1238  categories are labeled in bright red and bright blue, respectively. Basic functional category
1239 information is indicated for each labeled GWAS-DEG. iii. Metascape network plots of biological
1240  pathways enriched among DEGs downregulated in all NDDs within the GABAergic neuron 1
1241  subtype. Nodes represent specific biological pathways clustered by shared gene membership.
1242  Clusters with similar biological function are color coded and labeled according to general
1243  function. Node sizes are proportional to the number of differential-interacting genes in the
1244  pathway, and line width connecting nodes is proportional to shared gene membership in linked
1245  pathways. iv. Metascape bar chart showing the top 20 most highly enriched biological pathway
1246  terms among DEGs downregulated across all NDDs within the GABAergic neuron 1 subtype.
1247  Statistical significance (Logl0 p-value) is plotted on horizontal axes. Darker-colored bars
1248 indicated greater significance. E. i. Venn diagram showing overlap between DEGs
1249  downregulated in each NDD within the GABAergic neuron 1 subtype. ii. Unbiased volcano plots
1250 for Interneuron 2 subtype gene expression in each NDD. iii. Metascape network plots of
1251  biological pathways enriched among DEGs upregulated in all NDDs within the Interneuron 2
1252 subtype. iv. Metascape bar chart showing the top 20 most highly enriched biological pathway
1253  terms among DEGs downregulated across all NDDs within the Interneuron 2 subtype. F. i. Venn
1254  diagram showing overlap between DEGs upregulated in each NDD within the Microglia 10
1255  subtype. ii. Unbiased volcano plots for Microglia 10 subtype gene expression in each NDD. iii.

1256  Metascape network plots of biological pathways enriched among DEGs upregulated in all NDDs
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1257  within the Microglia 10 subtype. iv. Metascape bar chart showing the top 20 most highly
1258  enriched biological pathway terms among DEGs upregulated across all NDDs within the
1259  Microglia 10 subtype.

1260

1261 Figure 6. Differential gene expression between NDDs in cell subtypes. A. UMAP
1262  dimensional reduction plots of integrated pairs of NDD nuclei of all cell types, color coded to
1263 indicate cell subtype clusters. B. Bar charts representing numbers of DEGs identified using
1264 NEBULA for each cell subtype between nuclei of the indicated NDD pairs within the same
1265  subtype. Red and blue bars represent DEGs upregulated in one or the other NDD, as indicated.
1266  C. i. Unbiased volcano plots showing gene expression in selected cell subtypes in the AD and
1267 DLB comparison. Log2 fold change (FC) between nuclei of the 2 NDDs in the same subtype is
1268  plotted against —logl0 p-value (FDR). Points representing DEGs with statistically significant
1269 (FDR < 0.05) upregulation in AD are shown in dark blue while DEGs with significant
1270  upregulation in DLB are shown in dark red. Genes without significantly differential expression
1271  are shown as gray points. The three DEGs with the highest absolute fold change (log2FC > 0.2)
1272  in the AD and DLB upregulated categories are labeled in dark blue and dark red, respectively.
1273  The three DEGs within 500kb of NDD-associated SNPs previously identified in GWAS
1274  (GWAS-DEG) exclusive to AD, exclusive to DLB, and common to both NDDs with the highest
1275  absolute log2FC in the up- and downregulated categories are labeled in bright red and bright
1276  blue, respectively, and the NDDs associated with each GWAS-DEG are indicated. Basic
1277  functional category information is indicated for each labeled GWAS-DEG. ii. Heatmap of top 20
1278  enriched pathways among interactions increased in DLB compared to AD across all celltypes.

1279  Color saturation is proportional to statistical significance of enrichment. D. i. Unbiased volcano
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1280  plots showing gene expression in selected cell subtypes in the PD and DLB comparison. Color
1281  coding indicates upregulation in the indicated NDD. The top three GWAS-DEGs exclusive to
1282  PD, exclusive to DLB, and common to both NDDs are indicated. ii. Heatmap of top 20 enriched
1283  pathways among interactions increased in DLB compared to PD across all celltypes. E. i.
1284  Unbiased volcano plots showing gene expression in selected cell subtypes in the AD and PD
1285  comparison. Color coding indicates upregulation in the indicated NDD. The top three GWAS-
1286  DEGs exclusive to AD, exclusive to PD, and common to both NDDs are indicated. ii. Heatmap
1287  of top 20 enriched pathways among interactions increased in PD compared to AD across all
1288  celltypes. iii. Heatmap of top 20 enriched pathways among interactions increased in AD
1289  compared to PD across all celltypes.

1290

1291  Figure S1. Canonical marker expression in neuronal subtypes of each NDD. A. Violin plots
1292  of log-normalized count data showing expression of canonical neurotransmission-type marker
1293  genes across neuronal subtype clusters of the three NDDs. Expression of 10 marker genes for
1294  neuronal subtypes engaged in signaling via different neurotransmitter molecules was examined.
1295 Inhibitory neuron clusters expressed genes indicating GABA transmission (SLC6A1, GAD1),
1296  while excitatory neuron clusters all expressed S.C17A7, indicating glutamate transmission.
1297  Other neurotransmission markers were not expressed in any of the clusters within the dataset,
1298 including markers for glycine transmission (S.C6A9), serotonin transmission (SLC6A4, TPH1),
1299  dopamine transmission (DDC, TH), acetylcholine transmission (CHAT), and general amine
1300 transmission (SLC18A1). B. Violin plots of log-normalized count data showing expression of
1301  expanded inhibitory neuron markers among all inhibitory neuron subtype clusters for each NDD.

1302
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Figure S2. Clustering of communication pathways by interacting celltypes involved. A.
Dimensional reduction and clustering of communication pathways based on transmitting and
receiving cell types. Clusters of pathways based on similarity of interacting cell subtypes are
color coded and numbered. Communication pathways in NDD nuclei are represented by colored
circles and pathways of NC nuclei are represented by open squares. Point sizes are proportional
to probability of communication. B. Metascape pathway analysis of top 20 enriched biological
pathways among genes involved in interactions between celltypes in DLB communication

clusters 1 (Normal dominant) and 3 (DLB dominant).
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A. Clustering of nuclei and identification of disease-driver celltypes
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C. Biological pathway enrichment of disease-driver cluster marker GWAS genes
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A. Differential strength of interactions between cell types in each NDD vs. NC cells
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C. Downregulated communication pathways in DLB

i. Network of pathway interactions decreased in DLB
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Figure S1. Canonical marker expression in neuronal subtypes of each NDD

B. Canonical inhibitory neuron marker expression
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Figure $1. Canonical marker expression in neuronal subtypes of each NDD. A. Violin plots of log-normalized count data showing expression of canonical neurotransmission-type marker
genes across neuronal subtype clusters of the three NDDs. Expression of 10 marker genes for neuronal subtypes engaged in signaling via different neurotransmitter molecules was examined.
Inhibitory neuron clusters expressed genes indicating GABA transmission (SLC6A1, GAD1), while excitatory neuron clusters all expressed SLC17A7, indicating glutamate transmission. Other
neurotransmission markers were not expressed in any of the clusters within the dataset, including markers for glycine transmission (SLC6A9), serotonin transmission (SLC6A4, TPH1),
dopamine transmission (DDC, TH), acetylcholine transmission (CHAT), and general amine transmission (SLC78A7). B. Violin plots of log-normalized count data showing expression of
expanded inhibitory neuron markers among all inhibitory neuron subtype clusters for each NDD.
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Figure S2. Clustering of communication pathways by interacting celltypes involved
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Figure S2. Clustering of communication pathways by interacting celltypes involved. A. Dimensional reduction and clustering of communication pathways based on
transmitting and receiving cell types. Clusters of pathways based on similarity of interacting cell subtypes are color coded and numbered. Communication pathways in NDD nuclei
are represented by colored circles and pathways of NC nuclei are represented by open squares. Point sizes are proportional to probability of communication. B. Metascape
pathway analysis of top 20 enriched biological pathways among genes involved in interactions between celltypes in DLB communication clusters 1 (Normal dominant) and 3 (DLB
dominant).
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