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3, André S. H. Prévôt2, Jean-Luc Jaffrezo3,

Nathalie Baumlin4, Matthias Salathe4, Urs Baltensperger2, Josef DommenID
2*,

Marianne GeiserID
1*

1 Institute of Anatomy, University of Bern, Bern, Switzerland, 2 Laboratory of Atmospheric Chemistry, Paul

Scherrer Institute, Villigen, Switzerland, 3 Univ. Grenoble Alpes, CNRS, IRD, INP, IGE, Grenoble, France,

4 Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States of

America

* marianne.geiser@ana.unibe.ch (MG); josef.dommen@psi.ch (JD)

Abstract

Ambient air pollution is one of the leading five health risks worldwide. One of the most harm-

ful air pollutants is particulate matter (PM), which has different physical characteristics (parti-

cle size and number, surface area and morphology) and a highly complex and variable

chemical composition. Our goal was first to comparatively assess the effects of exposure to

PM regarding cytotoxicity, release of pro-inflammatory mediators and gene expression in

human bronchial epithelia (HBE) reflecting normal and compromised health status. Second,

we aimed at evaluating the impact of various PM components from anthropogenic and bio-

genic sources on the cellular responses. Air-liquid interface (ALI) cultures of fully differenti-

ated HBE derived from normal and cystic fibrosis (CF) donor lungs were exposed at the

apical cell surface to water-soluble PM filter extracts for 4 h. The particle dose deposited on

cells was 0.9–2.5 and 8.8–25.4 μg per cm2 of cell culture area for low and high PM doses,

respectively. Both normal and CF HBE show a clear dose-response relationship with

increasing cytotoxicity at higher PM concentrations. The concurrently enhanced release of

pro-inflammatory mediators at higher PM exposure levels links cytotoxicity to inflammatory

processes. Further, the PM exposure deregulates genes involved in oxidative stress and

inflammatory pathways leading to an imbalance of the antioxidant system. Moreover, we

identify compromised defense against PM in CF epithelia promoting exacerbation and

aggravation of disease. We also demonstrate that the adverse health outcome induced by

PM exposure in normal and particularly in susceptible bronchial epithelia is magnified by

anthropogenic PM components. Thus, including health-relevant PM components in regula-

tory guidelines will result in substantial human health benefits and improve protection of the

vulnerable population.
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Introduction

Ambient air pollution has negative impacts on human health resulting in more than 4.5 mil-

lion premature deaths each year [1–3]. Epidemiological studies have found consistent relations

between morbidity and mortality and mass concentration of particulate matter (PM) with

aerodynamic diameters� 2.5 μm (PM2.5) or� 10 μm (PM10) [4].

Up to date, PM mass concentration has been considered as the only appropriate metric to

describe its impact on health [4]. Thus, this metric has been used to assess the global burden of

premature deaths due to PM [1]. Recent studies, however, revealed associations between health

effects and sources and composition of aerosols [5, 6]. PM consists of the carbonaceous frac-

tions, which are primarily secondary organic aerosol (SOA) and elemental carbon, of the sec-

ondary inorganic aerosol (SIA) including nitrate, sulfate and ammonium, as well as of metals,

soil dust, and sea salt [5]. Although exposure to PM has been linked to various adverse effects,

there are only few reports on the role of each PM component or a mixture thereof in pathogen-

esis [7]. At present, there are increasing indications that anthropogenic components of PM,

particularly transition metals and SOA, are of particular concern due to their ability to induce

oxidative stress through the generation of reactive oxygen species (ROS) [8–11]. ROS genera-

tion has been previously identified as a major mechanism underlying the toxicity of air pollut-

ants by triggering multiple redox-sensitive signaling pathways [12]. It has also been suggested

that PM transition metals and organic species (e.g. quinones) lead to the generation of free

radicals in the lung environment and thereby induce oxidative stress [13, 14]. The ability of

PM from both primary and secondary sources to generate oxidative stress has been described

as oxidative potential (OP). Hence, organic carbon and transition-metal particles are of partic-

ular importance, due to their ability to promote inflammation [8, 9, 15]. Up to date, knowledge

is lacking regarding the impact of PM from different sources on acute responses of the primary

target tissue of inhaled particles, i.e., the highly specialized, multifunctional respiratory epithe-

lium [15]. Therefore, it is important to identify PM components that lead to an OP responsible

for impairing human health.

We assessed the effects of exposure to PM with different physical characteristics and chemi-

cal composition with respect to cytotoxicity, release of pro-inflammatory mediators and gene

expression on air-liquid interface (ALI) cultures of normal and diseased, i.e., cystic fibrosis

(CF) human bronchial epithelia (HBE). This advanced in-vitro model mimics in-vivo charac-

teristics, thus providing the archetypes of normal and susceptible respiratory epithelia,

enabling experimental studies impossible in humans, primarily for ethical reasons. In addition,

we directly evaluated the oxidative potential (OP) of PM using common acellular assays

[15, 16].

Materials and methods

Aerosol sampling and sampling sites

In the present study, we assessed ambient particulate matter (PM) collected on filters from

urban or rural sites in Switzerland during winter (January to March) and summer (July to

August), reflecting the compositional complexity of PM. The PM10 and PM2.5 were collected

within the Swiss National Air Pollution Monitoring Network (NABEL) onto quartz fiber filters

(14.7 cm exposed diameter), using a high volume sampler (500 L/min, Digitel, Volketswil,

Switzerland). The samples were 24-h integrated and collected every fourth day in 2013 (Bern

PM10 and Bern PM2.5; sampling site: Bern-Bollwerk E 7˚ 26.452, N 46˚ 57.059), or 2013 and

2014 (Magadino PM10; sampling site: Magadino-Cadenazzo E 9˚ 0.735, N 46˚ 9.556). PM was

determined gravimetrically by weighing the filters before and after exposure at a relative
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humidity (RH) of 50% and a temperature of 20˚C after conditioning for 48 h. The uncertainty

on PM mass is ~ 15%. All filter samples including the field blanks (unexposed quartz fiber fil-

ters) were wrapped in lint-free paper and stored at -18˚C before further use. Magadino is

located in an Alpine valley in the Southern part of Switzerland and the sampling station classi-

fies as a rural background site. Bern is located on a plateau north of the Alpine crest with the

sampling station situated in a street canyon and, thus, classifies as a traffic-influenced site. The

average seasonal ambient particle concentrations at the urban roadside were 38 and 21 μg/m3

for PM10 and 28 and 14 μg/m3 for PM2.5, for winter and summer, respectively. Thus, in winter

74% and in summer 63% of PM10 appeared in the PM2.5 size fraction. At the rural alpine valley

site, particle concentrations were 27 and 13 μg/m3 for PM10, winter and summer, respectively,

in line with continuous measurements at these sites [17]. While the mass concentrations at the

rural site are only 30–40% lower, the main difference between the sites is the composition of

PM, with a high contribution of biomass burning in Magadino during winter and a high con-

tribution of vehicular emissions in Bern.

Preparation of water-soluble filter extracts for cell exposure

Filter punches (diameter 10 mm) were taken and weighted to determine the PM concentration

before each cell exposure. Punches from different filters from winter or summer were pooled

to form a seasonal composite and to avoid day-to-day variation due to traffic and meteorologi-

cal conditions. For the field blanks, punches of the same filter surface area were pooled. On the

day of cell exposure, punches were allowed to equilibrate for 60 min at room temperature

before use, to avoid condensation of ambient humidity. Before cell exposure, filter punches

were placed in a 14-mL sterile tube containing 7 mL ultrapure water (18.2 MΩ cm MilliQ

water) and incubated for 15 min in a warm (30˚C) water bath. Samples were thereafter homog-

enized by vortexing for 1 min and filtered through a nylon membrane syringe filter (0.45 μm

mesh size; Infochroma AG, Zug, Switzerland) to remove insoluble material from the sampling

filter as well as the insoluble fraction of the aerosol, i.e. elemental carbon, insoluble organic

aerosol (OA) and crustal material [18, 19]. These filters are made to maximize the extraction

efficiency for the soluble species, while maintaining compositional integrity, so that the final

extraction solution yields sufficient PM10 and PM2.5 mass that remains representative of the

ambient composition. In this study, the yield of PM after filtration compared to total PM was

not analyzed. However, we estimate that ~ 80% of the PM2.5 is extracted and recovered [19,

20]. This includes all the inorganic ions (contributing ~ 50% of the total mass), most of the

organic aerosol (extraction efficiency ~ 70%) and the water-soluble elements (varying accord-

ing to the site and the element from 15 to 100%).

Cell cultures and exposures

Cultures of primary human bronchial epithelia (HBE) at the air-liquid interface (ALI) repro-

duce many features of the native respiratory epithelium like the pseudostratified morphology,

distinct apical and basolateral secretomes, epithelial barrier function and mucociliary clear-

ance [20–23]. HBE were isolated from donor lungs. Two normal lungs deemed not suitable for

transplantation were obtained from the Life Alliance Organ Recovery Agency (LAORA) of the

University of Miami, Miami, FL, USA. A cystic fibrosis (CF) lung, homozygous for the DF508

mutation, was donated by a transplant recipient. Appropriate consents, approved by the Insti-

tutional Review Board of the University of Miami, Miami, FL, USA, and conforming to the

declaration of Helsinki, were used to obtain all lungs. Cells were collected from proximal con-

ducting airways according to approved protocols [24, 25]. ALI cultures of re-differentiated

HBE from all organ donors were evaluated for morphological and functional integrity and
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pre-phenotyped with respect to cytotoxicity and cytokine release before they were used in the

experiments, as previously described [23].

Fully differentiated HBE were exposed at the apical cell surface to the water-soluble PM fil-

ter extracts for 4 h. Thereafter, the apical cell surface was washed with phosphate-buffered

saline (PBS) to remove the particles, mimicking the defense mechanism of the respiratory epi-

thelium. Control cell cultures were either exposed to extracts from field blanks (filters treated

the same way apart from exposure to ambient air), or were left untreated in the incubator. As a

positive control and to check for the (pro-)inflammatory response capacity, additional cell cul-

tures were exposed to the bacterial endotoxin lipopolysaccharide (LPS) from Escherichia coli
(Sigma Aldrich, Buchs, Switzerland) at 10 μg/mL in PBS for 4 h. Three independent experi-

ments with triplicate HBE cultures in each experiment were performed.

Cell analyses

Cytotoxicity. Induction of cell death was evaluated by measuring the release of cytosolic

lactate dehydrogenase (LDH) from damaged cells into the apical compartment. Apical washes

were collected 4 h and 24 h post exposure and stored at 4˚C until analysis using the colorimet-

ric cytotoxicity detection kitPLUS (Roche Diagnostics AG, Rotkreuz, Switzerland) according to

the manufacturer’s instructions. Maximum release of LDH was estimated in the supernatants

of unexposed HBE lysed with 100 μL 1% Triton-X solution for 10 min at 37˚C. Cytotoxicity is

presented as percentage of maximum LDH release.

(Pro-)inflammatory mediators. The release of the (pro-)inflammatory mediators in-

terleukin (IL)-6 and IL-8 was assessed in the basolateral compartment collected at 24 h after

exposure to PM filter extracts or to the positive control compound LPS, using the Bio-Plex

multiplex bead-based suspension array system and the appropriate detection kit (Bio-Rad Lab-

oratories AG, Cressier, Switzerland) according to the manufacturer’s protocol.

Gene expression. We screened 20 genes to evaluate alterations in signaling pathways

related to oxidative stress using Gene globe arrays. Gene expression in HBE was examined by

isolation of total RNA followed by quantitative real-time polymerase chain reaction (RT-

qPCR). Briefly, cells were lysed with TRIzol reagent (Invitrogen) and stored at -80˚C until

further processed. Isolated RNA (500 ng) was reverse transcribed into cDNA using the Quan-

tiTect reverse transcription kit (Qiagen) following the manufacturer’s recommendations.

Real-time PCR was performed in a reaction volume of 25 μL using the QuantiTect SYBR

Green PCR kit (Qiagen) and the QuantiTect Primer Assays (Qiagen), amplifying a total of 25

ng cDNA of each sample. Real-time PCR was performed using the Applied Biosystems

7900HT-Fast Real-Time PCR System with a 15-min initial activation step at 95˚C and 40

cycles with 15 s denaturation at 94˚C, 30 s annealing at 55˚C and 30 s extension at 72˚C. Subse-

quently, a melting curve was performed to exclude primer-dimer artefacts and to ensure reac-

tion specificity. Data were analyzed using the RQ Manager 1.2 software. The unsupervised

heat map of the entire dataset, clustered based on the Euclidean distance, allowed evaluating

the deregulation of specific genes in HBE (see S1 Fig). The deregulation of the gene pattern

was confirmed after classification according to PM category (PM10, PM2.5) and collection site.

Offline aerosol mass spectrometry (AMS) and organic aerosol (OA) source

apportionment

Following the offline AMS technique thoroughly described by Daellenbach et al. [19], four fil-

ter punches of 16 mm diameter each were extracted in 15 mL of ultrapure water (18.2 MO cm

at 25˚C with total organic carbon < 3 ppb). The liquid extracts were ultra-sonicated for 20

min at 30˚C, then vortexed for 1 min and finally filtered through a nylon membrane syringe of
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0.45 μm pore size (see also method section). The resulting solutions were inserted into an

Apex Q nebulizer (Elemental Scientific Inc., Omaha, NE, USA) operating at 60˚C. Aerosols

generated in argon (� 99.998% Vol., Carbagas, Gümligen, Switzerland) were dried (Nafion

dryer) and directed into a high resolution time-of-flight AMS (HR-ToF-AMS, Aerodyne

Research, Inc., Billerica, MA, USA). Data processing was performed with the use of the

Source finder toolkit (SoFi version 4.9) [26] for IGOR Pro software (Wavemetrics Inc., Port-

land, OR, USA). The organic mass spectra obtained by the AMS were analyzed by positive

matrix factorization (PMF) with the use of Multilinear engine 2 [27]. PMF application on

organic mass spectra measured in Switzerland can be found in the literature [19, 28], while

the specific dataset is described in detail by Daellenbach et al. [29]. Briefly, PMF was used to

decompose the input water soluble aerosol organic mass spectra (represented as 2D matrix X)

into factor concentration time series (2D matrix G) and factor profiles (2D matrix F) by itera-

tively solving the bilinear equation X = GF + E, where the 2D matrix E represents the residual

matrix. The solution that includes the optimum number of factors (in other words sources) is

defined by: (i) the minimization of the sum of the squared residuals weighted by their respec-

tive uncertainties and (ii) correlations between factors and externally measured source spe-

cific compounds. To assess random errors as well as the robustness of the PMF solution, we

adopted the bootstrap analysis, based on random resampling. The water soluble OA was

quantified by using the externally defined OC (by Sunset OC/EC analyzer [30] with the

EUSAAR2 protocol [31]) and the water soluble OC (by a total organic carbon analyzer [32])

concentrations. Finally, the water soluble OA was scaled to its total OA concentration with

the use of recoveries [19].

Chemical analyses

Ion Chromatography (IC). Soluble anions and cations (K+, Na+, Mg2+, Ca2+, NH4
+, Cl-,

NO3
-, SO4

2-), as well as methane sulfonic acid were analyzed after ultrapure water extraction

under mechanical agitation (30 min) by ion chromatography (IC, Dionex ICS3000) on the

same extracts. AS/AG 11HC and CS/CG 12A columns were used for anion and cation analy-

ses, respectively, following the protocol from Jaffrezo et al. [33]. The anhydrous sugars levoglu-

cosan, mannosan and galactosan were analyzed using a high-performance anion exchange

chromatograph with pulsed amperometric detection [34].

Inductively coupled plasma mass spectrometry (ICP-MS). An ELAN 6100 DRC II Per-

kinElmer or a NEXION PerkinElmer ICP-MS was used for the analysis of 15 trace elements

(Al, Fe, Ti, As, Cd, Cu, Mn, Mo, Ni, Pb, Rb, Sb, Se, V, Zn). Briefly, samples from filter punches

were mineralized before analysis, using 5 mL of HNO3 (70%) and 1.25 mL of H2O2, during 30

min at 180˚C in a microwave oven (microwave MARS 6, CEM) [34] and filtered.

Oxidative Potential (OP)

For OP evaluation, PM was extracted in simulated lung fluid (SLF) at iso-concentration

(25 μg/mL) and subsequently analyzed by three different chemical acellular assays (dithiothrei-

tol: DTT, 2’7’-dichlorofluorescin: DCFH, ascorbic acid: AA) to assess the intrinsic capacity of

PM to oxidize a biological fluid. They all rely on the kinetic depletion of an anti-oxidant (AA)

or surrogates (DTT, DCFH), when in contact with the extracted solution of PM. The PM solu-

tions were not filtered to also allow surface reactivity of the PM. The depletion was followed

during 30 min with a plate-reader using the absorbance mode at 265 nm for the AA assay, at

412 nm for the DTT assay (titration of DTT by 5,5-dithio-bis-(2-nitrobenzoic acid) DTNB)

according to Calas et al. [35]. The oxidation of DCFH into the fluorescent compound DCF

was assessed by fluorescence at 530 nm for emission (excitation at 485 nm) according to
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Foucaud et al. [36]. Samples were corrected for the values of the field blanks and for intrinsic

absorbance of the particles present in the sample wells.

Statistical analysis

All biological data are expressed as mean values ± standard deviation. Statistical analyses were

performed using GraphPad Prism 7.00 (GraphPad Software Inc., San Diego, CA). For cytotox-

icity and release of inflammatory mediators, the arithmetic mean values from the triplicate cell

cultures of each experiment were compared to the mean values of the untreated control cul-

tures by one-way analysis of variance (ANOVA) followed by Dunnett’s t-test to compare the

treated to the control group, or the Bonferroni test for multiple comparisons. To assess the cor-

relation between IL release and OP, metal or inorganic salts composition, non-parametric

Spearman correlation (rs) and statistical significance were calculated using the Student’s t-test.

A value of p< 0.05 was considered statistically significant.

Results

Deposited particle dose

The particle dose deposited on cells was 0.9–2.5 and 8.8–25.4 μg per cm2 of cell culture area for

low and high PM doses, respectively (Table 1). The particles were deposited as bolus and left to

interact for 4 h with the respiratory epithelium, where antioxidant defense and mucociliary

transport replicate the defense mechanisms. In addition, the removal of the particles after 4 h

by washing the apical surface mimics the average residence time of particles deposited in this

lung compartment. Thus, the dose deposited reflects the effective dose over this time period.

To roughly estimate how the experimentally deposited doses translate to real exposure condi-

tions, the Multiple Path Particle Dosimetry model (MPPD v 3.04) [37] was used (S1 Table),

which provides the dose the human tracheobronchial tract can acquire over 24 h. The result of

such an approximation shows the high and low doses applied in this study to correspond to a

deposited dose in the human tracheobronchial tract of days up to weeks in highly polluted

areas reaching 1000 μg/m3
, PM2.5, e.g. China [38], and of several months to years in urban

areas in Europe, with typical concentrations of 20 μg/m3 [39].

Cellular responses to PM exposure

Cytotoxicity. While epithelial morphology did not change upon exposure to PM (data

not shown), we found a significant, dose-dependent increase of cytotoxicity. This is reflected

Table 1. Effective PM mass deposited on cells.

Specification of PM Average PM mass deposited on cells, μg per

cm2 cell culture area

PM type Season Low High

Urban roadside PM10

Winter 2.54 25.38

Summer 1.47 14.74

Urban roadside PM2.5

Winter 1.88 18.80

Summer 0.93 9.30

Rural alpine valley PM10

Winter 1.63 16.28

Summer 0.88 8.84

https://doi.org/10.1371/journal.pone.0233425.t001
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by enhanced levels of the cytoplasmic enzyme lactate dehydrogenase (LDH) released from

damaged cells into the apical compartment, on average 2.2 fold in normal (p-value = 0.0395)

and 4.6 fold in CF HBE (p-value = 0.0289), compared to field blank controls (Fig 1A and

Table 2).

In addition, Fig 1B shows a positive linear correlation between cytotoxicity and the depos-

ited dose (R2 = 0.4011 and 0.3148 for normal and CF HBE, respectively). The increase of cyto-

toxicity within the same cell model (normal or CF HBE) was independent of seasonal PM

collection as well as of sample size fractions, i.e. the coarse PM10 and fine PM2.5 fractions.

Pro-inflammatory mediators. The release of both interleukins analyzed significantly

increased in response to PM exposure (Fig 2A); IL-6 on average 1.4 fold in normal and 1.3 fold

Fig 1. Cytotoxicity in normal and cystic fibrosis (CF) human bronchial epithelia (HBE) 24 h after exposure to seasonally sampled PM from

either an urban roadside (Bern) or a rural alpine valley (Magadino). (a) Cytotoxicity presented as percentage of total lactate dehydrogenase

(LDH) released from damaged cells into the apical compartment. Low dose deposited on HBE = 0.9–2.5 μg per cm2 of cell culture area, high

dose = 8.8–25.4 μg/cm2. The data are presented as mean values and error bars representing 1 standard deviation (SD) of three independent

experiments with triplicate cell cultures (total n = 9 cell cultures). ANOVA, Dunnett’s multiple comparison). (b) Scatter plot and corresponding

regression line for normal and CF HBE, evaluating the relationship of cytotoxicity and deposited particle dose (repeated measurements at the same

dose are displayed for visualization). � p-value< 0.05 compared to filter blank. Abbreviation: R2 = R-square linear coefficient of determination.

https://doi.org/10.1371/journal.pone.0233425.g001

Table 2. Cytotoxicity in normal and cystic fibrosis (CF) human bronchial epithelia (HBE) after exposure to PM.

PM, cell models, PM collection, deposited particle dose LDH release, fold change to field blank controls

PM type HBE Season Dose

Urban roadside PM10 Normal Winter Low / High 1.6 / 2.8

Summer Low / High 1.7 / 1.9

CF Winter Low / High 4.9 / 4.5

Summer Low / High 3.7 / 4.9

Urban roadside PM2.5 Normal Winter Low / High 2.3 / 2.3

Summer Low / High 2.1 / 2.2

CF Winter Low / High 4.0 / 4.2

Summer Low / High 5.3 / 5.2

Rural alpine valley PM10 Normal Winter Low / High 2.3 / 2.2

Summer Low / High 2.2 / 2.7

CF Winter Low / High 3.5 / 4.3

Summer Low / High 5.1 / 5.5

https://doi.org/10.1371/journal.pone.0233425.t002
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in CF HBE, as compared to field blanks (p-values< 0.0001), and IL-8 on average 2.2 fold in

normal (p-value = 0.0002) and 1.6 fold in CF HBE (p-value< 0.0001) and irrespective of sea-

sonal sampling. Although, the release of interleukins correlated well with the deposited dose in

normal and CF HBE (R2 = 0.84 and 0.85 for IL-6; R2 = 0.73 and 0.78 for IL-8, Fig 2B–2C),

there was no significant difference between PM10 and PM2.5. Exposure to the positive-control

Fig 2. Inflammatory response of normal and cystic fibrosis (CF) human bronchial epithelia (HBE) 24 h after exposure to

seasonally sampled PM from either an urban roadside (Bern) or a rural alpine valley site (Magadino). (a) Release of

interleukin (IL)-6 and IL-8 into the basolateral compartment (dotted lines show interleukin release in incubator controls). The

data are presented as mean values and error bars representing 1 standard deviation of three independent experiments (ANOVA,

Dunnett’s multiple comparison) with triplicate cell cultures (total n = 9 cell cultures). (b) IL-6 and (c) IL-8 release vs. deposited

particle dose associated with positive linear correlation using standard linear regression analysis. �� p-value< 0.01, ��� p-value<
0.001 compared to filter blank. Abbreviations: LPS = lipopolysaccharide (10 μg/mL); L = low dose; H = high dose; R2 = R-square

linear coefficient of determination.

https://doi.org/10.1371/journal.pone.0233425.g002
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compound LPS caused the highest increases in the release of both cytokines (Fig 2A). IL-6 was

on average 2.2 fold and IL-8 was 3.1 fold higher than in the field blank controls.

Gene expression. Overall, the screening with gene globe array revealed common signa-

tures of deregulated genes in both cell models, as compared to the filter blank controls. In nor-

mal HBE, the expression of 14 out of 20 genes was upregulated (seven highly and seven

moderately), two were downregulated and four genes remained unchanged. In CF HBE, how-

ever, most of the selected genes (n = 18) were upregulated (two- to tenfold change) and only

two remained unaltered (Fig 3 and S1 Fig). We further validated the upregulation of the genes

with the highest degree of deregulation (superoxide dismutase 1 and 2: SOD1, SOD2; nuclear

factor erythroid-derived 2-like 2: NFL2L; heme oxygenase 1: HMOX1; NAD(P)H quinone

dehydrogenase: NQO1; peroxiredoxin 2: PRDX2 and ataxia telangiectasia mutated kinase:

ATM) using real-time polymerase chain reaction (RT-qPCR) (Fig 3B–3E). Inflammation aris-

ing via oxidative stress response is reflected by the significantly increased expression of the oxi-

dative stress genes SOD1 and SOD2 in both normal (p-value = 0.0415 for SOD1 and p-value =

0.0314 for SOD2) and CF HBE (p-value = 0.0318 and p-value = 0.0326) (Fig 3B). Parallel acti-

vation of the antioxidant response and of cytoprotection in normal and CF HBE is shown by

upregulation of the HMOX1 (p-value = 0.0219, p-value = 0.0414), the NFL2L (p-value =

0.0409 and p-value = 0.0314), the PRDX (p-value = 0.0472, p-value = 0.0461) and the NQO1

genes (p-value = 0.0484, p-value = 0.0310) (Fig 3C and 3D). In contrast, DNA damage genes

were significantly upregulated in addition to oxidative stress genes only in CF HBE (p-value =

0.0066 for ATM and p-value = 0.0452 for H2A histone family member X:H2FAFX, Fig 3E).

Oxidant generation capacity and chemical composition of PM

Oxidative Potential (OP). The assessment of the OP of PM by the acellular assays dithio-

threitol (OPDTT), ascorbic acid (OPAA) and 2’7’-dichlorofluorescin (OPDCFH), shown in Fig

4A and 4C, revealed exposure to PM with a high OP to enhance the release of IL-6 in both cell

models using the non-parametric Spearman’s rank correlation coefficient (rs OPDTT = 0.80,

OPAA = 0.82, OPDCFH = 0.69 in normal and rs OPDTT = 0.74, OPAA = 0.69, OPDCFH = 0.76 in

CF HBE) and thus triggering inflammation [28, 29, 40].

Chemical composition. To further evaluate the impact of the PM chemical composition

and identify the relevant sources on the inflammatory response in HBE, we distinguished

exhaust from primary traffic emissions (hydrocarbon-like OA–HOA) and non-exhaust

(organic sulfur-containing OA–SCOA, metals: Cu, Fe, Mn), primary cooking emissions

(COA), primary biomass burning emissions (organic: BBOA, metals: Zn, Pb), crustal material

(Ti, Al), anthropogenic SOA (aSOA), biogenic SOA (bioSOA), and secondary inorganic aero-

sol (SIA, NH4
+, NO3

-, SO4
2-). The results, shown in Fig 4 and Table 3, clearly demonstrate

increasing IL-6 release in normal and CF HBE to relate to increasing concentrations of anthro-

pogenic PM components.

Discussion

The evidence of health effects associated with source-specific PM does not indicate a clear

‘hierarchy’ of harmfulness for PM from different emission sources [2, 41]. However, results

obtained suggest that a range of detrimental health effects are consistently associated with

traffic-related PM, SOA, specific metals and elemental carbon in PM [5, 6, 42, 43]. Our

results provide on the one hand experimental support for an increased susceptibility of per-

sons with pre-existing pulmonary disorders to environmental PM exposure [23, 44–46]. On

the other hand, we identified PM components and their biological mechanism leading to

adverse effects.
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Fig 3. Screening of gene expression profiles and pathways associated with PM exposure in normal and CF HBE. (a) Gene

expression profiles of the screened 20 genes, classified by PM category (PM10, PM2.5) and site (urban roadside and rural alpine

valley). Fold changes of gene expressions relative to field blank controls are reported (n = 9). Abbreviations: IL = interleukin;
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GSTA1 = glutathione S-transferase alpha 1 = S100A9: S100 calcium binding protein A9; ATM = ataxia telangiectasia mutated

kinase; NOX4 = NADPH oxidase 4; H2AFX = H2A histone family member X; SOD = superoxide dismutase;

PRDX2 = peroxiredoxin 2; SRXN1 = sulfiredoxin 1; DUOX = dual oxidase; SCARA3 = scavenger receptor class A member 3;

HMOX1 = heme oxygenase 1; NQO1 = NAD(P)H quinone dehydrogenase; GPX1 = glutathione peroxidase 1; CFLAR = CASP8

and FADD like apoptosis regulator; NFE2L2 = nuclear factor erythroid-derived 2-like 2. RNA18S5 = ribosomal RNA 18S5, used as

reference gene in the unsupervised analysis. HPRT1 = hypoxanthine guanine phosphoribosyl transferase 1 and HSP90AB1 = heat

shock protein 90 kDA alpha, class B, member 1 were selected as housekeeping genes. Validation of (b) oxidative stress, (c)

antioxidant defense, (d) oxidative protection and (e) DNA damage response pathways in normal and CF HBE. The data are

presented as mean values and standard error of the mean of three independent experiments (ANOVA, Dunnett’s multiple

comparison). Filled bars represent exposure to high, banded bars to low PM dose. � p-value< 0.05; �� p-value< 0.01 referring to

gene expression of CF compared to normal HBE.

https://doi.org/10.1371/journal.pone.0233425.g003

Fig 4. Association between cellular responses upon exposure to PM and chemical parameters of the PM. (a) and (b) non parametric

correlation (Spearman rs), (c) and (d) Student’s t-test p-values of rs. The correlation was derived from the release of interleukins (IL-6 and IL-

8) and lactate dehydrogenase (LDH) in normal and cystic fibrosis (CF) HBE after exposure to PM filter extracts. OPDTT, OPAA and OPDCFH

refer to the oxidative potential of PM determined using the three acellular assays: dithiothreitol (DTT), ascorbic acid (AA) and 2’7’-

dichlorofluorescin (DCFH). The following chemical components of PM are included (see Methods): exhaust (hydrocarbon-like OA–HOA)

and non-exhaust (organic sulfur-containing OA—SCOA, metals: Cu, Fe, Mn) primary traffic emissions, cooking emissions (COA), primary

biomass burning emissions (organic: BBOA, metals: Zn, Pb), crustal material (Ti, Al), anthropogenic SOA (aSOA), biogenic SOA (bioSOA)

and secondary inorganic aerosol (SIA, NH4
+, NO3

-, SO4
2-).

https://doi.org/10.1371/journal.pone.0233425.g004
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By integrating information from different disciplines, the present study reveals that the

major mechanism by which PM acts on the bronchial epithelium, the primarily affected lung

compartment in pulmonary disease, is to proceed through an oxidant/anti-oxidant imbalance

to yield inflammatory response cascades. We further show that anthropogenic PM magnifies

the adverse health outcome in normal and susceptible bronchial epithelia. In addition, the

increase of the deposited PM dose progressively increases epithelial damage. The four to six

times enhanced cytotoxicity in CF HBE compared to normal epithelia shows that individuals

with pre-existing pulmonary diseases are more susceptible to PM exposure than healthy ones.

Thus, the main driver of the adverse health effects of PM pollution is the anthropogenic PM,

in particular in vulnerable individuals. Our data on the assessment of cytotoxicity and interleu-

kin release clearly demonstrate the relation of the observed cytotoxicity to the inflammatory

Table 3. Association between cellular responses of normal and CF HBE to PM exposure and physico-chemical parameters of the PM.

Analyte IL-6 IL-8 LDH

Normal CF Normal CF Normal CF

IL-6 Normal HBE 1 0.46 0.20 0.56 0.28 0.63�

CF HBE 0.46 1 0.61� 0.46 0.50 0.15

IL-8 Normal HBE 0.20 0.61� 1 0.61� 0.84
���

-0.16

CF HBE 0.56 0.46 0.61 1 0.54� -0.06

OP-DTT 0.80
���

0.74
��

0.28 0.31 0.26 0.52

OP-AA 0.82
���

0.69
��

0.20 0.37 0.13 0.48

OP-DCFH 0.69
��

0.76
��

0.41 0.50 0.22 0.20

Cu 0.80
���

0.65� 0.20 0.22 0.29 0.69
��

Fe 0.63� 0.65� 0.28 0.35 0.11 0.31

Mn 0.69
��

0.78
��

0.41 0.31 0.31 0.37

Zn 0.82
���

0.69
��

0.20 0.37 0.18 0.48

Pb 0.63� 0.87
���

0.67
��

0.50 0.52 0.15

Al 0.67 0.26 -0.23 0.13 -0.14 0.74
��

Ti 0.56 0.39 -0.01 0.22 -0.12 0.42

HOA 0.38 0.73
��

0.77
��

0.62� 0.59 � -0.04

COA 0.54 0.14 -0.22 0.00 0.00 0.75
��

BBOA 0.41 0.70
��

0.67
��

0.63� 0.42 -0.14

SC-OA 0.75
��

0.43 -0.11 0.27 -0.11 0.57�

aSOA 0.65� 0.68
��

0.41 0.58� 0.26 0.11

bioSOA -0.23 -0.27 -0.05 -0.05 -0.06 0.13

NO3
- 0.61� 0.76

��

0.58� 0.46 0.52 0.20

SO4
2- 0.02 0.13 0.46 0.35 0.54 0.05

NH4
+ -0.16 0.13 0.54 0.33 0.44 -0.29

PM Mass 0.74
��

0.82
���

0.54 0.50 0.48 0.31

LDH Normal HBE 0.28 0.26 0.84
���

0.54� 1 0.11

CF HBE 0.63 0.52 -0.16 -0.05 0.11 1

Non-parametric correlation (Spearman rs) determined from the release of interleukins (IL-6 and IL-8) and lactate dehydrogenase (LDH) in normal and cystic fibrosis

(CF) human bronchial epithelia (HBE) 24 h after exposure to PM. The oxidative potential of PM was determined using three acellular assays: dithiothreitol (DTT),

ascorbic acid (AA) and 2’7’-dichlorofluorescin (DCFH). Metals were measured by ICP-MS. Sources of organic aerosols (OA) were obtained from positive matrix

factorization PMF. We resolved primary OA from non-exhaust vehicular emissions (SC-OA), traffic exhaust (hydrocarbon-like OA, HOA), cooking (COA) and

biomass burning (BBOA), and secondary OA from anthropogenic (aSOA) and biogenic emissions (bioSOA).

� p-value < 0.05

�� p-value < 0.01

��� p-value < 0.001 indicate a statistically significant correlation (t-test).

https://doi.org/10.1371/journal.pone.0233425.t003
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processes induced by PM exposure. In addition, our results on the gene expression confirm the

activation of the inflammatory response pathway and reveal the upregulation of oxidative stress

genes (SOD1 and SOD2) and of the antioxidant response (HMOX-1 and NFL2L) together with

enhanced cytoprotection (PRDX2 and NQO1) in both cell models. Lacking activation of other

genes in normal HBE indicates that the antioxidant response sufficiently protects normal epi-

thelia. In contrast, the significantly upregulated DNA damage and oxidative stress genes in CF

HBE imply that the antioxidant defense in these compromised epithelia was overcome by expo-

sure to PM. This ultimately explains the higher cytotoxicity in CF than normal HBE.

Overall, our data clearly demonstrate that inflammation arising via oxidative stress

response is reflected by significantly increased expression of the oxidative stress genes (particu-

larly SOD2). Moreover, there is a link to the season of sample collection, mirrored by the

enhanced expression of genes in samples collected in winter compared to summer in both nor-

mal and CF HBE, in particular for genes related to inflammation (IL-6 and IL-8) and antioxi-

dant defense (SOD2).

The limited number of samples in the study, however, does not allow establishing a clear

link between the observed adverse effects and the sites of PM collection or the PM category

(PM10 samples contain the PM2.5 fraction). However, we provide evidence that anthropogenic

sources of atmospheric PM play a more important role than biogenic emissions in inducing

adverse effects to bronchial epithelia, in particular in the vulnerable population.

While considerable efforts were allocated to decrease vehicle emissions, and although PM

concentrations in Europe decreased significantly during the last decades [47, 48], mitigation

strategies are not equally effective in decreasing the OP of PM [49]. As outlined by Daellenbach

et al. [49], due to the adoption of a renewable energy source for residential heating, the concen-

tration of primary and aged biomass burning aerosol is expectedly rising and leads to

enhanced OP [49]. Consequently, the overall health impacts of PM may increase in the near

future despite the decrease in total PM mass concentrations. Our data suggest that in order to

reduce the adverse health effects of ambient pollution, the commitment to effectively decrease

PM mass concentration and OP has to be intensified. Specifically targeting health-relevant

anthropogenic PM components (from exhaust and non-exhaust car emissions, wood combus-

tion) is key to mitigate the adverse health impacts of PM and in particular, to protect the vul-

nerable population.
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