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Background: Kidney renal clear cell carcinoma (KIRC) is a renal cortical tumor. KIRC is the most 
common subtype of kidney cancer, accounting for 70–80% of kidney cancer. Early identification of the risk 
of KIRC patients can facilitate more accurate clinical treatment, but there is a lack of effective prognostic 
markers. We aimed to identify new prognostic biomarkers for KIRC on the basis of the cancer stem cell (CSC) 
theory. 
Methods: RNA-sequencing (RNA-seq) data and related clinical information were downloaded from 
The Cancer Genome Atlas (TCGA) database. Weighted gene co-expression network analysis (WGCNA) 
was used to identify significant modules and hub genes, and predictive hub genes were used to construct 
prognostic characteristics. 
Results: The messenger RNA expression-based stemness index (mRNAsi) in tumor tissues of patients 
in the TCGA database is higher than that of the corresponding normal tissues. In addition, some clinical 
features and results are highly correlated with mRNAsi. WGCNA found that the green module is the most 
prominent module associated with mRNAsi; the genes in the green module are mainly concentration in 
Notch binding, endothelial cell development, Notch signaling pathway, and Rap 1 signaling pathway. A 
protein-protein interaction (PPI) network showed that the top 10 central genes were significantly associated 
with the transcriptional level. Moreover, the 10 hub genes were up-regulated in KIRC. Regarding survival 
analysis, the nomogram of the prognostic markers of the seven pivotal genes showed a higher predictive 
value. The classical receiver operating characteristic (ROC) curve analysis showed that risk score biomarkers 
had the highest accuracy and specificity with an area under the curve (AUC) value of 0.701.
Conclusions: mRNAsi-related genes may be good prognostic biomarkers for KIRC.
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Introduction

As a renal cortical tumor, the cytoplasmic growth pattern of 
Kidney renal clear cell carcinoma (KIRC) is similar to that 
of malignant epithelial cells, accounting for approximately 
80–90% of renal cell carcinomas (1). Also, KIRC is usually 
resistant to radiotherapy and chemotherapy, such that 
surgery is the primary treatment. However, metastasis 
still occurs in 30% of patients undergoing surgery (2). 
Early detection of KIRC in patients contributes to more 
accurate clinical treatment. Therefore, there is an urgent 
need to identify new and reliable biomarkers to predict the 
prognosis of patients. 

Many studies have shown that gene expression 
prediction models play a vital role in clinical prognosis. 
For example, Fatai et al. established a model to prove 
that the characteristics of 35 genes can distinguish fast-
growing and slow-growing glioblastoma multiforme and 
predict the survival rate of known cancer subtypes (3). Han 
et al. analyzed reverse phase protein array (RPPA) data to 
understand the protein expression characteristics of KIRC 
survival time (4). Long et al. constructed a prognostic model 
for hepatocellular carcinoma (HCC) patients based on RNA 
sequencing data (5). Furthermore, Chen et al. and Wang 
et al. reported that potassium calcium-activated channel 
subfamily n member 4 (KCNN4) and aryl hydrocarbon 
receptor nuclear translocator like 2 (ARNTL2) affected 
the prognosis of renal clear cell carcinoma and the immune 
status of the tumor microenvironment, respectively (6,7). 
However, research on polygenic models for predicting the 
prognosis of KIRC patients is still limited. Here, we seek to 
use a range of methods to identify more potential KIRC-
related genes.

Furthermore, on the basis of the theory of cancer stem 
cells (CSCs), some researchers have put forward a new 
concept, that is, stem index (8). The expression profile data 
of the sample mainly comes from The Cancer Genome 
Atlas (TCGA) and some other public databases. One-class 
logistic regression (OCLR), an innovative machine learning 
algorithm for logistic regression, has been used to extract 
the transcriptome and epigenetic feature sets of non-
transformed pluripotent stem cells and their differentiated 
progeny (9). Two independent stem indexes are calculated: 
the messenger RNA expression-based stemness index 
(mRNAsi) and epigenetic regulation of mRNAsi (EGER-
mRNAsi). The index range is 0-1. The closer to 1, the 
stronger are the stem cell characteristics of tumor cells. 

Weighted gene co-expression network analysis 

(WGCNA) (10) is an effective and extensive tool for 
analyzing gene expression data and exploring network 
changes. In brief, after the expression profile data have been 
processed into weighted connections, WGCNA can be used 
to identify network topology and subnets called modules. 
Thus, only highly co-expressed genes can constitute a gene 
module (GM) that is linked through powerful connections 
in a network, and the corresponding modules and clinical 
features of interest can be associated (11).

This study identified key genes related to stemness by 
combining WGCNA and KIRC mRNAsi using the data 
of TCGA. Our findings establish a new method to identify 
stem cell-related genes and gain an in-depth understanding 
of the role of certain CSC-related genes.

We present the following article in accordance with the 
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/tau-21-647).

Methods

Data processing

The gene expression data of 50 normal samples and 588 
human KIRC samples were obtained from the TCGA 
database. The merge script in Perl language was used to 
merge the RNA-sequencing (RNA-seq) results of 588 
cancer samples and 50 normal samples into one matrix 
file. Then, we converted the relevant gene name from the 
ensemble ID no. into the corresponding gene symbol. The 
latest clinical data were downloaded from the database of 
TCGA, useful information was screened, including life 
status, staging, gender, age, and other information. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

mRNAsi in modules

mRNAsi can be described as the similarity between CSCs 
and cancer cells. The stemness index of the metastatic 
tumor was higher, and the stemness index was negatively 
correlated with the survival rate. As mentioned above, 
a comprehensive molecular characterization of KIRC 
samples from TCGA was performed to obtain the mRNAsi 
correlation index and molecular typing of each sample. The 
significant differences between the modules were verified 
using Kruskal-Wallis tests. The samples were divided into 
two groups by referring to this mRNAsi score. GraphPad 
Prism 8 (Graph Pad Software, San Diego, CA, USA) was 
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used to analyze overall survival (OS) and the mRNAsi score 
to evaluate prognosis. The significance was calculated by 
the log-rank test and unpaired t-test.

Differentially expressed genes

The expression levels of normal tissues and tumor 
samples were compared using the ‘edge’ R package (The 
R Foundation for Statistical Computing). In addition, 
different expression genes (DEGs) were selected according 
to the following criteria: P value <0.05, fold change >2 and 
gene expression level >1.

WGCNA analysis

For the follow-up analysis the WGCNA R package (The 
R Foundation for Statistical Computing) was used. To 
ensure heterogeneity and accuracy of the bioinformatics 
analysis, we selected DEGs with the highest variance of 
25%. First, we screened for the outliers in the RNA-seq 
data. Then, a Pearson correlation matrix was used to create 
the co-expression analysis of paired genes. Next, a weighted 
adjacency matrix was created using the power function amn 
= |cmn|b. An appropriate value of b was chosen to create 
a co-representation network. Then the adjacency matrix 
was further transformed into a topological overlap matrix 
(TOM) to detect the connectivity of the gene. Eventually, 
using the average linkage hierarchical clustering method, on 
the basis of the TOM dissimilarity, a gene tree greater than 
30 was obtained, and the module tree was built for further 
analysis.

Search for significant modules

As the module for further analysis, the hierarchical 
clustering module most closely related to epigenetically 
regulated mRNAsi (EREG-mRNAsi) and mRNAsi was 
selected. Computational gene significance (GS) is the 
correlation between gene expression, EREG-mRNAsi, and 
mRNAsi and represents the correlation between each gene 
and feature in the module. In the module, modular meaning 
(MS) is the significant average of all genes. We used a 
threshold value of 0.55 to merge similar modules and then 
considered the module with the largest MS as the module 
with the highest correlation with the sample characteristics. 
In the principal component analysis of the gene expression 
matrix in each module, the first principal component 
obtained was defined as the module eigengenes (ME). 

In this study, the module with the highest MS value was 
considered to be related to EREG mRNAsi and mRNAsi. 
This module was selected for further the study.

Screening hub genes

After defining the important modules, the GS and module 
members of each gene were calculated module membership 
(MM), the correlation between the module’s genes and the 
gene expression profile). The correlation between genes 
and stemness index increased as the correlation between 
genes and important modules increased. Thus, the inclusion 
criteria of the hub gene were set as correlations for gene GS 
>0.4 and MM >0.6.

Interactions of hub genes

We used the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) (version 11.0) to visualize 
and study protein-protein interaction (PPI) networks. 
According to the gene expression level, the co-expression 
relationship between hub genes was calculated to determine 
their transcriptional strength. Pearson correlations between 
genes were calculated by using the R corrplot package 4 
(The R Foundation for Statistical Computing). Then, we 
used the online GEPIA 5 database to verify whether the hub 
gene expression in tumor tissue was higher, and whether 
there were differences in the expression of hub genes for 
different tumor, node, and metastasis (TNM) stages.

Establishment of the prognostic signature

Univariate Cox regression analysis was used to evaluate the 
relationship between the expression level of each hub gene 
and OS. The Akaike information criterion (AIC) was used to 
input the hub genes with P values <0.05 into a multivariate 
Cox regression analysis. The corresponding data obtained 
by multivariate Cox proportional hazard regression analysis 
was used to create the risk scoring formula (P value <0.05). 
In formula 1, weight I is the coefficient of each important 
hub gene, GI is the expression value of the hub gene, and 
n is the number of hub genes with prognostic value. The 
patients were divided into a low-risk group (< medium risk 
score) and a high-risk group (> medium risk score), and 
then the Kaplan-Meier method and log-rank test were 
used to evaluate the differences in survival outcome and 
OS of high-risk and low-risk patients. Finally, the receiver 
operating characteristic (ROC) curve over time was used 
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to verify the accuracy of the signature. The classical ROC 
curve analysis method assumes that the change of a single 
event and result over time is fixed, but in fact, the disease 
state and results change over time. A P value <0.05 was 
considered as indicating statistical significance.

1

Score *
N

I i
i

G weight
=

=∑ 	
[1]

Generating the nomogram and assessment 

To minimize the influence of confounding factors, 
multivariate and univariate Cox regression analyses were 
used to assess the differences in risk scores and clinical 
features. A P value <0.05 was considered as indicating 
statistical significance. The nomogram of 1-, 3-, and 5-year 
survival rates was constructed using the RMS software 
package to visualize the prediction results.

Statistical analyses

Survival description was illustrated by the Kaplan-
Meier curves with P value determined by a log-rank test. 
Continuous variables were compared by Mann-Whitney 
U test. We considered P<0.05 to indicate a statistically 
significant difference. Data analyses were performed using 
R program (R 4.3.1), using the survival and pROC packages 
(downloaded from Bio-conductor).

Results

Correlation between clinical features and mRNAsi in 
patients with KIRC

Twenty-six KIRC samples with insufficient clinical 
information and 11 KIRC samples that had no mRNAsi 
information were excluded from the TCGA dataset. We 
found that KIRC mRNAsi was significantly different from 
normal tissues. The level of mRNAsi in tumor tissues was 
significantly higher than that in normal tissues (Figure 1A).  
There were significant mRNAsi differences between 
different stages (Figure 1B,1C). The OS and progression-
free survival (PFS) rates of high mRNAsi KIRC patients 
were significantly lower than those of low mRNAsi patients 
(Figure 1D,1E).

Identification of DEGs

Our aim was to compare the two groups to identify DEGs. 

In total, we found 7,369 DEGs, including 5,467 upregulated 
genes and 1,902 downregulated genes. The heat map of the 
DEGs is shown in Figure 1F.

WGCNA: the most important module and gene 
identification

After excluding 48 outlier samples, all DEGs were 
included in the co-expression network (Figure 2A), where 
B=3 satisfies the soft threshold parameter of the scale-
free structure, and the curve reaches R2=0.935. Merging 
threshold was set to 0.55 to merge similar modules, 
resulting in 13 modules (Figure 2B). After evaluating the 
correlation between the module and patient characteristics, 
EREG-mRNA, and mRNAsi, we found the green module 
was negatively correlated with the mRNA expression of 
patients with KIRC (R2=−0.71, P=8e-77) (Figure 2C). 
In contrast, the yellow-brown module was positively 
correlated with mRNA expression in patients with KIRC 
(R2=0.42, P=1e-22) (Figure 2C). Moreover, genes in green 
modules (COR =0.78, P=3.8e-98) had high GS and MM 
characteristics (Figure 3A). Therefore, the green module 
was selected as the most important module in the follow-
up study, because it showed the highest correlation. Finally, 
we obtained 37 genes based on thresholds of GS >0.4 and  
MM >0.6.

Function annotation 

Using the STRING database, a PPI network composed of 
the first 16 central genes was constructed. The PPI network 
consisted of 16 nodes and 25 edges (Figure 3B), the average 
node degree was 6.8, and the correlation was strong. 
Because the green modules were the modules most closely 
related to mRNAsi, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis 
were performed for the genes included in the green module, 
and these were then introduced to enrich the results  
(Figure 3C,3D). The green module showed the strongest 
correlation with mRNAsi and was highly enriched in Notch 
binding, endothelial cell development, Notch signaling 
pathway, and Rap 1 signaling pathway.

Validated hub gene and construct PPI network

The expression level of the first 10 central genes in tumor 
tissues was higher than that in normal samples (Figure 4). 
Moreover, in different tumor (T), node (N), metastasis (M) 
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Figure 2 Weighted gene co-expression network analysis of kidney renal clear cell carcinoma (KIRC). Clustering of samples (A). Cluster 
dendrogram of genes in KIRC patients (B). Correlation between the clinical characteristics and gene module, including epigenetically 
regulated mRNAsi (EREG-mRNAsi) and messenger RNA expression-based stemness index (mRNAsi) (C).

stages, the 10 central genes were differentially expressed 
(Figure 5).

Prognostic signature establishment 

To screen the predictive prognostic biomarker model, 
we used Cox regression analysis and finally screened out 
seven genes as biomarkers (Figure 6A). Prognostic markers 
included seven central genes, which were included in a 
multivariate Cox proportional hazard regression analysis, 
then the coefficients of the central genes were obtained by 

calculating the risk score in equation 1. The risk score for 
each patient was calculated as follows: Risk score = (−0.035× 
expression level of CDH5) + (−0.028× expression level of 
ECSCR) + (0.076× expression level of JAG2) + (0.005× 
expression level of MCAM) + (−0.012× expression level of 
PECAM1) + (−0.003× expression level of PLVAP) + (−0.021× 
expression level of CLEC14A).

Compared with low-risk patients, high-risk patients had 
a significantly worse prognosis (Figure 6B). We counted 
the survival of all the samples (Figure 6C), then, take the 
median risk score of all samples as the threshold value to 
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Figure 3 The characteristics and function annotation of the green module. Scatter diagram of the gene significance (GS) vs. module 
membership (MM) for messenger RNA expression-based stemness index (mRNAsi) in the green module (A). Protein-protein interactions 
between hub genes (B). Function annotation of the green module (the Gene Ontology, GO) (C); Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (D).

Module membership vs. gene significance
cor=0.78, P=3.8e−98
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divide patients into a high-risk combination and a low-risk 
group (Figure 6D). A classical ROC curve analysis showed 
that the risk score biomarker had the highest accuracy and 
specificity and that the area under the curve (AUC) value 
was 0.701 (Figure 6E).

Generating the nomogram and assessment

After univariate and multivariate Cox regression analysis, 
the nomogram included the following independent risk 

factors (Table 1): gender, stage, metastasis stage (M0 vs. M1), 
and risk score (low vs. high). These risk factors made up 
the nomogram. The calibration curve had a good ability to 
predict 1-, 3-, and 5-year OS (Figure 7).

Discussion

KIRC is associated with high morbidity and mortality, but 
its pathogenesis remains unclear (12). Although several 
biomarkers for the prognosis and diagnosis of KIRC have 
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Figure 5 Top 10 hub genes validated in different tumor (T), node (N), metastasis (M) stages by GEPIA database. Use of the GEPIA 
database to analyze the expression levels of the selected hub genes at different stages of the profile: (A) CDH5, (B) CLEC14A, (C) CSPG4, (D) 
FLT4, (E) JAG2, (F) MCAM, (G) NOTCH3, (H) NOTCH4, (I) PECAM1, (J) PLVAP.
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been reported, their reliability and effectiveness still need 
clinical verification (13). Moreover, existing prognostic 
models ignored the correlation between mRNAsi and genes. 
The latest study by Malta et al. analyzed the correlations 
between mRNAsi-related genes and the survival and 
prognosis of cancer patients using TCGA tumors (8). 
However, there is no report on the molecular markers 
of KIRC mRNAsi. Therefore, we performed WGCNA 
analysis on TCGA data of KIRC patients and identified 
gene modules (GMs) related to mRNAsi. In this work, we 
used TCGA database data and the corresponding mRNAsi 
of each sample to determine the significance of mRNAsi 
related to the clinical characteristics of KIRC patients. 
Also, 10 key genes were identified by analyzing the genes in 
the first GMs, and then they were used to construct a new 
KIRC survival model. Our study shows that these 10 genes 
are potential prognostic and therapeutic targets for KIRC. 

The results also show that the hub gene is expressed more 
strongly in tumor tissues than in normal tissues, and that it 
has important prognostic significance for the progression of 
the disease. Finally, after correcting for confounding factors, 
a prognostic marker that contained seven prognostic genes 
with good predictive power was obtained. These seven 
central genes are highly expressed in KIRC and are also 
related to TNM staging and prognosis. These genes are: 
CDH5, ECSCR, JAG2, MCAM, PECAM1, PLVAP, and 
CLEC14A.

Cadherin 5 (Cadherin 5, CDH5), belongs to type II 
CDH, usually also called vascular endothelial CDH. 
Cadherin 5 plays an important role in contact inhibition, 
cell adhesion, endothelial cell migration, and apoptosis (14). 
However, abnormal expression of CDH5 was observed in 
various malignant tumor cells (15). Cadherin 5 plays a vital 
role in the angiogenesis simulation of melanoma cells or 
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Figure 6 Prognostic model construction. Cox regression analysis and final identification of seven genes as biomarkers (A). Based on the 
characteristics of the messenger RNA (mRNA) of the seven hub genes, Kaplan-Meier curves assessed the overall survival in KIRC patients 
(B). Messenger RNA expression profile distribution of seven hub genes, patient survival status and heat map (C). Receiver operating 
characteristics analysis for the prediction of the seven-hub mRNA signature (D). The ROC curve analysis showed that the risk score 
biomarker had the highest accuracy and specificity than the other clinical markers (E). *, P<0.05, **, P<0.01, Log-Rank test.
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glioma. Cadherin 5 promotes tumor cell proliferation and 
invasion in breast cancer cells by stimulating transforming 
growth factor (TGF)-β signaling (16). In metastatic breast 
cancer, CDH5 expression level and CDH5 glycosylation 
represent biomarker tests that can distinguish patients with 
metastatic breast cancer from those without metastases (17).

Endothelial cell-specific chemotaxis regulator (ECSCR) 
is also synonymously named endothelial-cell-specific 

molecule 2 (ECSM2). ECSCR is an endothelial cell 
connexin protein, which is involved in the migration, 
apoptosis, and regulation of endothelial cells. The 
expression of ECSCR protein in endothelial cells is 
downregulated, indicating that the chemotaxis of matrix 
gel is reduced and angiogenesis is impaired. In multivariate 
analysis, ECSCR showed a tendency to become an 
independent prognostic marker for lung cancer in addition 
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Figure 7 Nomogram used to predict 1-, 3-, and 5-year overall survival.

Table 1 Multivariable and univariable Cox regression analyses of clinical characteristics

Variable
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age (≤65/>65) 1.56 1.14–2.15 0.005 1.62 1.17–2.24 0.003

Gender (female/male) 1.07 0.77–1.47 0.706 1.10 0.78–1.54 0.587

Grade (G1–G2/G3–G4) 2.60 1.82–3.72 <0.001 1.44 0.98–2.11 0.664

Stage (I–II/III–IV) 4.13 2.95–5.79 <0.001 2.21 1.06–4.59 0.033

T (T1–T2/T3–T4) 3.38 2.45–4.66 <0.001 1.02 0.54–1.92 0.947

M (M0/M1) 4.53 3.27–6.26 <0.001 2.35 1.58–3.51 <0.001

Risk score (low/high) 2.48 1.77–3.46 <0.001 2.08 1.36–2.72 <0.001

Italic P values indicate less than 0.05, showing the clinical characteristic was statistically significant. T, tumor; M, metastasis; HR, hazard 
ratio; CI, confidence interval.

to the clinical parameter of age (18). Also, previous studies 
have found that higher levels of ECSCR expression 
are associated with longer OS in primary lung cancer  
samples (19).

Platelet and endothelial cell adhesion molecule-1 
(PECAM1) is a common adhesion molecule in vascular 
endothelial cells (PECAM1, also known as CD31). It 
encodes a protein involved in the growth and proliferation 
of tumors, including extracellular circulation, vascular 
permeability, and angiogenesis (20). Many studies have 
shown that PECAM1 is involved in the progression of a 
variety of malignant tumors, including melanoma, lung 
cancer, and breast cancer (21,22). PECAM1 regulates tumor 
microenvironment (TME) and tumor cell proliferation, 

is related to the progress of tumor metastasis (23) and has 
significant differential expression in HCC (24). We need to 
further explore the expression of PECAM1 in KIRC and 
the molecular mechanism leading to tumorigenesis and 
discover potential therapeutic targets.

The JAG2 gene consists of 26 exons and is located 
on chromosome 14q32, encoding 5,825 BP and 5,721 
BP mRNA variants  (GenBank NM_002226.4 and 
NM_145159.2). The JAG2 protein contains an extracellular 
DSL region, a signal peptide region, 16 EGF-like repeat 
regions, a transmembrane region, a cysteine-rich region, and 
a short cytoplasmic region containing 132 amino acids (25).  
Many studies have shown that JAG2 promotes tumor cell 
metastasis in a variety of tumors (26-28).
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PLVAP, CLEC14A, and MCAM also play an important 
role in the development of a tumor. MCAM is expressed 
in many tumors and is correlated with cancer progression 
and metastasis (29). PLVAP is the only known component 
of the diaphragm that is necessary for diaphragmatic 
muscle formation (30). PLVAP has been associated with 
cancer, traumatic spinal cord injury, acute ischemic 
encephalopathy, graft glomerulopathy, Norrie disease, and 
diabetic retinopathy (31). CLEC14A is a glycoprotein that 
is selectively overexpressed in the vascular system of many 
solid human tumors, and as such has attracted considerable 
attention as a target antigen (32). Earlier studies found that 
CLEC14A may be a tumor endothelial marker (33).

Therefore, all the genes included in the markers are 
significant to tumors, and they are significantly associated 
with KIRC survival. Our study indicates that CDH5, 
ECSCR, JAG2, MCAM, PECAM1, PLVAP, and CLEC14A 
play an essential role in KIRC. In the current treatment 
of KIRC, the US FDA has approved a variety of targeted 
drugs for the first-line treatment of advanced kidney 
cancer, including erlotinib, sunitinib, sorafenib, pazopanib, 
and axitinib, temsirolimus, everolimus, bevacizumab, 
cabozantinib and lenvatinib. These drugs are mainly 
anti-angiogenesis tyrosine kinase inhibitors and mTOR 
inhibitors (34). In addition, the tumor microenvironment 
is a key point that has to be considered in the treatment 
of KIRC. Angiogenesis and immunosuppression are the 
salient features of the tumor microenvironment of KIRC. 
Furthermore, the tumor stem cell microenvironment will 
bring new ideas for tumor treatment (35). More and more 
evidences show that CSCs are the key cell for tumorigenesis 
and metastasis. Our analysis found that CSCs showed 
activation of NOTCH signal in KIRC. Notch signaling is 
one of the most active pathways in tumor cells, and it plays 
a key role in angiogenesis and tumor stem cell self-renewal. 
Therefore, exploring the mechanism of Notch signaling 
pathway in CSCs may help to discover new treatment 
strategies for KIRC (36,37). In addition, Zhou et al. found 
that there is a closely correlation between the biological 
clock genes and immune infiltration: genes involved in the 
circadian rhythm in KIRC tissues are dysregulated, causing 
the changes of tumor microenvironment. Exploring the 
circadian clock genes and the tumor microenvironment of 
KIRC is conducive to a deeper understanding of KIRC (12).

Our study has several limitations. First of all, we used 
public data to verify our results and did not undertake 
additional experiments to confirm these results. Second, 
we cannot guarantee the quality of the data, because our 

research data come from online tools in public databases. 
Thus, further well-designed large-sample biological studies 
are needed. Despite these drawbacks, the significant and 
consistent correlations of our biomarker with OS with 
KIRC indicate that it is a potentially powerful prognostic 
marker for KIRC.
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