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ABSTRACT 47 

 48 

INTRODUCTION: Alzheimer’s disease (AD), Dementia with Lewy bodies (DLB), and 49 

Parkinson’s disease (PD) represent a spectrum of neurodegenerative disorders (NDDs). Here, we 50 

performed the first direct comparison of their transcriptomic landscapes. 51 

METHODS: We profiled the whole transcriptomes of NDD cortical tissue by snRNA-seq. We 52 

used computational analyses to identify common and distinct differentially expressed genes 53 

(DEGs), biological pathways, vulnerable and disease-driver cell subtypes, and alteration in cell-54 

to-cell interactions.    55 

RESULTS: The same vulnerable inhibitory neuron subtype was depleted in both AD and DLB. 56 

Potentially disease-driving neuronal cell subtypes were present in both PD and DLB. Cell-cell 57 

communication was predicted to be increased in AD but decreased in DLB and PD. DEGs were 58 

most commonly shared across NDDs within inhibitory neuron subtypes. Overall, we observed 59 

the greatest transcriptomic divergence between AD and PD, while DLB exhibited an 60 

intermediate transcriptomic signature.  61 

DISCUSSION: These results help explain the clinicopathological spectrum of this group of 62 

NDDs and provide unique insights into the shared and distinct molecular mechanisms underlying 63 

the pathogenesis of NDDs.  64 

 65 

 66 

 67 

 68 
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LIST OF ABBREVIATIONS 70 

AD (Alzheimer’s disease), PD (Parkinson’s disease), DLB (dementia with Lewy bodies), NDD 71 

(neurodegenerative disease), NFT (neurofibrillary tangle), fPD (familial PD), GWAS (genome-72 

wide association study), snRNA-seq (single-nucleus RNA sequencing), TC (temporal cortex), 73 

NC (normal control), QC (quality control), OPC (oligodendrocyte precursor cell), DEG 74 

(differentially expressed gene), PMI (postmortem interval), FDR (false discovery rate), TF 75 

(transcription factor), Astro (astrocyte), Exc (excitatory neuron), Inh (inhibitory neuron), Micro 76 

(microglia), Oligo (oligodendrocyte), PCA (principal component analysis), UMAP (uniform 77 

manifold approximation and projection), ER (endoplasmic reticulum), APP (amyloid precursor 78 

protein), SN (substantia nigra), KPBBB (Kathleen Price Bryan Brain Bank), BSHRI (Banner 79 

Sun Health Research Institute), USSLB (Unified Staging System for Lewy Body Disorders), IRB 80 

(institutional review board), NIH (National Institutes of Health), NINDS (National Institute of 81 

Neurological Disorders & Stroke), NIA (National Institute on Aging). 82 

 83 
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1. BACKGROUND 93 

Age-associated neurodegenerative diseases (NDD) such as Alzheimer’s disease (AD), 94 

Parkinson’s disease (PD), and Dementia with Lewy bodies (DLB) exhibit overlapping molecular 95 

pathologies (Fig. 1A). For example, Lewy bodies are present in more than half of AD cases1,2, 96 

and tau neurofibrillary tangles (NFTs) have been identified in brains of patients with familial PD 97 

(fPD)3. Tau also appears to be a common component of Lewy bodies in association with 98 

SNCA4,5. Tau NFTs and Aβ plaques are also associated with DLB in approximately 70% of 99 

cases6,7, indicating convergence of underlying pathological mechanisms of both AD and PD in 100 

DLB8. Evidence suggests that these co-pathologies of tau, Aβ and SNCA aggregates are not 101 

merely coincidental but that these molecules are also likely involved in seeding the aggregation 102 

of one another9.   103 

In addition to co-pathologies, commonalities are evident in the underlying genetic 104 

architectures of these three NDDs. Genome-wide association studies (GWAS) focusing on each 105 

of these NDDs have identified variants separately associated with increased risk for AD10-12,  106 

PD13,14, and DLB15,16, and overlap in genetic risk factors between the NDDs has also been 107 

observed. For example, mutations in APOE, the primary risk factor for AD, have also been 108 

linked to increased risk of DLB15 and cognitive decline in PD17. Additionally, SNCA mutations 109 

have been similarly linked to both AD18 and DLB15 risk. Furthermore, mutations in GWAS AD 110 

risk genes including APP19, PSEN119-21, and PSEN219,21, and GWAS PD risk genes including 111 

LRRK222, MAPT23, and SCARB224 have also been experimentally linked to DLB. However, 112 

numerous loci with positive risk correlations for either AD or PD are not correlated with DLB 113 

risk15. These data indicate unique as well as shared genetic underpinnings for each of these 114 

NDDs.  115 
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The majority of disease-associated SNVs are located in noncoding genomic regions, 116 

suggesting that in many cases allelic disease effects may derive from altered gene regulation 117 

rather than altered protein coding, and therefore additional information is required to determine 118 

the relevant target genes impacted. The development of single-cell transcriptomics has helped 119 

elucidate these changes in gene regulation by enabling examination of expression patterns within 120 

individual brain cells of NDD patients at an unprecedented cell type and subtype resolution. This 121 

methodology has been applied individually to AD25-28 and PD29,30, but for DLB only bulk 122 

transcriptomic studies have been previously performed31-33. Moreover, no study to date has 123 

compared the transcriptional profiles across these NDDs. In this work, we used single-nucleus 124 

RNA sequencing (snRNA-seq) to directly compare and contrast for the first time the 125 

transcriptomic signatures of these three prevalent NDDs in order to elucidate shared and unique 126 

dysregulated genes and networks among these pathologies (Fig. 1B). We compared gene 127 

expression in 12 temporal cortex (TC) samples of donors diagnosed with each NDD: AD, PD 128 

and DLB, to 12 neurologically normal control (NC) samples. Moreover, we performed 129 

examinations of differential gene expression between each pair of NDDs (i.e. AD vs. PD, AD vs. 130 

DLB, PD vs. DLB), all at a granular cell subtype level of precision. We furthermore identified 131 

and characterized specific cell subtypes depleted in each of the NDDs, and predicted changes in 132 

cell-to-cell communication patterns associated with each disorder. Our findings yield novel 133 

insights into pathology-associated changes in gene expression that may facilitate the 134 

development of new detection and treatment strategies targeting specific NDDs or potentially 135 

effective in the treatment of a range of disorders. 136 

 137 

 138 
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 139 

 140 

2. METHODS 141 

2.1 Human post-mortem brain tissue samples 142 

The demographics, pathological notes, and other metadata for this study cohort are detailed in 143 

Table S1. Extensive pathology information for PD samples is provided in Table S2. Frozen 144 

human TC tissue samples from donors clinically diagnosed with AD (n = 12), DLB (n = 12) and 145 

NC donor samples (n = 12) were obtained from the Kathleen Price Bryan Brain Bank (KPBBB) 146 

at Duke University. Samples from donors diagnosed with PD (n = 12) were obtained from the 147 

Banner Sun Health Research Institute (BSHRI)88. Normal controls were derived from donors 148 

with no clinical history of neurological disorder and samples had no neuropathological evidence 149 

of neurodegenerative diseases. Clinical diagnosis of AD was pathologically confirmed using 150 

Braak staging (AT8 immunostaining) and amyloid deposition assessment (4G8 immunostaining) 151 

for all AD samples. All AD tissue donors were in Braak & Braak Stage III-V. DLB clinical 152 

diagnoses were pathologically confirmed based on criteria described by McKeith et al.7 All DLB 153 

donors were confirmed to exhibit Lewy-related pathology within the neocortical, limbic, or 154 

brainstem regions and showed low levels of AD neuropathologic change (Braak stages I or II), 155 

with the exception of donor 1097 which exhibited Braak stage III pathology. Donor patient PD 156 

diagnoses were defined by the presence of two of the three cardinal clinical signs of resting 157 

tremor, muscular rigidity and bradykinesia. Additionally, diagnoses of all PD samples were 158 

confirmed in autopsy by observation of pigmented neuron loss and the presence of Lewy bodies 159 

in the SN. Neuropathological states of PD samples were confirmed postmortem using established 160 

clinical practice recommendations for McKeith scoring83 and staging via the Unified Staging 161 
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System for Lewy Body Disorders (USSLB)89. All PD samples for which information was 162 

available had McKeith scores ranging from moderate to severe (2-4) in both the amygdala and 163 

SN. Where available, TC McKeith scores for most of the PD samples were either 0-1, with one 164 

sample each receiving scores of 2 and 3, indicating mild or absent PD pathology in this region 165 

for the majority of samples. USSLB stages of PD samples ranged from II-IV. PD samples 96-36 166 

and 96-49 were lacking specific USSLB stage determination due to harvesting prior to BSHRI 167 

standardization of stage determination protocol. All tissue donors were Caucasians with the 168 

APOE e3/e3 genotype. The project was approved for exemption by the Duke University Health 169 

System Institutional Review Board. The methods described were conducted in accordance with 170 

the relevant guidelines and regulations. 171 

 172 

2.2 Nuclei isolation from post-mortem human brain tissue 173 

The nuclei isolation procedure has been described28, and was based on previous studies90,91 and 174 

optimized for single-cell experiments. 100-200 mg of human TC brain tissue samples were 175 

thawed in Lysis Buffer (0.32 M Sucrose, 5 mM CaCl2, 3 mM Magnesium Acetate, 0.1 mM 176 

EDTA, 10 mM Tris-HCl pH 8, 1 mM DTT, 0.1% Triton X-100) and homogenized with a 7 ml 177 

dounce tissue homogenizer (Corning) and filtered through a 100 μm cell strainer, transferred to a 178 

14 x 89 mm polypropylene ultracentrifuge tube, and underlain with sucrose solution (1.8 M 179 

Sucrose, 3 mM Magnesium Acetate, 1 mM DTT, 10 mM Tris-HCl, pH 8). Nuclei were separated 180 

by ultracentrifugation for 15 minutes at 4°C at 107,000 RCF. Supernatant was aspirated, and 181 

nuclei were washed with 1 ml Nuclei Wash Buffer (10 mM Tris-HCl pH 8, 10 mM NaCl, 3 mM 182 

MgCl2, 0.1% Tween-20, 1% BSA, 0.2 U/μL RNase Inhibitor). Resuspended nuclei were 183 

centrifuged at 300 RCF for 5 minutes at 4°C, and supernatant was aspirated. Nuclei were then 184 
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resuspended in Wash and Resuspension Buffer (1X PBS, 1% BSA, 0.2 U/μL RNase Inhibitor), 185 

then filtered through a 35 μm strainer. Nuclei concentrations were determined using a 186 

Countess™ II Automated Cell Counter (ThermoFisher) and nuclei quality was assessed at 10X 187 

and 40X magnification using an Evos XL Core Cell Imager (ThermoFisher).  188 

 189 

2.3 snRNA-seq library preparation and sequencing 190 

snRNA-seq libraries were constructed as previously28 using the Chromium Next GEM Single 191 

Cell 3’ GEM, Library, and Gel Bead v3.1 kit, Chip G Single Cell kit, and i7 Multiplex kit (10X 192 

Genomics) according to manufacturer’s instructions.  For each sample, 10,000 nuclei were 193 

targeted. Library quality control was performed on a Bioanalyzer (Agilent) with the High 194 

Sensitivity DNA Kit (Agilent) according to manufacturer’s instructions and the 10X Genomics 195 

protocols. Libraries were submitted to the Sequencing and Genomic Technologies Shared 196 

Resource at Duke University for quantification using the KAPA Library Quantification Kit for 197 

Illumina® Platforms and sequencing. Groups of four snRNA-seq libraries were pooled on a 198 

NovaSeq 6000 S1 50bp PE full flow cell to target a sequencing depth of 400 million reads per 199 

sample (Read 1 = 28, i7 index = 8, and Read 2 = 91 cycles). Sequencing was performed blinded 200 

to age, sex, and diagnosis. 201 

 202 

2.4 snRNA-seq data processing 203 

Raw snRNA-seq sequencing data were converted to FastQ format, aligned to a GRCh38 pre-204 

mRNA reference, filtered, and counted using CellRanger 4.0.0 (10X Genomics). Subsequent 205 

processing was done using Seurat 4.0.192. Filtered feature-barcode matrices were used to 206 

generate Seurat objects for the individual samples. For QC filtering, nuclei below the 1st and 207 
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above the 99th percentile for number of features were excluded. Nuclei above the 95th percentile 208 

for mitochondrial gene transcript proportion (or >5% mitochondrial transcripts if 95th percentile 209 

mitochondrial transcript proportion was <5%) were also excluded. Because experiments were 210 

conducted in nuclei rather than whole cells, mitochondrial genes were subsequently removed. 211 

The individual sample Seurat objects were merged into one, and were iteratively normalized 212 

using SCTransform93 with glmGamPoi, which alleviates bias from weakly-expressed genes94. 213 

Batch correction was performed using reference-based integration34 on the individual sample 214 

normalized datasets, which improves computational efficiency for integration.  215 

 216 

2.5 Doublet/Multiplet detection in snRNA-seq data 217 

Multiplets comprising different cell types (heterotypic) were excluded from snRNA-seq data by 218 

considering the “hybrid score”, as described previously28.  The hybrid score is calculated as (x1 – 219 

x2) / x1, where x1 is the highest and x2 is the second highest prediction score95. Heterotypic 220 

multiplets would be expected to exhibit competing cell type prediction scores due to the presence 221 

of transcriptomic/epigenomic profiles from multiple cell types. Multiplets composed of one cell 222 

type (homotypic) were identified based on the number of features per cell. snRNA nuclei with 223 

feature counts > 99th percentile were excluded. Removal of homotypic multiplets in this manner 224 

is expected to also aid in filtering of heterotypic multiplets.  225 

 226 

2.6 Cell type and subtype cluster annotation 227 

Cell type annotation was conducted using a label transfer method34 and a previously annotated 228 

reference dataset from human M1. Batch-corrected data from both our dataset and the human M1 229 

dataset were used for label transfer. Nuclei with maximum prediction scores of <0.5 were 230 
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excluded. Nuclei with a percent difference of <20% between first and second highest cell type 231 

prediction scores were termed “hybrid” and excluded95. Endothelial cells and VLMCs were in 232 

low abundance and did not form distinct UMAP clusters and were thus excluded. Following 233 

PCA, dimensionality was examined using an Elbow plot and by calculating variance contribution 234 

of each PC. UMAP was then run using the first 30 PCs, and nuclei were clustered based on 235 

UMAP reduction. The resolution levels for cluster delineation were selected after comparison of 236 

a range of values as it was determined to provide optimal distinction between populations of 237 

nuclei displaying unique gene expression profiles as evidenced by their separation from one 238 

another in UMAP space. Counts of predicted major cell types based on the label transfer were 239 

examined for each of the clusters, and clusters were manually annotated based on the majority 240 

cell type for each cluster (e.g., ‘Exc1’, ‘Exc2’, etc.).  241 

 242 

2.7 Human M1 reference data processing 243 

To optimize label transfer, we re-processed previously published human primary motor cortex 244 

(M1) snRNA-seq data96 to map it to GRCh38 Ensembl 80 as we did with our data28. FastQ files 245 

were obtained from the Neuroscience Multi-omic Data Archive (NeMO: 246 

https://nemoarchive.org/) and were aligned to the same GRCh38 pre-mRNA reference used for 247 

our data, filtered, and counted using CellRanger 4.0.0 (10X Genomics). Filtered feature-barcode 248 

matrices were used to generate separate Seurat objects for each sample, with nuclei absent from 249 

the annotated metadata excluded. Seurat objects were merged and iteratively normalized using 250 

SCTransform93 with glmGamPoi. Batch correction was performed using reference-based 251 

integration34 on the normalized datasets. The 127 transcriptomic cell types in this data were 252 
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grouped into 8 broad cell types including astrocytes, endothelial cells, excitatory neurons, 253 

inhibitory neurons, microglia, oligodendrocytes, OPCs, and VLMCs. 254 

 255 

2.8 Covariate selection for differential analyses 256 

Prior to differential analysis, as previously described, 28 we estimated the impact of multiple 257 

technical variables as well as donor-level characteristics separately for the snRNA-seq 258 

experiments (Table S1). Read counts were summed for all nuclei in each donor sample, resulting 259 

in only one expression value per sample per gene, as all nuclei from a particular donor would 260 

have identical donor characteristics. Genes with no expression for >20% of samples were 261 

subsequently removed, and all values were mean-centered and scaled prior to covariate analysis. 262 

PCA was then performed for genes  using prcomp in R. We then carried out linear regression 263 

using glm in R for PCs explaining >10% of the variability in global expression on both nuclei- 264 

and donor-specific metadata variables to identify factors that should be included as covariates in 265 

differential analyses. Specifically, we selected the variable most associated (surpassing 266 

Bonferroni correction for multiple testing, q<0.05) with PC1 (or alternatively, the PC explaining 267 

the most variability) and regressed all genes on the associated variable to obtain gene residuals 268 

that are adjusted for its effect. We then performed PC analysis on the gene residuals, and in an 269 

iterative process, repeating the above steps until no additional metadata variables were associated 270 

with global expression (q<0.05).  Following this process, age, sex, PMI, number of nuclei after 271 

QC filtering, median genes per cell, and average library size were selected as covariates for 272 

differential expression gene analysis.  273 

 274 

2.9 Cell type proportion comparisons 275 
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To assess the selective loss of neuronal subtypes in each neurodegenerative disorder, we 276 

performed a depletion analysis using a beta regression model implemented in the glmmTMB 277 

package in R. The proportion of each neuronal subtype within each sample was calculated, and 278 

the association between the proportion and disease status was examined while adjusting for 279 

potential confounding variables such as age, sex, post-mortem interval (PMI), and the number of 280 

nuclei after filtering. The significance of the depletion was determined based on the Benjamini-281 

Hochburg (FDR) adjusted p-values derived from the beta regression model. 282 

 283 

2.10 Marker gene identification 284 

To identify genes differentially expressed between depleted neuronal subtypes in each disease 285 

condition, we utilized the FindMarkers function from the Seurat package. The analysis was 286 

performed using a likelihood-ratio test, adjusting for latent variables including age, sex, PMI, 287 

and the number of nuclei after filtering. The gene expression comparison was made between the 288 

depleted neuronal subtypes in the disease samples and their corresponding subtypes in the 289 

control samples. Genes with a Benjamini-Hochburg (FDR) adjusted p-value less than 0.05 were 290 

considered significantly differentially expressed. The differentially expressed genes were further 291 

categorized into upregulated and downregulated genes based on their average log2 fold change.  292 

 293 

2.11 Differential expression analysis 294 

In order to identify DEGs at both the cell type and subtype levels between samples within our 295 

snRNA-seq dataset, we employed the NEBULA algorithm45. Specifically, the NEBULA-HL 296 

method was used as this process is optimized for estimating both nucleus-level and donor-level 297 

data overdispersions45,97.  Prior to running NEBULA, for each cell type and cluster, genes 298 
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expressed in less than 10% of cells in either group (PD or Normal) were filtered out. Age, sex, 299 

PMI, number of nuclei after QC filtering, median genes per cell, and average library size were 300 

included as fixed effects for NEBULA and sample donor ID was included as a random effect. 301 

Benjamini–Hochberg (FDR) correction for multiple testing was applied at the gene level to 302 

NEBULA-derived p-values. Adjusted p-values < 0.05 were deemed significant.  303 

 304 

2.12 Vulnerable cell type identification 305 

For each broad cell type in each disorder, DEGs were identified using the NEBULA algorithm as 306 

described above. GWAS-associated genes for each disorder were obtained from published 307 

studies, considering genes located within 500 kilobases upstream or downstream of the GWAS 308 

SNP chromosome locus. To create gene sets representing the convergence of genetic risk factors 309 

and cell type-specific dysregulation, we intersected the GWAS-associated genes with the DEGs 310 

identified for each broad cell type in each disorder. The resulting gene sets were considered as 311 

the putative driving forces or risk factors for the corresponding disorder. The vulnerability of 312 

each cell subtype to the disorder-specific gene sets was assessed using the AUCell package in R. 313 

For each cell subtype in each disorder, the following steps were performed: 314 

1. The scRNA-seq data were subsetted to include only the cells belonging to the 315 

specific cell subtype. 316 

2. The gene expression matrix was normalized and log-transformed. 317 

3. The AUCell algorithm was applied to calculate the enrichment of the disorder-318 

specific gene set in each cell, resulting in an AUC (Area Under the Curve) score 319 

for each cell. 320 
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4. Cells were assigned to a "vulnerable" or "non-vulnerable" group based on the 321 

AUC score threshold determined using the AUCell_exploreThresholds function. 322 

To identify marker genes associated with the vulnerable cell subtypes, differential gene 323 

expression analysis was performed using the FindMarkers function in Seurat. The analysis was 324 

conducted between the vulnerable and non-vulnerable cells within each cell subtype, controlling 325 

for potential confounding variables. Genes with an FDR-adjusted p-value < 0.05 were considered 326 

significantly differentially expressed and were classified as marker genes. 327 

 328 

2.13 Differential cell-to-cell communication  329 

To investigate the role of cell-cell communication in the progression of neurodegenerative 330 

disorders (NDDs), we used CellChat, an R package for inference and analysis of intercellular 331 

communication networks from single-cell RNA sequencing (scRNA-seq) data43. CellChat 332 

integrates scRNA-seq data with a curated database of ligand-receptor interactions to quantify 333 

communication probabilities between cell populations and identify significant interactions. For 334 

each disease-normal pair, we created separate CellChat objects using the normalized data matrix 335 

and cell type annotations. We then applied CellChat functions to identify over-expressed genes 336 

and interactions, compute communication probabilities, and filter interactions. The inferred 337 

communication networks were stored in the CellChat object. To visualize the differences in cell-338 

cell communication between disease and normal conditions, we employed CellChat's plotting 339 

functions.  340 

 341 

2.14 Biological pathway enrichment analysis 342 
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In order to understand the biological significance of gene sets derived from differential 343 

expression analyses, we employed the Metascape41 algorithm (https://www.metascape.org). The 344 

gene set of interest was input as the target gene list, and the total set of genes examined in the 345 

corresponding differential expression analysis was input as the background gene list. GO terms 346 

were considered significantly enriched with a fold-enrichment of at least 1.5 and an FDR-347 

corrected enrichment p-value < 0.01. In order to group the enriched Metascape output GO terms 348 

into broader biological categories, Kappa similarities were determined for each pair of enriched 349 

GO terms, forming trees of hierarchical associations between terms, which were then used to 350 

delineate clusters of related terms. We then qualitatively assigned a major functional category 351 

label to each cluster based on assessment of common biological processes represented by the 352 

clustered GO terms.  353 

 354 

2.15 Genome version and coordinates  355 

All genomic data and coordinates are based on the December 2013 version of the genome: hg38, 356 

GRCh38. 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 
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 366 

 367 

 368 

 369 

 370 

 371 

3. RESULTS 372 

3.1 Annotation of cell types and subtypes in the human temporal cortex (TC) of individuals 373 

with AD, DLB, PD, and neurologically normal controls 374 

Nuclei were isolated from frozen post-mortem human TC tissues of 12 NC donor individuals 375 

with no NDD diagnosis or pathological signs, and 12 donors each with diagnoses and 376 

corresponding postmortem pathology of AD, DLB, and PD. Each diagnosis group comprised 6 377 

females and 6 males (Table S1 summarizes the demographic and neuropathological phenotypes). 378 

snRNA-seq was carried out on prepared gene expression libraries. After quality control (QC) 379 

filtering, expression data for nuclei from all four diagnosis groups were integrated, and data from 380 

396,867 nuclei were retained across all four groups (Table S2). Nuclei were then annotated 381 

according to major brain cell types by label transfer34 from a pre-annotated reference snRNA-seq 382 

dataset35.  These included 19,962 astrocytes, 92,322 excitatory neurons, 44,807 inhibitory 383 

neurons, 25,926 microglia, 196,448 oligodendrocytes, and 17,402 oligodendrocyte precursor 384 

cells (OPCs). Other cell types including endothelial cells and vascular and leptomeningeal cells 385 

made up less than 1% of the total cell population and were therefore excluded from the dataset in 386 

downstream analyses.  387 

 388 
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3.2 Vulnerable neuronal types depleted in NDDs compared to neurologically normal 389 

controls 390 

AD, DLB, and PD are characterized by the progressive loss of neurons in the brain. To 391 

characterize the specific neuronal types that are vulnerable in the temporal cortex of each 392 

pathology we performed a comparison analysis of cell-type proportions for each NDD vs NC, 393 

restricted to nuclei annotated as excitatory or inhibitory neuronal cells. Expression data for 394 

neuronal NC cells were separately integrated with neurons of each NDD. Integrated neuronal 395 

cells were then divided into numbered cell subtype clusters, with 30 neuronal subtype clusters 396 

for AD, 29 clusters for DLB, and 26 clusters for PD (Fig. 2A). Examination of expression of 397 

markers for specific neurotransmitter types among neuronal cell types of each NDD showed the 398 

presence of only glutamatergic cell types among excitatory neuron clusters, and GABAergic cell 399 

types among inhibitory neuron clusters (Fig. S1A). We then performed a depletion analysis using 400 

a beta regression model and calculated the proportion of nuclei from a particular donor sample 401 

within each neuronal subtype cluster compared to the total neuronal nuclei for the same sample, 402 

and compared the proportions between NDD and NC donors. The results identified four 403 

vulnerable neuronal subtypes significantly depleted across the three NDDs (Fig. 2A). Two of 404 

these were identified in AD, including one excitatory neuron subtype, AD-Exc7 (padj=6.46e-5), 405 

and one inhibitory neuron subtype, AD-Inh10 (padj=1.90e-5). In DLB, we identified one depleted 406 

inhibitory neuron subtype, DLB-Inh10 (padj=1.65e-15), and in PD one depleted inhibitory neuron 407 

subtype, PD-Inh6 (padj=8.53e-7). Of note, the analysis demonstrated that the same inhibitory 408 

neuron subtype is depleted in both AD and DLB.  409 

To characterize the unique transcriptional patterns in the context of disease of each of 410 

these depleted subtypes compared to subtypes that were not depleted, we used a likelihood-ratio 411 
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test to identify differentially expressed genes (DEGs) between each depleted cluster and the 412 

other clusters of the same annotated cell type (i.e. excitatory or inhibitory neurons), adjusting for 413 

the latent variables age, sex, postmortem interval (PMI), and the number of nuclei after filtering. 414 

The comparison was made between the depleted neuronal subtypes and non-depleted subtypes in 415 

the disease samples only. DEGs (false discovery rate (FDR) adjusted p-value < 0.05) were 416 

further categorized into positive (upregulated) and negative (downregulated) genes based on 417 

their average log2 fold change (Fig. 2B, Tables S3-S6). Strikingly, comparison of positive and 418 

negative marker genes across all three depleted inhibitory neuron clusters revealed more than 419 

97% marker gene identity between clusters AD-Inh10 and DLB-Inh10. Furthermore, cell 420 

barcode comparison revealed that over 99% of the same NC neuronal cells were present in both 421 

clusters, strongly indicating that the two clusters represent the same neuronal subtype, depleted 422 

in both AD and DLB. Examination of expression of canonical inhibitory neuron markers used in 423 

previous studies36-40 among inhibitory subtypes of all NDDs showed the depleted Inh clusters of 424 

AD and DLB to be distinguished from other subtypes by strong co-expression of VIP, TAC3, 425 

PROX1, CNR1, and TSHZ2, as well as low expression of STXBP6, LHX6, CUX2, and 426 

PHACTR2, among other marker genes (Fig. S1B). In contrast, no cell type with a comparable 427 

canonical marker expression signature was identified among PD inhibitory neuron clusters.  428 

In order to better understand the biological significance of differential gene expression in 429 

the vulnerable neuronal clusters, we examined enrichment of particular biological pathways 430 

among positive and negative markers of each depleted subtype41, and generated networks of 431 

enriched pathways grouped by shared gene membership (Fig. 2C). For all depleted clusters, we 432 

primarily found common DEGs associated with functional categories relating to neuronal 433 

development and organization (e.g. neuron projection development, axon guidance), synaptic 434 
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structure (e.g. presynapse, postsynapse, cell-cell adhesion) and synaptic transmission (e.g. 435 

regulation of membrane potential, monoatomic ion channel complex, synaptic protein-protein 436 

interactions), suggesting that nuances of neuron organization and synaptic function play an 437 

important role in determining susceptibility to neurodegeneration.   438 

Examining specific positive and negative marker genes with the most strongly altered 439 

(largest fold-change) gene expression in vulnerable neuronal subtypes (Fig. 2D), we found that 440 

in AD-Exc7, glutamate receptor-encoding genes GRM8 and GRIK2 were among the most 441 

strongly upregulated, while the glutamate receptor gene GRIA4 was among the most strongly 442 

downregulated. The cadherin-encoding gene CDH20, regulating cell-cell adhesion, was also 443 

strongly upregulated, while the cadherin genes CDH9 and CDH12 were downregulated, as was 444 

PTPRK, also involved in cell adhesion. In order to identify marker genes more likely to be 445 

involved in driving NDD pathology, we defined genes proximal (within 500Kb) to GWAS-446 

identified risk loci for a particular NDD as “GWAS genes”. Based on GWAS-identified risk loci 447 

for AD10,11, the adrenergic receptor gene ADR1A was the most strongly upregulated AD-GWAS 448 

gene marker for AD-Exc7, while the cell migration regulatory gene THSD7A was the most 449 

strongly downregulated AD-GWAS gene marker.  450 

As noted, depleted subtypes AD-Inh10 and DLB-Inh10 largely shared the same marker 451 

genes. The strongest positive markers for both these types included the transcription factor (TF) 452 

gene ZBTB20, translational regulator PRR16, and SORCS1 and SORCS3, both involved in 453 

vesicle trafficking and likely playing a role in synaptic transmission. The most strongly 454 

upregulated AD-GWAS gene marker was EGFR, involved in cell migration, while the most 455 

strongly downregulated AD-GWAS gene marker was PTCHD4, involved in neuronal 456 

development. Based on GWAS-identified risk loci for DLB15,16, the most strongly upregulated 457 
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DLB-GWAS gene marker was the TF-encoding FOXN3, while the most strongly downregulated 458 

DLB-GWAS gene was MGAT4C, involved in protein glycosylation.  459 

The subtype depleted in PD, PD-Inh6, showed marked upregulation of glutamate receptor 460 

genes GRM1 and GRID2, as well as cell adhesion-regulating genes NCAM2 and SPON1, while 461 

downregulation of several developmental genes was observed, including ZNF536, VWC2, NRG1, 462 

and ZNF804A. Notably, the most strongly upregulated PD-GWAS gene marker (based on 463 

GWAS-identified risk loci for PD13) for this cluster was SNCA, suggesting that overexpression of 464 

the SNCA gene correlates with vulnerability to neurodegeneration in PD. The most strongly 465 

downregulated PD-GWAS gene marker was the transcriptional regulatory gene RBMS3.  466 

 467 

3.3 Characterization of disease-driver cell subtypes with enriched expression of GWAS-468 

identified risk genes  469 

We sought to identify cell subtypes that were potentially important for conferring risk of each 470 

NDD, hereafter disease-driver cell types, based on increased expression of GWAS genes. First, 471 

we integrated, annotated, and clustered nuclei of each NDD with NC nuclei as described above, 472 

except that in this case nuclei of all cell types, including astrocytes (Astro), excitatory neurons 473 

(Exc), inhibitory neurons (Inh), microglia (Micro), oligodendrocytes (Oligo), and 474 

oligodendrocyte precursor cells (OPC) were included rather than neuronal nuclei alone. This 475 

resulted in delineation of 32 cell subtype clusters in AD, 32 clusters in DLB, and 35 clusters in 476 

PD (Fig. 3A). We next examined each subtype for enriched expression of GWAS genes using 477 

AUCell42. This program compares expression of a defined gene set (i.e. GWAS proximate genes) 478 

to total genes expressed in each nucleus, and determines whether the gene set is expressed in a 479 

significantly higher proportion than would be expected by chance. We defined a cluster as a 480 
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disease-driver if over 99% of nuclei showed significant enrichment for GWAS gene set 481 

expression. In this way we identified one disease-driver oligodendrocyte cluster in AD (AD-482 

Oligo3), four disease-driver excitatory neuron clusters (DLB-Exc1, 5, 8, 10) and two inhibitory 483 

neuron clusters (DLB-Inh1, 2) in DLB, and four disease-driver excitatory neuron clusters in PD 484 

(PD-Exc4, 5, 6, 7) (Fig. 3A, B). Thus, both DLB and PD produced multiple neuronal cell types 485 

that were implicated as disease drivers, while in AD only a single oligodendrocyte disease-driver 486 

cell subtype was identified. 487 

 In order to understand the potential functional significance of risk genes expressed in 488 

these disease-driver clusters, we performed marker gene analysis as above, comparing gene 489 

expression in disease-driver clusters of a particular cell type to all of the other clusters of that 490 

same cell type in NDD nuclei (Tables S7-S10). We then examined biological pathway 491 

enrichment among GWAS genes upregulated in each set of disease-driver cell types. Finally, we 492 

clustered enriched pathways based on common gene membership (Fig. 3C). In the disease-driver 493 

oligodendrocyte cluster of AD, AD-Oligo3, we found enrichment of numerous pathways relating 494 

to endosomal vesicle trafficking (specific strongly upregulated genes relating to this pathway 495 

including SORL1, MYO1E, and PACS2 (Fig. 3D)), cytoskeletal organization (e.g. HYDIN, 496 

TANC2, STRN), and regulation of proteolysis (e.g. ADAMTS4) and apoptosis (e.g. DAPK2, 497 

TNFRSF21). Notably, we also observed strongly inhibited expression of the major AD risk 498 

factor gene BIN1 in this cell type (Table S7). In disease-driver excitatory neuron clusters of 499 

DLB, we identified enrichment of pathways relating to synaptic organization and transmission 500 

(e.g. KCNN3, SLC29A4, C1QL2), cell adhesion (e.g. PCDH8), transmembrane transport (e.g. 501 

SLC2A12, MSFD4A, ATP7B), DNA damage response (e.g. CDC14B), and proteolysis. Among 502 

disease-driver inhibitory neurons in DLB, we found enrichment of pathways relating to synaptic 503 
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transmission (e.g. ATP2B2, CPLX1, KCNC1, SCTR), autophagy, proteolysis (e.g. UBE3A), and 504 

DNA damage response (e.g. CDC148, FBXO31). In disease-driver excitatory neurons of PD, we 505 

found enrichment of risk genes involved in synaptic organization and transmission (e.g. SNCA, 506 

CAMK2D, RIMS1, SH3GL2, TMEM163, SYT17, KCNK10), autophagy, phospholipid 507 

metabolism, and homologous recombination. It is notable that as for the PD-depleted neuron 508 

cluster above, SNCA was also among the top upregulated GWAS genes within PD-disease driver  509 

neuron clusters.  510 

 511 

3.4 Altered cell to cell communication pathways in NDDs 512 

Next, we aimed to investigate changes in interactions between different cellular subtypes 513 

associated with each of the three NDDs. To accomplish this, we used the same integrated 514 

datasets of NC nuclei and nuclei of each NDD used above for analysis of disease-driver 515 

subtypes. We analyzed expression of known interacting ligands and receptors in each of the 516 

subtype clusters to identify pairs of subtypes with likely communication using CellChat43. 517 

Predicted interactions were then compared between NC and NDD nuclei to identify disease-518 

associated changes in cell-cell communication. Comparisons were made with regard to relative 519 

strength of interactions between cell subtypes based on changes in gene expression levels 520 

between NC and NDD nuclei of the same subtype.   521 

 Changes in interaction strength were varied across the three NDDs (Fig. 4A). In AD, 522 

such changes were overall split between increased and decreased communication among 523 

different cell types, with both large increases and decreases observed among the top 10% of 524 

altered cell type interactions. The cell types with the largest increases in interaction strength 525 

included several excitatory neuron subtypes, AD-Exc1, 3, and 4, and inhibitory neuron subtype 526 
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AD-Inh1, as well as oligodendrocyte subtypes AD-Oligo1 and 4. All of these cell types showed 527 

primarily increased communication with neuronal subtypes. In contrast, decreased interaction 528 

strength was observed in astrocyte cluster AD-Astro1, excitatory neuron cluster AD-Exc2, and 529 

oligodendrocyte precursor cell cluster AD-OPC1, all of which showed reduced communication 530 

with one another as well as with several neuronal and oligodendrocyte subtypes. In DLB, by 531 

contrast, overall changes primarily showed decreases in interaction strength. Among the 532 

strongest effects, subtypes DLB-Astro1, DLB-Exc1, 3, 5, and 6, DLB-Inh1, 2, 3, and 4, DLB-533 

Oligo1 and 5, and DLB-OPC1 showed reduced communication strength mainly with one 534 

another. However, subtypes DLB-Oligo1, 2, 3, 4, and 6 showed increased communication with 535 

one another as well. In PD, overall decreased interaction strength was also observed, with the 536 

strongest decreases found between the cell types PD-Astro1 and 2, PD-Exc1, 2, 3, 5, and 6, PD-537 

Inh2, and 4, PD-Oligo1, and PD-OPC1. Increased interaction strength in PD was observed for 538 

clusters PD-Oligo2, and 4, primarily with regard to other oligodendrocyte clusters. Overall the 539 

results demonstrated increased interaction strength in AD driven primarily by excitatory neurons 540 

and oligodendrocytes, but decreased interaction strength in DLB and PD, driven primarily by 541 

both inhibitory and excitatory neurons, as well as oligodendrocytes. Thus, changes in cell-cell 542 

communication strength in DLB and PD closely resembled one another, while patterns in AD 543 

were more distinct.   544 

 To get new insights into the biological significance of cell-cell communication in the 545 

three NDDs, we examined the biological pathway associations of the genes involved in altered 546 

communication between each pair of cell subtypes using Metascape. Pathways enriched among 547 

genes associated with the top AD-increased interactions related primarily to cell growth, 548 

development, and morphology, as well as DNA damage response, stress response, and GPCR 549 
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and kinase signaling (Fig. 4Bi). The pathways enriched among AD-increased interactions across 550 

all cell types notably differed between neuron-to-neuron interactions and oligodendrocyte-to-551 

neuron interactions (Fig. 4Bii). Pathways strongly enriched among all interaction types were 552 

associated with cell growth and morphogenesis, and GPCR and tyrosine kinase receptor 553 

signaling, while interactions more strongly enriched in neuron-to-neuron interactions related 554 

specifically to nerve morphogenesis and organization, including axon guidance, nerve 555 

development, semaphorin signaling, and neurotrophin signaling.  556 

In DLB, interaction strength was overall reduced compared to NC nuclei, and pathways 557 

enriched among genes associated with the top DLB-decreased interactions related primarily to 558 

cell growth and development, immune response signaling, and calcium homeostasis (Fig. 4Ci). 559 

Pathway enrichment was strongest in DLB-decreased communications involving the Exc1 and 560 

Exc3 excitatory neuron subtypes as the transmitting cell type, with a wide variety of receiving 561 

cell types (Fig. 4Cii). Pathways enriched specifically in these types of interactions related to cell 562 

growth and proliferation, cell morphogenesis, and the oxidative stress response. Pathways 563 

enriched among all interacting cell types additionally included calcium ion homeostasis, immune 564 

response signaling, chemotaxis, proteolysis, and general kinase signaling.   565 

In PD, interaction strength was also reduced overall. Pathways enriched among genes 566 

associated with the top PD-decreased interactions again related to cell growth and development, 567 

and also to axon guidance and neuronal organization, synaptic membrane structure, and 568 

regulation of apoptosis (Fig. 4Di). Some specific pathways were most often enriched in PD-569 

decreased communications in which neuronal subtypes were the transmitting cell type, including 570 

PI3K/AKT growth signaling, cAMP signaling, and endocrine hormone signaling (Fig. 4Dii). 571 

Many pathways involved in growth and development were enriched across all interaction types, 572 
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as were pathways associated with regulation of apoptosis, cell adhesion, synaptic membrane 573 

organization, and enzyme-linked receptor signaling.  574 

Next, to organize altered cell-to-cell communication networks with regard to the specific 575 

cell types involved, individual pairs of interacting proteins in NDD and NC nuclei were grouped 576 

by association with particular biological pathways, and each of these pathway groups were 577 

further clustered based on the particular cell subtypes in communication, following principal 578 

component analysis (PCA) (Fig. S2A). This led to the identification of four communication 579 

clusters each in AD and DLB, and five clusters in PD. In AD and PD, each cluster contained a 580 

qualitatively even distribution of pathways from both NC and NDD nuclei. However, in DLB, 581 

cluster 1 was entirely composed of communication pathways identified in NC nuclei, while 582 

cluster 3 was heavily dominated by pathways identified in DLB nuclei, suggesting the 583 

development of distinct cell-to-cell communication networks in the context of DLB (Fig. S2B).    584 

 585 

3.5 Shared patterns of differential gene expression among NDDs 586 

In order to identify commonalities in gene dysregulation among NDDs, we integrated snRNA-587 

seq data from nuclei of all three NDDs and NC nuclei for each of the six major cell types and 588 

grouped these into cell subtype clusters as described above. Next we further annotated these 589 

clusters as more specific predicted cell types using the scMayoMap44 software package (Fig. 590 

5A), and employed the NEBULA45 software package to perform differential gene expression 591 

analysis between NC nuclei and those of each NDD at the cell subtype level. Across all three 592 

NDDs, the highest numbers of DEGs were identified in inhibitory neuron subtypes, and the 593 

majority were downregulated (Fig. 5B).  Most excitatory neurons and astrocytes clusters in AD 594 

exhibited primary gene downregulation, while, in DLB and PD both upregulated and 595 
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downregulated DEGs were detected in those clusters. On the other side, microglia showed mixed 596 

up- and downregulation in AD, but predominantly upregulation in DLB and PD in most 597 

subtypes. OPC subtypes showed both up- and downregulation DEGs within each NDD. 598 

Oligodendrocytes were also varied, with mixed distribution of up- and downregulation in AD, 599 

predominant upregulation in DLB, and predominant downregulation in PD. Notably, SNCA was 600 

upregulated in DLB in four separate oligodendrocyte clusters (Oligodendrocyte 1, 3, 5, and 10), 601 

but not in oligodendrocyte clusters of PD, suggesting a potentially important function in 602 

oligodendrocytes for this key synucleopathy gene specifically in the context of DLB.  603 

 Next, for each cell subtype we catalogued the shared up- and downregulated DEGs across 604 

all three NDDs (Fig. 5C). As expected, inhibitory neuron subtypes exhibited the highest number 605 

of DEGs and almost all were downregulated. The Interneuron 2 inhibitory neuron subtype 606 

exhibited the highest number of shared downregulated DEGs (5,570; Fig. 5D, Table S10). 607 

followed by the GABAergic neuron 1 subtype (3,898; Fig. 5E, Table S11). Additionally, about 608 

900 downregulated DEGs were shared between each pair of pathologies in Interneuron 2 (984 609 

for AD and PD, 941 for AD and DLB, 876 for DLB and PD; Fig. 5Di). Similarly, GABAergic 610 

neuron 1 also exhibited additional shared DEGs between each pair of NDDs (4,713 for AD and 611 

PD, 423 for AD and DLB, 102 for DLB and PD; Fig. 5Ei).  Microglia 10 had the highest number 612 

of shared upregulated DEGs (248; Fig. 5F, Table S12). Examination of overlap between each 613 

pair of pathologies in Microglia 10 identified the largest number of shared upregulated DEGs 614 

(476) between DLB and PD, and fewer shared DEGs between the other pairs (48 for AD and 615 

DLB, 33 for AD and PD; Fig. 5Fi). In contrast, other major cell types shared only a relatively 616 

small number of DEGs. Overall, these results suggested that the common dysregulated pathways 617 

across NDDs are mainly found in inhibitory neurons.  618 
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 Thus, we next analyzed the enrichment of biological pathways among shared 619 

downregulated DEGs in the Interneuron 2 and GABAergic neuron 1 subtypes. As these are 620 

pathways enriched among downregulated DEGs they may reflect impaired biological pathways. 621 

In the Interneuron 2 subtype, we identified enrichment of pathways related to synaptic vesicle 622 

transport, mitochondrial function, oxidative phosphorylation, autophagy, proteolysis, and RNA 623 

processing (Fig. 5Dii). These functional categories were also identified in the analysis of the top 624 

enriched individual pathways (Fig. 5Diii). Specific genes that were strongly downregulated in all 625 

three NDDs included the transcription factor (TF) gene ETV5, associated with the response to 626 

oxidative stress, and the cell growth regulator gene NELL1, as well as the AD-GWAS gene 627 

CBLN4, involved in synapse organization, the DLB- and PD-GWAS gene DPM3, involved in 628 

endoplasmic reticulum (ER) function, and the autophagy-associated PD-GWAS gene RNASEK 629 

(Fig. 5Div). The respective DLB- and PD-GWAS genes NEK5 and TIMP2, both involved in 630 

regulation of proteolysis, were strongly downregulated in both DLB and PD.  631 

In the GABAergic neuron 1 subtype, the identified enriched pathways based on shared 632 

downregulated DEGs were overall similar to those of Interneuron 2 (Fig. 5Eii), including aerobic 633 

respiration and respiratory electron transport, translation, metabolism of RNA, and 634 

mitochondrion organization (Fig. 5Eiii). ETV5 and DPM3 were again among the most highly 635 

downregulated genes in all three NDDs, as was the AD-GWAS gene VGF, involved in 636 

regulation of neuroplasticity, and the AD- and PD-GWAS GABA-receptor interacting gene 637 

GABARAP (Fig. 5Eiv). Developmental regulator WNT3, a GWAS gene for both AD and PD, was 638 

also highly downregulated in those two NDDs. 639 

Similarly, we analyzed pathway enrichment in upregulated DEGs of the Microglia 10 640 

subtype, plausibly indicating activation of biological pathways. The results demonstrated 641 
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enrichment for growth and developmental pathways, as well as pathways associated with 642 

leukocyte activation, cell cycle regulation, DNA damage response, chromatin organization, and 643 

cytoskeletal organization (Fig. 5Fii). The strongest enriched individual pathways included 644 

chromatin organization, growth factor signal transduction, receptor tyrosine kinase signaling, and 645 

NOTCH1 signaling (Fig. 5Fiii). The TF genes ELF2 and MAML3, and the deubiquitinase gene 646 

USP3, all AD-GWAS genes, and the transcriptional regulator PD-GWAS gene LCORL were 647 

among the most strongly overexpressed DEGs across all three NDDs, as were the actin motor 648 

gene MYO9B, and the cell growth signaling gene PTPRC (Fig.4Fiv). The gene DOCK2, involved 649 

in chemokine-responsive cytokinesis, was strongly upregulated in both AD and DLB, while the 650 

DLB-GWAS gene SLCO2B1, also involved in cell growth signaling, the steroid transport gene 651 

CYB5R4, the PD-GWAS gene DISC1, regulating neuronal development, and the ER 652 

monooxygenase gene TBXAS1, were strongly upregulated in both PD and DLB. In summary, we 653 

observed high numbers of shared downregulated genes in inhibitory neuron subtypes across all 654 

three NDDs, indicating impairment of pathways relating to neuronal development, synaptic 655 

function, stress responses, and other categories, but more diverse expression patterns in other 656 

types, with fewer shared DEGs. 657 

 658 

3.6 Differential gene expression between NDDs 659 

To advance the understanding of mechanistic diversity amongst NDDs we next studied the 660 

differential transcriptomic landscape between NDDs. To accomplish this, we integrated 661 

transcriptomic data for all cell types from each pair of NDDs (i.e., AD and DLB, PD and DLB, 662 

and AD and PD) and performed dimensional reduction and clustering of the integrated datasets 663 

to identify cell subtypes (Fig. 6A). Differential expression analysis was performed at the cell 664 
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subtype level for each NDD pairing to identify distinct DEGs between the pathologies. In 665 

comparing AD and DLB, we found DEGs that were upregulated in DLB in only four out of the 666 

29 cell subtype clusters, including excitatory neurons (clusters 5 and 9), and oligodendrocytes 667 

(clusters 1 and 2), which exhibited about 5,000 DEGs each (5347, 5030, 4630, and 4805, 668 

respectively), mainly upregulated in DLB (Fig. 6B, Ci, Tables S13-S16). The only other clusters 669 

that exhibited more than 100 DEGs were Exc3 and Oligo6. Biological pathway enrichment 670 

analysis of DLB-upregulated DEGs in the excitatory neuron subtypes revealed enrichment of 671 

genes involved in cell cycle regulation, synaptic transmission, and stress response. In 672 

oligodendrocyte clusters we found enrichment for pathways associated with inclusion body 673 

assembly, cellular signaling, and chromatin organization (Fig. 6Cii). In addition, genes involved 674 

in DNA damage response, proteolysis, immune response, and transcriptional regulation were 675 

enriched in both of these cell types. Accordingly, the strongest DLB-upregulated genes also play 676 

roles in these functional categories, including GWAS risk genes for both AD and DLB (Fig. 677 

6Ci). For example, RTF2, a DEG in Exc5 and Oligo2, and FBXO31 in Oligo 2 are involved in 678 

DNA damage response, and the DEGs SUGT1 in Exc5, CCNE2 in Exc9, and GAK in Oligo1 and 679 

2, among others, are involved in cell cycle regulation. The proteolysis associated gene MAEA is a 680 

GWAS risk gene for both AD and DLB and was among the highest DLB-upregulated DEGs in 681 

both Exc9 and Oligo1. The growth factor signaling AD-GWAS gene PLCG2 was highly DLB-682 

upregulated in all four cell types. 683 

 Comparison of PD to DLB across all clusters also resulted mainly in DLB-upregulated 684 

DEGs (Fig. 6B, Di, Tables S17-S20). Genes were strongly upregulated in DLB in a number of 685 

oligodendrocyte clusters (2875, 4386, 3689, and 2525 in Oligo1, 2, 3, and 5, respectively), with 686 

fewer DEGs in excitatory neuron clusters (537 and 1404 in Exc1 and 4, respectively). 687 
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Additionally, while the Micro2 cluster was annotated as a microglial cluster due to this being the 688 

most prevalent cell type, excitatory neuron nuclei comprised approximately a third of the cluster 689 

and >10% of the cluster was made up of oligodendrocyte cells. For this reason we separately 690 

performed differential expression analysis on each of these three cell types within the cluster. We 691 

identified 6.25-fold more DEGs for the excitatory neuron subset (Micro2_Exc) compared to the 692 

microglial subset (Micro2_Micro), indicating excitatory neurons as the primary source of 693 

differential gene expression for this cluster. Biological pathway analysis revealed that the top 694 

enriched pathways across cell subtypes included synaptic transmission, neuronal morphology, 695 

protein folding and proteolysis (Fig. 6Dii). The strongest enrichment was observed in Micro2 696 

excitatory neurons followed by multiple oligodendrocyte and other excitatory neuron subtypes, 697 

as well as Micro2 microglia. Synaptic transmission-associated pathways were most strongly 698 

enriched in excitatory neuron subtypes. DLB- and PD-GWAS genes strongly upregulated in 699 

DLB were also associated with these functional categories, including synaptic adhesion-related 700 

genes ADAM15 and GPNMB in Exc7, and synaptic vesicle-trafficking gene RUSC1 in Micro2 701 

(Fig. 6Di). Chromatin remodeling GWAS genes were DLB-upregulated across multiple clusters, 702 

including ATXN7L3 and TOX3 in Micro2, KAT8 in Oligo2, and SALL1 in Oligo3, while the TF 703 

ELK4 was DLB-upregulated in all three clusters. The DNA repair-associated gene NUCKS1 and 704 

actin gene ATCB were highly DLB-upregulated in both oligodendrocyte clusters Oligo2 and 3. 705 

Notably, SNCA and the amyloid precursor protein (APP)-processing gene LDLRAD3 were both 706 

among the most highly DLB-upregulated GWAS genes in Oligo3.  707 

 Comparing AD to PD yielded the most diverse pattern of transcriptional dysregulation as 708 

demonstrated by the variety of cell types with DEGs and the directionality of the differential 709 

expression (Fig. 6B, Ei, Tables S21-S25). Upregulation in PD was observed in astrocyte (821 710 
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and 745 DEGs in Astro1 and 2, respectively), excitatory (623, 749, 1064, and 2377 in Exc1, 3, 5, 711 

and 9) and inhibitory neuron clusters (720 in Inh6), while upregulation in AD was observed 712 

primarily in oligodendrocyte clusters (949 in Oligo1). The largest number of DEGs upregulated 713 

in AD was observed in the Oligo7 cluster. However, this subtype represents a hybrid cluster, 714 

comprised of similar numbers of nuclei annotated as oligodendrocytes and excitatory neurons 715 

(42.4% and 38.4% of cluster nuclei, respectively). Thus, oligodendrocytes (Oligo7_Oligo) and 716 

excitatory neurons (Oligo7_Exc) in this cluster were analyzed separately for differential gene 717 

expression. Similar numbers of DEGs were identified for each of these subsets (2,530 for 718 

Oligo7_Oligo and 2,905 for Oligo7_Exc).  719 

Biological pathway analysis of the PD-upregulated DEGs for each cell subtype showed 720 

the strongest enrichment in the Astro2 subtype, followed by other astrocyte, excitatory neuron, 721 

and oligodendrocyte clusters (Fig. 6Eii). These were dominated by pathways associated with 722 

neuronal morphogenesis/organization and synaptic transmission. Accordingly, the most strongly 723 

upregulated AD- and PD-GWAS genes were also involved in cell morphogenesis and 724 

organization, including B3GAT1 in Astro2, and GJC1, EFNA2, and PLK5 in Exc9 (Fig. 6Ei). 725 

Genes upregulated in AD over PD showed the strongest enrichment for pathways in the Oligo7 726 

cluster (both Oligo and Exc subsets) as well as several other oligodendrocyte clusters (Fig. 727 

6Eiii). Across these cell types, the top enriched pathways were largely associated with 728 

autophagy, mitochondrial structure, membrane trafficking, and mRNA processing. However, in 729 

Oligo1 and 7, the most strongly AD-upregulated individual GWAS genes were mainly 730 

associated with different pathways, including numerous protein synthesis and maturation-731 

associated DEGs (Fig. 6Ei). These included ribosomal genes RPS11, RPS15 and RPL13A, and 732 

chaperone PFDN2 in Oligo1, and genes associated with cell cycle regulation (FLBXL15, 733 
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RPRML), proteolysis (FLBXL15,  PSMC5), and mitochondrial oxidative metabolism 734 

(SLC25A39, CYC1) in Oligo7.  735 

To summarize, comparison of gene expression in DLB to either AD or PD primarily 736 

revealed gene upregulation in DLB within relatively few excitatory neuron and oligodendrocyte 737 

cell subtypes, but comparison of AD to PD revealed more diverse patterns of differential gene 738 

expression, with upregulation in PD within astrocyte, excitatory neuron, and inhibitory neuron 739 

clusters, and upregulation in AD within numerous oligodendrocyte clusters.  740 

 741 

4. DISCUSSION 742 

The three major NDDs AD, PD and DLB, are defined as distinct disorders but have common 743 

comorbidities, shared clinical presentation and overlapping pathological characteristics. In this 744 

study, we aimed to identify shared and divergent gene expression patterns among these NDDs at 745 

a granular cell subtype resolution. We thus compared the transcriptomic landscapes of AD, DLB, 746 

and PD within specific cell subtype populations of the TC. We utilized snRNA-seq datasets 747 

obtained from each of the three NDDs to gain insight into various aspects of pathogenesis across 748 

the different NDDs including: (1) vulnerability of specific cell subtypes, (2) disease-driver cell 749 

subtypes based on enriched expression of GWAS genes, (3) changes in cell-to-cell 750 

communication, (4) shared and (5) differential gene expression patterns and biological pathways 751 

(Fig. 1B).  752 

 NDDs are characterized by progressive neuronal loss. While vulnerable neuronal 753 

populations have been described for individual NDDs46-48, no previous work has directly 754 

compared vulnerability of the same cell subtypes across NDDs. We therefore examined 755 

depletion of excitatory and inhibitory neuronal subtypes in each NDD, and found that AD and 756 
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DLB share a common vulnerable TC inhibitory neuron subtype. This neuronal type was 757 

characterized in part by expression of the major interneuron marker VIP and lack of expression 758 

of PVALB, SST, and HTR3A. Previous work has demonstrated cortical VIP+ interneurons to be 759 

moderators of cortical disinhibitory circuits, inhibiting PVALB+ and SST+ interneurons and 760 

thereby preventing inhibition of pyramidal neurons, thus regulating motor integration and 761 

cortical plasticity49. Loss of this subtype in AD and DLB suggests its potential involvement in 762 

cognitive impairment associated with both NDDs. In PD, previous work has primarily focused 763 

on characterization of vulnerable neuronal populations within the substantia nigra (SN)48.  764 

However, in this work we identified a cluster of inhibitory neurons depleted within the TC that 765 

was distinct from depleted populations in AD and DLB, suggesting potential association of this 766 

cell type with PD-specific pathology. 767 

 To better understand brain cell types driving disease risk in each NDD, we took a unique 768 

approach by examining enrichment of GWAS-gene expression. Multiple neuronal subtypes were 769 

implicated as disease drivers in DLB and PD, but in AD we identified only a single 770 

oligodendrocyte subtype. While published work has focused mainly on the role of disease-771 

associated microglia in AD pathogenesis50-52, more recently the involvement of oligodendrocytes 772 

has also been suggested 53,54. Demyelination has been shown to often precede neuronal loss in 773 

AD cases55, and to result in neurodegeneration through disruption of metabolic axon support and 774 

maintenance56. Oligodendrocyte dysfunction causing  myelin loss may thus represent a primary 775 

feature of AD pathology57. Furthermore, the importance of AD risk gene expression in 776 

oligodendrocytes has also been established58. For example, the major AD risk-associated gene 777 

BIN1, involved in vesicle endocytosis and regulation of apoptosis, among other functions, is 778 

primarily expressed in oligodendrocytes and has been implicated in AD-associated 779 
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demyelination59. Here, we identified strong inhibition of BIN1 in the disease-driver 780 

oligodendrocyte cluster of AD nuclei compared to other oligodendrocyte subtypes, along with 781 

highly increased expression of numerous other AD-GWAS genes associated with vesicle 782 

trafficking and apoptosis, including PICALM and SNX1. Dysregulation of these processes within 783 

disease-driver oligodendrocytes may contribute to oligodendrocyte dysfunction and AD 784 

progression within the TC.  785 

 Analysis of altered cell-to-cell communication also highlighted oligodendrocyte subtypes 786 

in all three NDDs, in addition to several neuronal subtypes. While in AD the strength of many 787 

communication pathways was increased, overall decreased communication was observed in DLB 788 

and PD. Together with our identification of the disease-driver cell types, these changes in 789 

cellular communication suggest an increased involvement of oligodendrocyte-neuron interaction 790 

in AD, while communication between and within these cell types may be inhibited in the context 791 

of the synucleopathies.  792 

 Here we also studied shared dysregulation of gene expression and impaired biological 793 

mechanisms across NDDs. We identified the highest numbers of shared DEGs among inhibitory 794 

neuron subtypes, most of which were downregulated in the NDD state. Previous studies have 795 

established an important role for inhibitory neurons in AD60-62, demonstrating that GABAergic 796 

neurotransmission is impaired both in human patients63-65 and murine AD models66-68, leading to 797 

hyperexcitability of neural circuits and likely contributing to cognitive dysfunction. In PD, it has 798 

been suggested that dysregulation of GABAergic neurotransmission is a primary driver of motor 799 

control deterioration69. Overaccumulation of intracellular Ca2+ along with SNCA is directly 800 

associated with neuronal death in PD in part through mitochondrial stress-induced apoptosis70,71, 801 

while GABA signaling prevents Ca2+ influx and thereby protects neurons from calcium 802 
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toxicity70. Loss of dopaminergic neurons in the SN is furthermore predicted to dysregulate 803 

GABAergic neurotransmission72,73. These findings support the importance of inhibitory neurons 804 

in both cognitive decline in AD and motor deterioration in PD, as well as presumably in the 805 

combination of these clinical symptoms in DLB.  Furthermore, our pathway analysis in 806 

inhibitory neuron subtypes revealed altered expression of numerous genes involved in 807 

mitochondrial processes across the NDDs, possibly indicating dysregulated metabolic activity 808 

resulting from disease-associated neurological dysfunction.  809 

 While NDDs share several molecular features and underlying mechanisms, each disease 810 

also displays unique molecular underpinnings associated with distinct biological pathways. We 811 

investigated the diseases-specific molecular determinants by direct comparison of differential 812 

gene expression between pathologies. This analysis produced several key discoveries. First, a 813 

relatively small number of cell subtypes displayed strong differential gene expression in DLB 814 

compared to either AD or PD. Moreover, in both these comparisons, almost all DEGs were 815 

upregulated in DLB and only few were upregulated in the either AD or PD.  In contrast, when 816 

comparing AD vs PD, the majority of cell subtypes exhibited relatively high numbers of DEGs, 817 

with greater diversity in the directionality of differential expression across cell types. These 818 

observations indicate overall greater transcriptomic divergence between AD and PD than 819 

between DLB and either of the other NDDs, and support a model wherein DLB is positioned 820 

between AD and PD on a spectrum of neurodegenerative pathology.  821 

In comparisons between all NDDs, we found that DEGs were predominantly identified in 822 

excitatory neuron and oligodendrocyte subtypes. Comparisons of PD to both AD and DLB 823 

identified multiple oligodendrocyte clusters with altered transcriptional profiles. Consistently, 824 

previous single-cell sequencing studies have revealed enriched expression of PD-GWAS genes 825 
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in oligodendrocytes of the SN74, as well as depletion of differentiating oligodendrocytes in the 826 

midbrain of PD patients75. Furthermore, PD-specific oligodendrocyte populations have been 827 

predicted to display aberrant myelination activity based on human transcriptomic and mouse 828 

model data76. Together with these previous findings, our data suggest an important role for 829 

oligodendrocyte subtypes in PD that is distinct from both AD and DLB.   830 

This work provides an essential direct comparison of the molecular underpinnings of 831 

three major NDDs. However, there are some limitations. First, in order to directly compare the 832 

transcriptomic signatures of the three NDDs, it was necessary to examine the same brain region 833 

in each context. However, brain regions are affected differently in each NDD. While 834 

neurodegeneration in cortical tissue may be associated with all three diseases, it is a hallmark 835 

only of AD and DLB, wherein dementia is an essential diagnostic feature. In PD, the TC region 836 

is typically involved in later stages of disease progression, when cognitive decline may occur77-837 

82. In this work, the majority of PD donor samples were in earlier disease stages and exhibited 838 

little to no Lewy pathology within the TC, based on established metrics83. Thus, our data for PD 839 

reflect transcriptional changes preliminary to major neurodegeneration. Secondly, the 840 

relationships described here between gene expression and pathogenic mechanisms are predictive 841 

in nature and empirical validation through controlled experimentation in model systems is 842 

necessary to confirm the importance of these predicted mechanisms in the three NDDs.  843 

 Here we examined similarities and differences between the transcriptomic landscapes of 844 

three major NDDs. However, it is important to note that each of these disease categories 845 

represents a complex range of comorbid clinical symptoms and co-pathologies. Four major 846 

subtypes of AD have been characterized based on tau distribution, neurodegenerative patterns, 847 

and other pathological factors84. In addition, a recent multicentric study identified five molecular 848 
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subtypes of AD using mass spectrometry proteomics of cerebrospinal fluids. Subtypes also 849 

differed in specific AD genetic risk variants, clinical outcomes, survival times, and patterns of 850 

brain atrophy85. Likewise, PD has been divided into three distinct subtypes based on both motor 851 

and non-motor factors including cognitive impairment, sleep disorder, and autonomic 852 

dysfunction86. DLB is particularly complex to define due to its shared clinical features with both 853 

AD and PD, but specific subtypes of this disease have also been described based on patterns of 854 

α-synuclein and tau distribution87. Future studies may thus apply similar strategies as are 855 

described here to elucidate the transcriptomic mechanisms underlying these pathological 856 

subtypes in order to develop an even higher-resolution understanding of the specific genetic 857 

factors driving diverse clinical outcomes. Because of the heterogeneity within and across NDDs, 858 

there is no single “silver bullet” for fighting neurodegeneration, but our findings provide unique 859 

predictive insight into the shared and distinct molecular mechanisms underlying these three 860 

pathologies, and contribute to a framework for future studies aimed at the development of 861 

targeted treatment strategies tailored to address the specific clinical challenges presented by each 862 

of these important diseases. 863 

 864 
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FIGURE CAPTIONS 1133 

 1134 

Figure 1. Elucidating similarities and differences in transcriptomic landscapes underlying 1135 

shared and distinct pathologic attributes of AD, PD, and DLB. A. Convergence of disease 1136 

attributes across NDDs. Dementia is a defining symptom of both AD and DLB but may also be 1137 

present in PD, while motor deterioration is a primary symptom of PD and DLB but may also be 1138 

present in AD. Lewy bodies are a hallmark of both PD and DLB, but are also present in over half 1139 

of AD cases, while tau and Ab, hallmarks of AD, are often present in DLB, and tau is a common 1140 

component of Lewy bodies. APOE variants represent the highest genetic risk factor for AD, but 1141 
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mutations have also been linked to DLB risk and cognitive decline in PD. SNCA is primarily 1142 

associated with PD and DLB, but mutations in this gene are also are associated with increased 1143 

risk of AD. Furthermore, numerous GWAS identified risk alleles show overlap across all three 1144 

NDDs. B. Comparison of NDD transcriptomic landscapes via snRNA-seq. TC samples from 12 1145 

donors diagnosed with AD, DLB, and PD, as well as normal controls, were used for snRNA-seq 1146 

analysis, followed by integration of transcriptomic datasets and cell type annotation. Datasets 1147 

were examined for depletion of neuronal cell subtypes in each NDD compared to NC nuclei, 1148 

identification of disease-driver cell types with enriched expression of GWAS genes, changes in 1149 

cell-to-cell communication between cell subtypes in NDD and NC nuclei, shared genes 1150 

differentially expressed in each NDD compared to NC nuclei, and differential gene expression 1151 

between each pair of NDDs.  1152 

 1153 

Figure 2. Characterization of vulnerable depleted cell subtypes in each NDD. A. UMAP 1154 

dimensional reduction plots of neuronal nuclei of each NDD integrated with NC nuclei. Smaller 1155 

plots are color coded to indicate excitatory neurons (Exc) and inhibitory neurons (Inh). Larger 1156 

plots are color coded to indicate cell subtype clusters. Depleted clusters are circled in red and 1157 

labeled. B. Unbiased volcano plots for depleted cell subtype clusters. Log2 fold change (FC) 1158 

between depleted cluster nuclei and other nuclei of the same major cell type is plotted against –1159 

log10 p-value (FDR). Points representing DEGs with statistically significant (FDR < 0.05) 1160 

upregulation in NDD are shown in dark red while DEGs with significant downregulation are 1161 

shown in dark blue. Genes without significantly differential expression are shown as gray points. 1162 

The three DEGs with the highest absolute fold change (log2FC > 0.2) in the up- and 1163 

downregulated categories are labeled in dark red and dark blue, respectively. The three DEGs 1164 
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within 500kb of NDD-associated SNPs previously identified in GWAS (GWAS-DEG) with the 1165 

highest absolute log2FC in the up- and downregulated categories are labeled in bright red and 1166 

bright blue, respectively. C. Metascape network plots of biological pathways enriched among 1167 

genes upregulated (positive markers) and downregulated (negative markers) within depleted cell 1168 

subtypes compared to cell subtypes of the same major cell type that were not depleted. Nodes 1169 

represent specific biological pathways clustered by shared gene membership. Clusters with 1170 

similar biological function are color coded and labeled according to general function. Node sizes 1171 

are proportional to the number of differential-interacting genes in the pathway, and line width 1172 

connecting nodes is proportional to shared gene membership in linked pathways. D. Violin plots 1173 

of log-normalized count data showing expression of the GWAS-DEGs (bordered in pink and 1174 

light blue) and 9 overall DEGs (bordered in red and dark blue) with the with the highest absolute 1175 

fold change in depleted clusters compared to clusters of the same major cell type that were not 1176 

depleted. Basic functional category information is indicated for each gene.  1177 

 1178 

Figure 3. Identification of disease-driver cell subtypes with enriched GWAS risk gene 1179 

expression. A. UMAP dimensional reduction plots of neuronal nuclei of each NDD integrated 1180 

with NC nuclei. Smaller plots are color coded to indicate subtypes below (False) and above 1181 

(True) the AUCell pass threshold for enriched expression of genes within 500kb of NDD-1182 

associated SNPs previously identified in GWAS (GWAS genes). B. Bar charts showing total 1183 

numbers of cells in each subtype cluster (blue) and numbers of cells above the AUCell pass 1184 

threshold for enriched GWAS gene expression (red). C. Metascape network plots of biological 1185 

pathways enriched among GWAS genes upregulated within disease-driver cell subtypes 1186 

compared to cell subtypes of the same major cell type that were enriched for GWAS gene 1187 
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expression. Nodes represent specific biological pathways clustered by shared gene membership. 1188 

Clusters with similar biological function are color coded and labeled according to general 1189 

function. Node sizes are proportional to the number of differential-interacting genes in the 1190 

pathway, and line width connecting nodes is proportional to shared gene membership in linked 1191 

pathways. D. Violin plots of log-normalized count data showing expression of the GWAS-DEGs 1192 

with the highest positive fold change in disease-driver clusters compared to clusters of the same 1193 

major cell type that were not disease-driving. Basic functional category information is indicated 1194 

for each gene.  1195 

 1196 

Figure 4. Differential interaction strength between cell subtypes in NDDs vs. Normal 1197 

nuclei. A. i. CellChat heatmaps showing degree of overall change in interaction strength between 1198 

all pairs of cell subtypes for each NDD. Red indicates increased interaction in NDD, blue 1199 

indicates decreased interaction. ii. CellChat network diagram showing celltypes with the highest 1200 

differential interaction strength based on fold change in receptor-ligand expression in NDD 1201 

nuclei compared to NC. Lines between celltypes indicate significantly altered interaction, with 1202 

red lines indicating increased interaction strength in NDD and blue lines representing decreased 1203 

interaction strength. Line width is proportional to statistical significance of change in interaction 1204 

strength. Larger and bold labels indicate celltypes with more prominently altered interactions. B. 1205 

i. Metascape network plot of biological pathways enriched among genes associated with 1206 

increased interaction strength in AD across all celltypes. Nodes represent specific biological 1207 

pathways clustered by shared gene membership. Clusters with similar biological function are 1208 

color coded and labeled according to general function. Node sizes are proportional to the number 1209 

of differential-interacting genes in the pathway, and line width connecting nodes is proportional 1210 
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to shared gene membership in linked pathways. ii. Heatmap of top 20 enriched pathways among 1211 

interactions increased in AD across all celltypes. Interacting celltypes are indicated, with sending 1212 

type listed first and receiving type indicated second. Color saturation is proportional to strength 1213 

of enrichment. C. i. Metascape network plot of biological pathways enriched among genes 1214 

associated with increased interaction strength in DLB across all celltypes. ii. Heatmap of top 20 1215 

enriched pathways among interactions increased in DLB across all celltypes. D. i. Metascape 1216 

network plot of biological pathways enriched among genes associated with increased interaction 1217 

strength in PD across all celltypes. ii. Heatmap of top 20 enriched pathways among interactions 1218 

increased in PD across all celltypes.  1219 

 1220 

Figure 5. Differential gene expression shared by three pathologies on cell subtype level. A. 1221 

UMAP dimensional reduction plots of integrated NDD and NC nuclei of each major cell type, 1222 

color coded to indicate cell subtype clusters. B. Bar charts representing numbers of DEGs 1223 

identified in each cell subtype within each NDD compared to NC nuclei of the same subtype. 1224 

Red indicates DEGs upregulated in NDDs and blue indicates DEGs downregulated in NDDs. C. 1225 

Bar chart representing numbers of DEGs shared between all 3 NDDs compared to NC nuclei for 1226 

each cell subtype. Red indicates DEGs upregulated in NDDs and blue indicates DEGs 1227 

downregulated in NDDs. D. i. Venn diagram showing overlap between DEGs downregulated in 1228 

each NDD within the Interneuron 2 subtype. ii. Unbiased volcano plots for GABAergic neuron 1 1229 

subtype gene expression in each NDD. Log2 fold change (FC) between NDD nuclei and NC 1230 

nuclei of the same subtype is plotted against –log10 p-value (FDR). Points representing DEGs 1231 

with statistically significant (FDR < 0.05) upregulation in NDD are shown in dark red while 1232 

DEGs with significant downregulation are shown in dark blue. Genes without significantly 1233 
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differential expression are shown as gray points. The three DEGs with the highest absolute fold 1234 

change (log2FC > 0.2) in the up- and downregulated categories are labeled in dark red and dark 1235 

blue, respectively. The three DEGs within 500kb of NDD-associated SNPs previously identified 1236 

in GWAS  (GWAS-DEG) with the highest absolute log2FC in the up- and downregulated 1237 

categories are labeled in bright red and bright blue, respectively. Basic functional category 1238 

information is indicated for each labeled GWAS-DEG. iii. Metascape network plots of biological 1239 

pathways enriched among DEGs downregulated in all NDDs within the GABAergic neuron 1 1240 

subtype. Nodes represent specific biological pathways clustered by shared gene membership. 1241 

Clusters with similar biological function are color coded and labeled according to general 1242 

function. Node sizes are proportional to the number of differential-interacting genes in the 1243 

pathway, and line width connecting nodes is proportional to shared gene membership in linked 1244 

pathways. iv. Metascape bar chart showing the top 20 most highly enriched biological pathway 1245 

terms among DEGs downregulated across all NDDs within the GABAergic neuron 1 subtype. 1246 

Statistical significance (Log10 p-value) is plotted on horizontal axes. Darker-colored bars 1247 

indicated greater significance. E. i. Venn diagram showing overlap between DEGs 1248 

downregulated in each NDD within the GABAergic neuron 1 subtype. ii. Unbiased volcano plots 1249 

for Interneuron 2 subtype gene expression in each NDD. iii. Metascape network plots of 1250 

biological pathways enriched among DEGs upregulated in all NDDs within the Interneuron 2 1251 

subtype. iv. Metascape bar chart showing the top 20 most highly enriched biological pathway 1252 

terms among DEGs downregulated across all NDDs within the Interneuron 2 subtype. F. i. Venn 1253 

diagram showing overlap between DEGs upregulated in each NDD within the Microglia 10 1254 

subtype. ii. Unbiased volcano plots for Microglia 10 subtype gene expression in each NDD. iii. 1255 

Metascape network plots of biological pathways enriched among DEGs upregulated in all NDDs 1256 
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within the Microglia 10 subtype. iv. Metascape bar chart showing the top 20 most highly 1257 

enriched biological pathway terms among DEGs upregulated across all NDDs within the 1258 

Microglia 10 subtype.  1259 

 1260 

Figure 6. Differential gene expression between NDDs in cell subtypes. A. UMAP 1261 

dimensional reduction plots of integrated pairs of NDD nuclei of all cell types, color coded to 1262 

indicate cell subtype clusters. B. Bar charts representing numbers of DEGs identified using 1263 

NEBULA for each cell subtype between nuclei of the indicated NDD pairs within the same 1264 

subtype. Red and blue bars represent DEGs upregulated in one or the other NDD, as indicated. 1265 

C. i. Unbiased volcano plots showing gene expression in selected cell subtypes in the AD and 1266 

DLB comparison. Log2 fold change (FC) between nuclei of the 2 NDDs in the same subtype is 1267 

plotted against –log10 p-value (FDR). Points representing DEGs with statistically significant 1268 

(FDR < 0.05) upregulation in AD are shown in dark blue while DEGs with significant 1269 

upregulation in DLB are shown in dark red. Genes without significantly differential expression 1270 

are shown as gray points. The three DEGs with the highest absolute fold change (log2FC > 0.2) 1271 

in the AD and DLB upregulated categories are labeled in dark blue and dark red, respectively. 1272 

The three DEGs within 500kb of NDD-associated SNPs previously identified in GWAS 1273 

(GWAS-DEG) exclusive to AD, exclusive to DLB, and common to both NDDs  with the highest 1274 

absolute log2FC in the up- and downregulated categories are labeled in bright red and bright 1275 

blue, respectively, and the NDDs associated with each GWAS-DEG are indicated. Basic 1276 

functional category information is indicated for each labeled GWAS-DEG. ii. Heatmap of top 20 1277 

enriched pathways among interactions increased in DLB compared to AD across all celltypes. 1278 

Color saturation is proportional to statistical significance of enrichment. D. i. Unbiased volcano 1279 
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plots showing gene expression in selected cell subtypes in the PD and DLB comparison. Color 1280 

coding indicates upregulation in the indicated NDD. The top three GWAS-DEGs exclusive to 1281 

PD, exclusive to DLB, and common to both NDDs  are indicated. ii. Heatmap of top 20 enriched 1282 

pathways among interactions increased in DLB compared to PD across all celltypes. E. i. 1283 

Unbiased volcano plots showing gene expression in selected cell subtypes in the AD and PD 1284 

comparison. Color coding indicates upregulation in the indicated NDD. The top three GWAS-1285 

DEGs exclusive to AD, exclusive to PD, and common to both NDDs  are indicated. ii. Heatmap 1286 

of top 20 enriched pathways among interactions increased in PD compared to AD across all 1287 

celltypes. iii. Heatmap of top 20 enriched pathways among interactions increased in AD 1288 

compared to PD across all celltypes.  1289 

 1290 

Figure S1. Canonical marker expression in neuronal subtypes of each NDD. A. Violin plots 1291 

of log-normalized count data showing expression of canonical neurotransmission-type marker 1292 

genes across neuronal subtype clusters of the three NDDs. Expression of 10 marker genes for 1293 

neuronal subtypes engaged in signaling via different neurotransmitter molecules was examined. 1294 

Inhibitory neuron clusters expressed genes indicating GABA transmission (SLC6A1, GAD1), 1295 

while excitatory neuron clusters all expressed SLC17A7, indicating glutamate transmission. 1296 

Other neurotransmission markers were not expressed in any of the clusters within the dataset, 1297 

including markers for glycine transmission (SLC6A9), serotonin transmission (SLC6A4, TPH1), 1298 

dopamine transmission (DDC, TH), acetylcholine transmission (CHAT), and general amine 1299 

transmission (SLC18A1). B. Violin plots of log-normalized count data showing expression of 1300 

expanded inhibitory neuron markers among all inhibitory neuron subtype clusters for each NDD.  1301 

 1302 
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Figure S2. Clustering of communication pathways by interacting celltypes involved. A. 1303 

Dimensional reduction and clustering of communication pathways based on transmitting and 1304 

receiving cell types. Clusters of pathways based on similarity of interacting cell subtypes are 1305 

color coded and numbered. Communication pathways in NDD nuclei are represented by colored 1306 

circles and pathways of NC nuclei are represented by open squares. Point sizes are proportional 1307 

to probability of communication. B. Metascape pathway analysis of top 20 enriched biological 1308 

pathways among genes involved in interactions between celltypes in DLB communication 1309 

clusters 1 (Normal dominant) and 3 (DLB dominant).  1310 

 1311 
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Figure 2. Characterization of vulnerable depleted cell subtypes in each NDD

A. Neuronal clusters depleted in NDDs

B. Gene markers from comparisons between depleted cell subtypes and other subtypes in the same cell type
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Figure 3. Identification of disease-driver cell subtypes with enriched GWAS risk gene expression

A. Clustering of nuclei and identification of disease-driver celltypes
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Figure 4. Differential interaction strength between cell subtypes in NDDs vs. Normal nuclei
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Figure 4. Differential interaction strength between cell subtypes in NDDs vs. Normal nuclei (cont.)
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Figure 5. Differential gene expression shared by three pathologies on cell subtype level
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Figure 6. Differential gene expression between NDDs in cell subtypes
A. Cell subtype clustering of cross pathology datasets
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Figure 6. Differential gene expression between NDDs in cell subtypes (cont.) 
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Figure S1. Canonical marker expression in neuronal subtypes of each NDD
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Figure S1. Canonical marker expression in neuronal subtypes of each NDD. A. Violin plots of log-normalized count data showing expression of canonical neurotransmission-type marker
genes across neuronal subtype clusters of the three NDDs. Expression of 10 marker genes for neuronal subtypes engaged in signaling via different neurotransmitter molecules was examined.
Inhibitory neuron clusters expressed genes indicating GABA transmission (SLC6A1, GAD1), while excitatory neuron clusters all expressed SLC17A7, indicating glutamate transmission. Other
neurotransmission markers were not expressed in any of the clusters within the dataset, including markers for glycine transmission (SLC6A9), serotonin transmission (SLC6A4, TPH1),
dopamine transmission (DDC, TH), acetylcholine transmission (CHAT), and general amine transmission (SLC18A1). B. Violin plots of log-normalized count data showing expression of
expanded inhibitory neuron markers among all inhibitory neuron subtype clusters for each NDD.
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Figure S2. Clustering of communication pathways by interacting celltypes involved
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Figure S2. Clustering of communication pathways by interacting celltypes involved. A. Dimensional reduction and clustering of communication pathways based on
transmitting and receiving cell types. Clusters of pathways based on similarity of interacting cell subtypes are color coded and numbered. Communication pathways in NDD nuclei
are represented by colored circles and pathways of NC nuclei are represented by open squares. Point sizes are proportional to probability of communication. B. Metascape
pathway analysis of top 20 enriched biological pathways among genes involved in interactions between celltypes in DLB communication clusters 1 (Normal dominant) and 3 (DLB
dominant).
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