
Frontiers in Cellular and Infection Microbiolo

Edited by:
Crystal Richards,

National Institutes of Health,
United States

Reviewed by:
Leandro Nascimento Lemos,

National Laboratory for Scientific
Computing (LNCC), Brazil

Luisa I. Falcon,
National Autonomous University of

Mexico, Mexico

*Correspondence:
Yanling Hu

huyanling@gxmu.edu.cn

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Bacteria and Host,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 10 February 2022
Accepted: 29 March 2022
Published: 04 May 2022

Citation:
Que T, Pang X, Huang H,

Chen P, Wei Y, Hua Y, Liao H,
Wu J, Li S, Wu A, He M, Ruan X

and Hu Y (2022) Comparative Gut
Microbiome in Trachypithecus

leucocephalus and Other Primates
in Guangxi, China, Based on
Metagenome Sequencing.

Front. Cell. Infect. Microbiol. 12:872841.
doi: 10.3389/fcimb.2022.872841

ORIGINAL RESEARCH
published: 04 May 2022

doi: 10.3389/fcimb.2022.872841
Comparative Gut Microbiome in
Trachypithecus leucocephalus and
Other Primates in Guangxi, China,
Based on Metagenome Sequencing
Tengcheng Que1†, Xianwu Pang2,3†, Hongli Huang4†, Panyu Chen1, Yinfeng Wei5,
Yiming Hua6, Hongjun Liao1, Jianbao Wu1, Shousheng Li1, Aiqiong Wu1, Meihong He1,
Xiangdong Ruan7 and Yanling Hu5,8*

1 Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, China, 2 Collaborative
Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical
University, Nanning, China, 3 Guangxi Center for Disease Control and Prevention, Nanning, China, 4 The First Affiliated
Hospital of Guangxi Medical University, Nanning, Guangxi, China, 5 Life Sciences Institute, Guangxi Medical University,
Nanning, China, 6 School of Information and Management, Guangxi Medical University, Nanning, China, 7 Acdemy of
Inventory and Planning, National Forestry and Grassland Administration, Beijing, China, 8 Center for Genomic and
Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation
Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China

The Trachypithecus leucocephalus (white-headed langur) is a highly endangered, karst-
endemic primate species, inhabiting the karst limestone forest in Guangxi, Southwest
China. How white-headed langurs adapted to karst limestone and special dietary remains
unclear. It is the first time to study the correlation between the gut microbiome of primates
and special dietary, and environment in Guangxi. In the study, 150 fecal samples are
collected from nine primates in Guangxi, China. Metagenomic sequencing is used to
analyze and compare the gut microbiome composition and diversity between white-
headed langurs and other primates. Our results indicate that white-headed langurs has a
higher diversity of microbiome than other primates, and the key microbiome are phylum
Firmicutes, class Clostridia, family Lachnospiraceae, and genera Clostridiates and
Ruminococcus, which are related to the digestion and degradation of cellulose. Ten
genera are significantly more abundant in white-headed langurs and François’ langur than
in other primates, most of which are high-temperature microbiome. Functional analysis
reveals that energy synthesis-related pathways and sugar metabolism-related pathways
are less abundant in white-headed langurs and François’ langur than in other primates.
This phenomenon could be an adaptation mechanism of leaf-eating primates to low-
energy diet. The gut microbiome of white-headed langurs is related to diet and karst
limestone environment. This study could serve as a reference to design conservation
breeding, manage conservation units, and determine conservation priorities.
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INTRODUCTION

The white-headed langur is a highly endangered, karst-endemic
primate species with a current wild population of only 1,100
individuals (Konstant et al., 2003). The species inhabits the karst
limestone forest in Guangxi, Southwest China, and belongs to the
national I class key protected animals (Huang, 2002). White-
headed langurs mainly feed on woody plants, which especially
focusing on several main plants. Thus, white-headed langurs feed
on the tender leaves and buds in the treetops to drink water (Li
et al., 2003; Li and Rogers, 2006). In the dry season, white-headed
langurs can only feed on old leaves, which contain much less
water than new ones. Thus, white-headed langurs adapted to
their seasonal habitats by adjusting their ranging behavior and
spent more time resting and less time moving and feeding
(Huang, 2002; Qihai et al., 2013).

The composition of the gut microbiome was influenced by
several factors, including maternal delivery, genetic, geography,
and lifestyle (Khan et al., 2016). Diet was an important factor
determining the composition of the gut microbiome. Dietary
fiber can regulate the contents of Firmicutes and Bacteroidetes,
the two main phyla of the human gut microbiome, and increased
the abundance of probiotics, such as Lactobacil lus ,
Bifidobacterium, and cellulolytic bacteria (Canfora et al., 2019;
Coker et al., 2021). Bacterial abundance was also modulated by
dietary macronutrient consumption, including proteins,
carbohydrates, and fats (Hildebrandt et al., 2009; Turnbaugh
et al., 2009). A previous study found differences in the gut
microbiome between captive and wild primates, indicating that
captivity humanizes the primate microbiome (Clayton et al.,
2016). These data suggest that diet influences the gut
microbiome. White-headed langurs mainly feed on leaves,
which are coarse fiber and difficult to digest. Whether or not
the gut microbiome of white-headed langurs is influenced by
their diet is unclear. Over time, the stomachs of white-headed
langurs have changed to form a cavity that allows cellulose-
breaking bacteria to survive (Zhou et al., 2011). We inferred that
the gut microbiome in white-headed langurs is related to
their diet.

The karst limestone where white-headed langurs habitated
was a harsh environment containing various caves (Huang and
Li, 2005). Caves were typical features of a subsurface karst,
characterized by darkness, low-to-moderate temperatures, high
humidity, and limited nutrients (Gabriel and Northup, 2013).
Despite their oligotrophic conditions, microbial communities
thrived in caves, with the average number of microorganisms
growing in these ecosystems reaching 106 cells/g of rock (Barton
and Jurado, 2007). Extremophiles can colonize extreme
environments, and they were the sources of novel biomolecules
and metabolic pathways (Rothschild and Mancinelli, 2001;
Seufferheld et al., 2008). White-headed langurs lived in caves
and drunk water in caves when they were thirsty (Huang and Li,
2005). However, whether or not the environment affects the gut
microbiome of white-headed langurs was unclear.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
In the present study, we collected fecal samples from nine
primates, including white-headed langur, François’ langur,
silvered langur, loris, pygmy loris, ring-tailed lemur, macaques,
gibbon, and baboon, in Guangxi, China. We analyzed and
compared the gut microbiome composition and diversity of
white-headed langurs and other primates by using high-
throughput sequencing. We predicted the functional pathways
of the gut microbiome and explored the correlation between
environment, diet, and the gut microbiome in white-headed
langurs. This study could help improve and protect the living
environment of white-headed langurs.
MATERIALS AND METHODS

Subjects and Sample Collection
One-hundred fifty fecal samples were collected from white-
headed langur (27), François’ langur (20), silvered langur (9),
loris (19), pygmy lorises (8), ring-tailed lemur (23), macaques
(34), gibbon (5), and baboon (5) in Guangxi Land Wildlife
Rescue Research and Epidemological Surveillance Center,
Nanning Zoo, Chongzuo White-Headed Langur Nature
Reserve, Gupu Mountain Nature Reserve in Hezhou, and
Wuzhou Langur Breeding Center, all of them were adult. All
samples were immediately scooped out with a sampling spoon.
Fresh feces that were not contaminated in the middle of the feces
were placed into a sample tube and then placed in a box
containing dry ice. These samples were immediately
transported to the laboratory for storage under −80°C. The
whole process abided by the natural wildlife protection law and
did not produce any harmful substances to the environment and
animals. All samples were collected from March to May in 2018.

DNA Extraction and Metagenomic
Sequencing
Microbial DNA was extracted from 200 mg of frozen fecal
samples using the Qiagen DNA extraction kit (Qiagen,
Germany) in accordance with the manufacturer’s kit protocols.
DNA libraries were prepared using the TruSeq DNA Sample
Preparation Guide (Illumina, 15026486 Rev.C). Library quantity
was assessed with a Qubit2.0 (Thermo Fisher Scientific, USA).
Libraries were then sequenced on an Illumina HiSeq X-ten
platform (Illumina, USA) to generate 150-bp paired-end reads.

Data Pre-Processing
Unassembled sequencing reads were preprocessed by trimming 1)
reads that overlap with the adapter over a certain threshold (5 bp);
2) low-quality bases (Q-value ≤ 19, and accounts for more than
50% of the total base); and 3) reads that contain N nucleotides over
a certain threshold (≥5%). Clean data of all samples were
processed using FastQC (Wingett and Andrews, 2018) for
quality control and MultiQC (Ewels et al., 2016) for integration.
After these two steps, clean data with high quality were obtained.
May 2022 | Volume 12 | Article 872841
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Analysis of Whole Metagenome
Sequencing Data
We used the Kraken2 program to analysis microbiome using the
default parameters (Wood et al., 2019). The clean paired-end
sequence reads were used for Kraken2 analysis against the
PlusPFP database containing archaea, bacteria, viral, human
and UniVec_core. The relative abundance of species from the
Kraken2 analysis was calculated using the MetaPhlAn2 (Truong
et al., 2015) and ChocoPhlAn pan-genomic databases (Franzosa
et al., 2018) with default settings. These reads were then used for
functional profiling using HUMAnN2 (Abubucker et al., 2012)
to estimate the relative abundance of microbial gene and
MetaCyC pathways using the Uniref50 database with the
default settings. Differentially abundant species were identified
using MaAsLin. For both gene families and metabolic pathways,
a-diversity was evaluated by Shannon index, and b-diversity was
evaluated by Bray–Curtis distance (Liu et al., 2021). Using the
generated taxonomic abundance and function abundance tables,
we performed Principal Coordinates Analysis (PCoA), linear
discriminant analysis (LDA), diversity index, and richness index
analyses. Grouping information generated from the above
analyses was used for LDA effect size (LEfSe) multivariate
statistical analysis and comparative analysis of metabolic
pathways to explore species composition and functional
differences between different groups.

Statistical Analysis
Stamp (Parks et al., 2014) was used to conduct a visual analysis of
similarity or difference through abundance. The results of
microbiome composition, taxonomic level, and relative
abundance are presented in the form of a column chart. The
relative abundance at the phylum and genus levels was mapped
by an online website (http://www.ehbio.com/ImageGP/Ind-ex.
php/Home/Index/index.html) and origin (2017) software. LEfSe
software (Segata et al., 2011) was used to compare the groups
with significant difference in abundance from phylum to genus.
LDA was used to estimate the influence of abundance of each
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
species on the difference effect. R software was used to calculate
the diversity index (Shannon index and Simpson index) and
richness index (Chao index and ACE index), which are presented
in the form of a box diagram. Unpaired t-test was used to
compare the metabolic pathways between different groups using
GraphPad Prism 7.
RESULTS

Microbiome Diversity Analyses
PCoA based on the Bray–Curtis distance revealed the
dissimilarity of bacterial communities among species. In this
study, the phylum level of the microbiome was analyzed by
PCoA. The closer the points are, the higher the similarity is.
Results showed that the distribution of the microbiome in white-
headed langur was dispersed, whereas that in other species were
clustered, especially the gut microbiome in ring-tailed lemur
(Figure 1A). The Chao1 and ACE indexes showed that white-
headed langur and silvered langur had the highest index,
followed by François’ langur and macaque, and the lowest was
loris and pygmy lorises, indicating that the diversity of the
microbiome in white-headed langur and silvered langur was
the highest (Figures 1B, C). The Shannon and Simpson indexes
also showed that white-headed langur and silvered langur had
the highest index, followed by macaque, and the lowest was
pygmy lorises (Figures 1D, E). No significant difference was
found between white-headed langur and silvered langur.

Abundance Analysis and
Taxonomy Annotation
The microbiomes in white-headed langur and other primates
were annotated using Kraken2 and HUMAnN2 software,
respectively. In the study, 65 bacterial phyla were annotated in
all 150 samples by using Kraken2. The top 10 phyla are presented
in Figure 2A. Sixty-four phyla were annotated in white-headed
langur. The most abundant phylum microbiome was Firmicutes,
A B D

EC

FIGURE 1 | PCoA of the gut mirobiome and boxplots of the diversity index and richness index. (A) PCoA of structure differentiation and interindividual similarity on
the gut microbiota of nine primates. (B) Boxplots of the Chao1 index. (C) Boxplots of the ACE index. (D) Boxplots of the Shannon index. (E) Boxplots of the
Simpson index.
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followed by Proteobacteria, Bacteroidetes, and Actinobacteria.
The same to other omnivorous primates. At the genus level,
2,769 were annotated in white-headed langur, and the top 10
genera were presented in Figure 2B. The most abundant genus
bacteria in white-headed langur were Acinetobacter ,
Pseudomonas, Prevotella, Bacteroides, Clostridium, Leclercia,
Treponema, Ruminococcus, Enterobacter, and Bacillus. The
major genus bacteria of the nine primates differed from one
another. The microbiome was also annotated using
HUMAnN2 software.

Differences in Gut Microbiome
Composition
The comparison of microbial composition between white-headed
langur and other primates at the phylum level was analyzed using
Kruskal–Wallis sum rank test, and the p-value was adjusted by
Benjamini–Hochberg. The following 10 phylum microbiome were
more enriched in white-headed langur than in the other primates
(P ≤ 0.01): Abditibacteriota, Aquificae, Caldiserica, Candidatus
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Bipolaricaulota, Calditrichaeota, Crenarchaeota, Cyanobacteria,
Candidatus Saccharibacteria , Thaumarchaeota, and
Thermodesulfobacteria (Figures 3A–J). Candidatus Bipolaricaulota
was highly abundant only in white-headed langur (Figure 3D).
White-headed langur and François’ langur are leaf-eating primates
and live karst limestone. Results showed that Abditibacteriota,
Aquificae, Caldiserica, Calditrichaeota, Crenarchaeota,
Cyanobacteria, Candidatus Saccharibacteria, Thaumarchaeota, and
Thermodesulfobacteria were also more enriched in François’ langur.
Microsporidia in white-headed langur, a specialized intracellular
parasite, was associated with the death of patients with AIDS,
transplantation, and immunocompromised diseases (Figure 3K).

Biomarker Analyses of Gut Microbiome
We used LEfSe to screen significantly different biomarkers in
each group. LEfSe identifies genomic features (genes, pathways,
or taxa), characterizing the differences between two or more
biological conditions (or classes). Thus, this tool enables the
characterization of microbial taxa specific to an experimental or
A

B

FIGURE 2 | Taxonomy annotation. (A) Taxonomy annotation in phylum. (B) Taxonomy annotation in genus.
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environmental condition and identifies metagenomic
biomarkers in different microbial communities. The LDA value
distribution histogram (Figure 4) and cladogram (Figure 5)
were used to present significantly different biomarkers. Results
showed that the key microbiome in white-headed langur were
phylum Firmicutes, class clostridia, family lachnospiraceae, and
genera Clostridiates and Ruminococcus, which were related to the
digestion and degradation of cellulose. The key microbiome in
François’ langur were phylum Candidatus, class Melainabacteria,
families Erysipelotrichaceae and Prevotellaceaegenus, and genus
Gastranaerophilales. The key microbiome in silvered langur were
phylum Proteobacteria, class Gammaproteobacteria, order
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Pseudomonadates, family Pseudomonadates, and genus
Pseudomonas. The key microbiome of the nine primates
differed from one another.

Differences in the Functional Profiles of
Gut Microbiome
HUMAnN2 is effective for analyzing microbial functional
pathway abundance with metagenomic and transcriptome
data. This tool could analyze the microbial composition and
functions using the MetaPhlAn2 and ChocoPhlAn databases. In
this study, 274 functional pathways were annotated in white-
headed langur in wild, whereas only 109 functional pathways
A B

D E F

G IH

J K

C

FIGURE 3 | Comparison of gut microbial composition between white-headed langur and other primates in phylum. (A–K) Abditibacteriota, Aquificae, Caldiserica,
Candidatus Bipolaricaulota, Calditrichaeota, Crenarchaeota, Cyanobacteria, Candidatus Saccharibacteria, Thaumarchaeota, Thermodesulfobacteria, and
Microsporidia are presented in the form of box diagram separately.
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were annotated in white-headed langur in captivity. However,
only one white-headed langur in captivity was included in the
study. The top 10 functional pathways in all primates are
presented in Figure 6. Most of the top 10 functional pathways
were about all types of ribonucleotide biosynthesis. However, the
abundance of these functional pathways was lower in white-
headed langur and François’ langur than in other primates,
which may be related to diet and karst limestone. As shown in
the Venn diagram in Figure 7, 10 functional pathways were
unique to white-headed langur, including NADSYN-PWY
(NAD biosynthesis II), P221-PWY (octane oxidation), and
PWY-6185 (4-methylcatechol degradation) (Figure 7).

We also explored the metabolic pathways of the microbiome
involved in glycolysis using Wilcoxon rank sum tests. The
metabolic pathways included glycogen biosynthesis I, glycogen
degradation II, glycolysis III, and glycolysis IV. White-headed
langur, François’ langur, and silvered langur, all of which were
leaf-eating primates, had the lowest abundance in the four
metabolic pathways (Figure 8). No significant difference was
found between the three leaf-eating primates (P > 0.05), whereas
the other omnivorous primates had higher abundance than the
leaf-eating primates (P < 0.0001), indicating that diet was
associated with the metabolic pathways of the microbiome.
DISCUSSION

White-headed langurs inhabited the karst limestone forest in
Guangxi, Southwest China, fed mainly on leaves, and spend
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
91.6% of their foraging time on leaves (Huang et al., 2008; Huang
et al., 2017). However, how white-headed langurs adapt to the
fibrous diet and the karst limestone remains unclear. In the
study, result showed that the diversity of the microbiome was
higher in white-headed langur than in other primates. The key
microbiome in white-headed langur were phylum Firmicutes,
class clostridia, family lachnospiraceae, and genera Clostridiates
and Ruminococcus, which were related to the digestion and
degradation of cellulose. In addition, 10 phylum microbiomes
were more enriched in white-headed langur and François’ langur
than in other primates, most of which were high-temperature
microbiome. The relative abundance of functional pathways
involved in glycogen synthesis and degradation in leaf-eating
primates were extremely low, indicating the adaptation of white-
headed langur to low-energy food.

Change in the gut microbiome was often strongly associated
with diet (Barelli et al., 2015; Amato et al., 2016). Food
consumption patterns, such as omnivore versus plant-based
diet, were associated with changes in the human gut
microbiome, which displayed increased abundance of
Ruminococcus and Streptococcus, whereas those having a
vegetable-based diet show increased abundance of Roseburia,
Lachnospira, and Prevotella (De Filippis et al., 2016). Similar to
that of humans, the microbiome of non-human primates
contains Bacteroidetes, Firmicutes, and Proteobacteria (Yasuda
et al., 2015; Nagpal et al., 2018). In our study, Firmicutes,
clostridia, lachnospiraceae, Clostridiates and Ruminococcus,
which were related to the digestion and degradation of
cellulose. The gut microbiome enabled animals to absorb
FIGURE 4 | LDA value distribution histogram of the significantly different biomarkers in all primates. Top 20 are presented.
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Que et al. Gut Microbiome in Trachypithecus leucocephalus
nutrients from the most complex polysaccharides, namely,
cellulose and hemicellulose, because the animals themselves
did not have the appropriate enzymes in their digestive system
(Henderson et al., 2015; Li et al., 2015; Wang et al., 2019).
Through degradation and fermentation, these microorganisms
decompose plant cellulose into fatty acids and other nutrients to
provide their daily energy requirement. Anaerobic and relatively
aerobic bacteria (mainly Firmicutes and Bacteroidetes) were the
most abundant, along with much smaller quantities of
Proteobacteria, Fibrobacteres, Tenericutes, and Actinobacteria
(Cholewinska et al., 2020). In the present study, the most
abundant phylum in white-headed langur was Firmicutes,
followed by Proteobacteria, Actinobacteria, and Bacteroidetes.
LEfSe analysis also showed that Firmicutes was the dominant
phylum in white-headed langur, and the dominant genera were
Clostridiates and Ruminococcus, most of which are related to
digestion and degradation. Firmicutes is almost a ubiquitous
phylum in nature. Most of its members are spore-forming Gram-
positive bacteria and are an essential part of the microbial
community associated with plant cellulose degradation and
carbohydrate polymer decomposition. Therefore, Firmicutes
was important when ligninolytic bacteria and enzymes were
desired (Liu et al., 2019). White-headed langurs mainly fed on
and drink water from leaves, especially from tender leaves and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
buds (Huang and Li, 2005; Huang et al., 2008). However, these
leaves are coarse cellulose and difficult to digest, and white-
headed langurs depend on these bacteria to break down and
digest these leaves. These bacteria may be indispensable for the
host to adapt to extreme diets or environments. These bacteria
were also found in François’ langur and silvered langur,
indicating that the gut microbiome is associated with diet.

The microbial composition was mainly influenced by several
factors, such as the environment, age, physiological state, diet, and
even geographical differences (Henderson et al., 2015;
Cholewinska et al., 2020). The karst limestone habitat of white-
headed langurs was harsh; it features many cliffs and was covered
with various caves (Li and Rogers, 2005). High-temperature
limestone in karst is a hotbed of heat-loving bacteria, which
could influence the gut microbiome of white-headed langur. In
the present study, 10 phyla were significantly higher in white-
headed langur than in the other primates, and most members of
these phyla were high-temperature bacteria. For example,
Abdibacteriota is a Gram-negative, oxygen-demanding,
oligotrophic heterodoxygenic bacteria. It can grow under only a
limited carbon source and can survive in low-nutrition
environments. Phenotypic and genomic analyses have shown
that Abdibacteriota was extremely resistant to antibiotics and
toxic compounds (Tahon et al., 2018). Aquificae can reproduce
FIGURE 5 | Cladogram of the significantly different biomarkers in all primates.
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in microalkaline sulfide hot springs at temperatures above 70°C
and still have a strong nitrogen fixation capacity even under low
concentrations of nitrogen compounds; they were considered the
main producers of fixed carbon and organic compounds
(Nishihara et al., 2018). Caldiserica was a chemical
heterotrophic organism that reduced sulfur in hot springs and
lived in environments with high temperatures, high salt
concentrations, and high pressures, making it difficult to be
separated and cultured in the laboratory (Martinez et al., 2019).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Candidatus Bipolaricaulota only shown high abundance in white-
headed langur. Candidatus Bipolaricaulota was mainly found in
deep sea, lake sediments, hot springs, reservoirs, and salt-lake
sediments, and it can break down sugar and proteins (Luiken et al.,
2019). Calditrichaeota has been recently recognized a novel
bacterial phylum with three cultured representatives, isolated
from hydrothermal vents, and can degrade detrital proteins
(Marshall et al., 2017). Candidatus Saccharibacteria was widely
found in soil, sediment, wastewater, and animals, as well as in
A B

D E F

G IH

C

FIGURE 6 | Top 10 functional pathways in all primates. (A–I) White-headed langur, François’ langur, silvered langur, gibbon, baboon, loris, ring-tailed lemur,
macaque, and pygmy lorise, respectively.
FIGURE 7 | Venn diagram of functional pathway in all primates. Other included loris, pygmy lorises, ring-tailed lemur, macaques, gibbon, and baboon.
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clinical settings; given its lack of 16S rRNA sequence, little was
known about its biological function (Ferrari et al., 2014).
Crenarchaeota had low diversity and is thought to be composed
of extreme thermophilic bacterial, which was related to system
development and metabolism. Thermodesulfobacteria, a small
group of thermophilic sulfate-reducing bacteria (Merkel et al.,
2017; Guo et al., 2020), can be found in hot springs at high
temperatures (>70°C) and was highly abundant in white-headed
langur. These high-temperature and cold-resistant bacteria
probably originated in karst limestone surface and then
transferred to the gut of the white-headed langur. The number
of thermophilic bacteria in white-headed langur increased because
of the impact of the environment, which helped them adapt to the
limestone environment.

We aimed to identify the major function pathway of the gut
microbiome in white-headed langurs. Results show that the
overall abundance of functional pathways, especially the
ribonucleotides biosynthesis related pathways, was lower in
white-headed langurs and François’ langurs than in other
primates. This result may be related to the energy synthesis
because white-headed langur and François’ langur mainly feed
on leaves and spend most of their time on rest. Similar to the
sugar metabolism pathway, the abundance of sugar metabolism
pathways was low in white-headed langur, François’ langur, and
silvered langur but high in other omnivorous primates, such as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
loris, pygmy lorises, ring-tailed lemur, macaque, gibbon, and
baboon. This result may be related to their diet because these
leaves had less sugar than other food, which led to less sugar
decomposition and glycogen synthesis. Thus, the hypometabolic
pathway enables the adaptation of white-headed langurs to low-
energy food. Ten biological functional pathways unique to white-
headed langurs were also found. These pathways are mainly
related to the oxidation and degradation of hazardous substances
and the biosynthesis of substances. For example, adenine
dinucleotide was involved in various physiological activities,
such as cell substance metabolism, energy synthesis, and cell
DNA repair, which played an important role in the body’s
immunity. L-Tryptophan, one of the essential amino acids, was
obtained from food. It is an important precursor for 5-serotonin,
melatonin, canine uric acid, and niacin. These unique functional
pathways could enhance the immunity of white-headed langurs
and protect them from the damage of karst limestone.
CONCLUSION

We analyzed and compared the gut microbiome composition
and diversity of white-headed langurs and other primates and
explored the influence of diet and karst limestone environment
on the gut microbiome of white-headed langur. The gut
A B

DC

FIGURE 8 | Metabolic pathways of the gut microbiome in all primates. (A) GLYCOGENSYNTH-PWY:glycogen biosynthesis I (from ADP-D-Glucose). (B) PWY-5941:
glycogen degradation II (eukaryotic). (C) ANAGLYCOLYSIS-PWY:glycolysis III (from glucose). (D) PWY-1042:glycolysis IV (plant cytosol). ns represents no significant
difference; **** represents P < 0.0001.
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microbiome in white-headed langur had a high diversity and was
associated with diet and karst limestone. The unique functional
pathways of white-headed langur were mainly related to the
biosynthesis and degradation of harmful substances, enabling
them adapting to the karst limestone environment. In addition,
the abundance of sugar metabolism-related pathways was low,
which was presumably an adaptation to low-energy diet. The
results of this study suggest that the gut microbiome is influenced
by different factors that help the host adapt to changes in diet
and environment.
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