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Abstract: As a widely used steroid hormone medicine, glucocorticoids have the potential to cause
steroid-induced osteonecrosis of the femoral head (SONFH) due to mass or long-term use. The
non-coding RNA hypothesis posits that they may contribute to the destruction and dysfunction
of cartilages as a possible etiology of SONFH. MiR-30b-5p was identified as a regulatory factor in
cartilage degeneration caused by methylprednisolone (MPS) exposure in our study through cell
transfection. The luciferase reporter assay confirmed that miR-30b-5p was downregulated and runt-
related transcription factor 2 (Runx2) was mediated by miR-30b-5p. The nobly increased expression
of matrix metallopeptidase 13 (MMP13) and type X collagen (Col10a1) as Runx2 downstream genes
contributed to the hypertrophic differentiation of chondrocytes, and the efficiently upregulated level
of matrix metallopeptidase 9 (MMP9) may trigger chondrocyte apoptosis with MPS treatments.
The cell transfection experiment revealed that miR-30b-5p inhibited chondrocyte hypertrophy and
suppressed MPS-induced apoptosis. As a result, our findings showed that miR-30b-5p modulated
Runx2, MMP9, MMP13, and Col10a1 expression, thereby mediating chondrocyte hypertrophic
differentiation and apoptosis during the SONFH process. These findings revealed the mechanistic
relationship between non-coding RNA and SONFH, providing a comprehensive understanding of
SONFH and other bone diseases.

Keywords: steroid-induced osteonecrosis of the femoral head; methylprednisolone; non-coding
RNA; hypertrophic differentiation; apoptosis

1. Introduction

Glucocorticoids (GC) are steroid hormones that are commonly utilized to treat various
inflammatory diseases, autoimmune disorders, and cancer. However, inappropriate GC
therapy is likely to have a number of negative effects on the endocrine, cardiovascular,
musculoskeletal, and other systems [1]. Steroid-induced osteonecrosis of the femoral
head (SONFH) is a metabolic disorder caused by improper GC medication that results
in bone marrow destruction in the femoral head and hip joint impairment, which were
initially documented in 1957 [2,3]. Presently, along with the widespread application of
GC treatments, SONFH has garnered substantial attention in the medical field due to the
challenges in regenerating osteonecrotic tissue. However, more evidence is required to
investigate the precise pathogenesis of SONFH, which may be linked to several theories,
such as lipid metabolism disorders, decreased osteogenesis capacity of bone marrow
mesenchymal stem cells, inadequate blood supply, inflammation and cell apoptosis, and
non-coding RNA and gene polymorphism [3].

Non-coding RNAs (ncRNAs) are a vital component in cell proliferation, growth, and
death [4]. MicroRNAs (miRNAs) are short single-stranded ncRNAs that modulate tar-
get gene expression by inhibiting the translational regulation of target proteins. Several
studies using microarray RT-PCR were conducted to investigate the potential relationship
between miRNAs and SONFH, indicating that upregulated or downregulated miRNAs
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may act as a regulatory factor in the SONFH process [5,6]. MicroRNA-17/20a, which
targets nuclear factor-kappa B ligand (RANKL) expression, was found to be downregu-
lated in glucocorticoid-induced osteoclast differentiation [7]. In GC-inhibited osteoblast
proliferation, microRNA-199a-5p functioned by regulating the WNT signaling pathway [8].
This evidence aided the discovery of the mechanism of SONFH.

In 1997, runt-related transcription factor 2 (Runx2) was initially identified as a critical
transcription factor in skeletal development [9,10]. Numerous studies have discovered
that Runx2 plays an important role in multipotent mesenchymal cells, osteoblast-lineage
cells, and chondrocytes with a variety of functions [11]. Runx2 was expressed weakly
in uncommitted mesenchymal cells in osteoblasts, but it was elevated in preosteoblasts,
had its peak expression in immature osteoblasts, and was eventually downregulated in
mature osteoblasts [12]. Runx2 regulates the bone matrix genes osteocalcin (OCN), bone
sialoprotein (BSP), and osteopontin (OPN), and it maintains the expression of OPN and BSP
during the osteoblast differentiation process [13]. In chondrocytes, Runx2 is upregulated
in prehypertrophic chondrocytes and remains upregulated in hypertrophic and terminal
hypertrophic chondrocytes [14]. Matrix metallopeptidase 9 (MMP9) and 13 (MMP13) are
zinc-containing endopeptidases that can degrade a variety of extracellular matrix proteins [15].
Type X collagen (Col10a1) is a member of the short-chain collagen family that participates in
calcification via matrical organization changes [16]. MMP13 and Col10a1 have been identified
as downstream targets of Runx2 as hypertrophic chondrocyte markers [17,18].

Several functional studies have been carried out to investigate the biological role of
miR-30b-5p in acute pancreatitis, renal cell carcinoma, and lung cancer [19–21]. However.
few studies have been conducted to explore the interaction between miR-30b-5p and Runx2.
Nurzati et al. found that the abnormal expression of Ruxn2 in keloids may be regulated
by miR-30b-5p in the pathogenesis of keloids based on the GEO database [22]. Moreover,
miR-30b-5p has been proved to be a tumor suppressor microRNA in esophageal squamous
cell carcinoma by targeting Runx2 [23].

The current research revealed the role of miR-30b-5p in chondrocytes during SONFH
targeting Runx2. Transfection experiments revealed that miR-30b-5p was reduced in a
femoral head necrosis model, and the target gene Runx2 was confirmed. The elevated
Runx2 level was able to stimulate the expression of MMP13 and Col10a1 related to chondro-
cyte hypertrophy alterations, as well as chondrocyte apoptosis possibly mediated by MMP9.
Our findings are beneficial for investigating the function and mechanism of ncRNAs in
SONFH and other bone diseases.

2. Results
2.1. Methylprednisolone (MPS) Exposure Led to Chondrocyte Hypertrophy and Apoptosis in the
SONFH Animal Model

Chondrocyte hypertrophy and apoptosis in the SONFH animal model have been
evaluated by hematoxylin and eosin (H&E) staining, quantitative real-time PCR (qPCR),
western blotting, and a caspase 3 activity kit. The result of H&E staining is shown in
Figure 1A, focusing on the femoral head articular cartilage. Chondrocytes in the control
group exhibited normal morphology, while abnormal hypertrophic chondrocytes were
observed in the MPS-induced group (red arrows). The separation of the cartilage from
the femoral head was seen in the MPS group, indicating the destruction and dysfunction
of the cartilage (Figure 1B). The qPCR test revealed a significant decrease in miR-30b-5p
with a markedly elevated level of hypertrophic-related genes Runx2, MMP9, MMP13,
and Col10a1 (Figure 1C,D). The results of the qPCR assay were confirmed by the western
blotting data (Figure 1E,F). Furthermore, chondrocyte apoptosis was assessed using a
western blotting analysis and a caspase 3 activity kit. The results demonstrated that cleaved
caspase 3 was upregulated by MPS exposure, indicating the apoptosis of chondrocytes by
the MPS treatment (Figure 1E–G). Overall, the results indicated that MPS exposure induced
hypertrophic differentiation and apoptosis in chondrocytes in the SONFH animal model.
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cartilage. Scale bar: 200 µm. Group 1: animals injected with sterile saline; Group 2: animals injected 
with methylprednisolone (MPS) (20 mg/kg/d); (B) The macroscopic morphological changes in con-
trol group and MPS-induced group. (C,D) The expression levels of miR-30b-5p, Runx2, MMP9, 
MMP13, and Col10a1 were determined by qPCR between the control group and MPS group. (E,F) 
The protein expression of Runx2, MMP9, MMP13, and Col10a1 detected by western blotting analy-
sis between the control group and MPS group. (G) The apoptosis of chondrocytes was performed 
by caspase 3 activity kit. Data were presented as mean ± SD. “*” represented statistical difference in 
comparison with control group (* p < 0.05, ** p < 0.01).  

Figure 1. Chondrocyte hypertrophy and apoptosis were trigged by MPS exposure in SONFH animal
model. (A) Hematoxylin and eosin (H&E) staining of chondrocytes in the femoral head articular
cartilage. Scale bar: 200 µm. Group 1: animals injected with sterile saline; Group 2: animals injected
with methylprednisolone (MPS) (20 mg/kg/d); (B) The macroscopic morphological changes in
control group and MPS-induced group. (C,D) The expression levels of miR-30b-5p, Runx2, MMP9,
MMP13, and Col10a1 were determined by qPCR between the control group and MPS group. (E,F)
The protein expression of Runx2, MMP9, MMP13, and Col10a1 detected by western blotting analysis
between the control group and MPS group. (G) The apoptosis of chondrocytes was performed by
caspase 3 activity kit. Data were presented as mean ± SD. “*” represented statistical difference in
comparison with control group (* p < 0.05, ** p < 0.01).

2.2. Effects of MPS Exposure on Hypertrophic Differentiation and Apoptosis in Chondrocytes

The hypertrophic differentiation and apoptosis in chondrocytes have been evaluated
by qPCR, western blotting, immunofluorescence, flow cytometry, and a caspase 3 activity
kit to strengthen the observation in chondrocytes with MPS treatment in the animal models.
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Chondrocytes were exposed to various doses of MPS (20, 40, 60, 80, and 100 µg/mL) for 1,
4, 8, and 12 h, respectively, to evaluate the cytotoxicity of MPS. As displayed in Figure 2A,
the cell viability of chondrocytes was reduced by around 30% under 80 ug/mL MPS
exposure for 8 h. As a result, the condition was chosen for further in vitro study. Firstly,
miR-30b-5p was determined using qPCR, showing that it was dramatically downregulated
with the MPS treatment, whereas the mRNA levels of Runx2, MMP9, MMP13, Col10a1, and
cleaved caspase 3 were increased inversely (Figure 2B,C). Moreover, the protein levels of
Runx2, MMP9, MMP13, Col10a1, and cleaved caspase 3 were enhanced (Figure 2D,E). The
immunofluorescence assay result was consistent with the western blotting assay, indicating
that Runx2 expression was increased in MPS-induced chondrocytes compared to the control
group (Figure 3A). A caspase 3 activity kit and a flow cytometry experiment were used.
The results showed that the MPS group exhibited significantly higher apoptosis rates
and enhanced caspase 3 activity, as shown in Figure 3B–D. In conclusion, MPS exposure
significantly increased the expression of Runx2 and hypertrophic marker genes MMP13
and Col10a1.
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of chondrocytes treated with 20, 40, 60, 80, 100 µg/mL for 1, 4, 8, 12 h. (B,C) The expression of
miR-30b-5p, Runx2, MMP9, MMP13, and Col10a1 was determined by quantitative real-time PCR.
Group 1: control; Group 2: cells treated with 80 µg/mL methylprednisolone (MPS). (D,E) the
protein expression of Runx2, MMP9, MMP13, Col10a1, and Cleaved caspase 3 in MPS-induced
chondrocytes compared with control group. Data were presented as mean ± SD. “*” represented
statistical difference in comparison with control group (** p < 0.01).

2.3. MiR-30b-5p Regulated Chondrocyte Hypertrophy with MPS Treatment in Chondrocytes

The association between MPS and miR-30b-5p in chondrocytes has been evaluated by
qPCR, western blotting, and immunofluorescence with cell transfection. The transfection of
miR-30b-5p mimics or mimics negative control (NC) was performed with or without MPS
exposure. As demonstrated in Figure 4A,B, the transfection of miR-30b-5p mimics effec-
tively reduced Runx2 expression with a nobly increased level of miR-30b-5p. Furthermore,
the elevated Runx2 was significantly suppressed compared to mimics NC with the MPS
treatment. In terms of qPCR and western blotting assays, the expression levels of MMP9,
MMP13, and Col10a1 as Runx2 downstream genes were consistent (Figure 4B–D). The
immunofluorescence results confirmed the opposite effect of miR-30b-5p mimics’ transfection
by MPS exposure on the Runx2 levels (Figure 4E). In conclusion, these findings indicated that
miR-30b-5p regulated Runx2 expression, which is linked to hypertrophic differentiation.
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Figure 3. MPS-induced chondrocytes apoptosis in vitro. (A) Runx2 expression stained with Alexa Fluor
488 fluorescence (green) was visualized by immunofluorescence, and nuclei were stained with DAPI
(blue). Group 1: control; Group 2: cells treated with 80 µg/mL methylprednisolone (MPS). Scale bar:
20 µm. (B,C) Cells were stained with PI and Annexin V-FITC and detected by flow cytometry. (D) The
caspase 3 activity between control group and MPS group. Data were presented as mean ± SD. “*”
represented statistical difference in comparison with control group (** p < 0.01).
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Figure 4. The overexpression of miR-30b-5p inhibited the hypertrophic differentiation in chondro-
cytes. (A,B) The expression of miR-30b-5p, Runx2, MMP9, MMP13, and Col10a1 was performed
by qPCR with miR-30b-5p transfection. Group 1: mimics negative control (miNC); Group 2: miNC
and methylprednisolone (MPS); Group 3: mimics; Group 4: mimics and MPS. (C,D) The protein
expression of Runx2, MMP9, MMP13, and Col10a1 detected by western blotting assay in the four
groups mentioned above. (E) Runx2 was visualized by Alexa Fluor 488 (green) and the nuclei was
visualized by DAPI (blue) through immunofluorescence analysis. Scale bar: 20 µm. Data were
presented as mean ± SD. “*” represented statistical difference in comparison with control group
(* p < 0.05, ** p < 0.01).

2.4. MPS-Induced Apoptosis in Chondrocytes Was Reduced by miR-30b-5p

The role of miR-30b-5p in apoptosis has been evaluated by western blotting, flow
cytometry, and a caspase 3 activity kit with cell transfection. MiR-30b-5p mimics or mim-
ics NC were transfected into chondrocytes with or without the MPS treatment and the
western blotting analysis revealed that miR-30b-5p mimics alone did not affect apoptosis,
but miR-30b-5p mimics’ transfection significantly suppressed apoptosis caused by MPS
exposure. Furthermore, a flow cytometry analysis and a caspase 3 activity kit were used to
further investigate the relationship between miR-30b-5p and apoptosis. The above experi-
ments revealed the same phenomenon (Figure 5A–C). Overall, these findings suggested
that miR-30b-5p had the capacity to alleviate apoptosis induced by MPS.
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The link between miR-30b-5p and Runx2 has been evaluated by a luciferase reporter
experiment. The results showed that miR-30b-5p significantly reduced the luciferase activity
of the wild-type plasmid, while there was no significant change in the mutant-type group
(Figure 5D,E). Runx2 was found to be regulated by miR-30b-5p and to mediate chondrocyte
hypertrophy and apoptosis. Figure 6 depicts a schematic diagram of the mechanism.
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Figure 5. miR-30b-5p suppressed MPS-induced apoptosis in chondrocyte. (A,B) The apoptosis of
chondrocytes with different treatments were stained with Annexin V–FITC and PI by flow cytometry
assay. Group 1: mimics negative control (miNC); Group 2: miNC and methylprednisolone (MPS);
Group 3: mimics; Group 4: mimics and MPS. (C) The bar chart showed the caspase 3 activities of
different treatment groups by a caspase 3 activity kit. (D) The sequence of Runx-3′UTR-wt and
Runx2-3′UTR-mut was determined by TargetScan Release 7.1. (E) The luciferase activity in the group
with Runx2-3′UTR-wt and miR-30b-5p mimics was significantly decreased compared with the group
that combined Runx2-3′UTR-wt and miNC. Data were presented as mean ± SD. “*” represented
statistical difference in comparison with control group (* p < 0.05, ** p < 0.01).
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3. Discussion

As a bone metabolic abnormality, SONFH is characterized by peri-articular bone
disintegration and cartilage deterioration [24]. SONFH’s high impairment rate with a poor
quality of life is a major concern [25]. Scholars worldwide have been striving to establish
animal models of SONFH pathogenesis, including rabbits, mice, rats, and chickens [26–28].
The advantage of chickens as an animal model of SONFH over other small quadrupeds
is that their bipedal movement produces pressures on their hips similarly to humans [29].
The first SONFH chicken model was established using weekly intramuscular injections
of 3 mg/kg MPS with an ONFH result of the resorption of subchondral bone death, fat
cell proliferation, and new bone growth [30]. Erken et al. discovered that chickens were
suitable for steroid-induced osteonecrosis models because similar clinical changes were
observed by injecting MPS (3 mg/kg/week) intramuscularly [31].

The downregulation of miR-30b-5p in our study was confirmed by the significantly
increased expression of Runx2, MMP9, MMP13, and Col10a1 in the SONFH animal model.
Several functional studies on miR-30b-5p in vertebrates have been conducted. It was
discovered that miR-30b-5p-targeted LRP8 re-sensitizes lung cancer cells to DDP, acting as
a tumor suppressor [19]. Moreover, the research suggested that miR-30b-5p modulated au-
tophagy and lysosomal biogenesis by blocking TFEB-dependent transactivation via CLEAR
elements in the nucleus [32]. Furthermore, it was demonstrated that exosomal miR-30b-5p
produced by hypoxic PDAC cells increased angiogenesis by inhibiting GJA1 and that
miR-30b-5p could be used to diagnose PDAC [33]. The role of miR-30b-5p regulation in
SONFH, however, remains unknown. In our study, miR-30b-5p was significantly reduced
after MPS exposure both in vivo and in vitro, and its target gene Runx2 was identified
using a dual luciferase reporter assay. Runx2 was found to be a regulatory factor in the
expression of MMP13 and Col10a1 in hypertrophic chondrocytes [34]. Although the ex-
pression of MMP13 is beneficial to normal cartilage remodeling, excessive MMP13 activity
may lead to an aberrant matrix breakdown and joint degeneration [35]. As a physiological
process, hypertrophic differentiation occurs exclusively in growth plate chondrocytes dur-
ing endochondral ossification [36]. However, the significantly elevated expression levels
of Runx2, MMP13, and Col10a1 in the femoral head articular cartilage suggested that the
abnormal hypertrophic differentiation occurred in chondrocytes and may result in cartilage
destruction and dysfunction during the SONFH process.

Apoptosis is a common type of programmed cell death used to maintain an internal
environment. This study identified in vitro and in vivo chondrocyte apoptosis in response
to MPS exposure. A prior study showed that MMP9/gelatinase B deficient homozygous
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mice exhibited normal hypertrophic chondrocytes with delayed apoptosis vascularization
and ossification, indicating that gelatinase B may function to induce chondrocyte apop-
tosis [37]. MMP9 expression was inhibited in Runx2-deficient chondrocytes, indicating
that MMP9 is the downstream regulator of Runx2, according to Liao et al. [38]. In addition,
Rashid et al. [39] found that the apoptosis of Runx2HC/HC hypertrophic chondrocytes was
significantly reduced, as was the level of MMP9. The extraordinarily elevated expression
of MMP9 controlled by Runx2 may contribute to the induction of apoptosis during the
SONFH process.

In conclusion, we discovered that miR-30b-5p was significantly decreased with MPS
exposure in vitro and in vivo, accompanied by Runx2 being significantly upregulated. As a
transcription factor, the significantly increased expression of Runx2 facilitated hypertrophic
differentiation by activating the expression of MMP13 and Col10a1 and induced chon-
drocyte apoptosis by possibly stimulating the level of MMP9 during the development of
SONFH. Our findings provided a new investigation into the role of ncRNAs as a biological
regulator in the mechanism of SONFH.

4. Materials and Methods
4.1. Femoral Head Necrosis Model Animals

On average, 16 one-day-old broiler chickens (Gallus gallus, AA broilers) were randomly
assigned to two groups: control and MPS. At 29 days, the animals were given MPS
(20 mg/kg/d) intramuscularly for a week, while the control group received sterile saline
injections. Animal samples from each group were collected at 42 days for further research.
All animal protocols were approved by the Animal Protection and Use Committee of
Nanjing Agricultural University (approval number: No.2019031804).

4.2. Cell Culture, Drug Stimulation, Cell Viability Assay

The isolation of chondrocytes was carried out as previously described [26]. Chondro-
cytes were treated with MPS at different doses (20, 40, 60, 80, 100 µg/mL) and times (1, 4,
8, 12 h) to determine cell viability using a Cell Counting Kit-8 (CCK-8) (Cat No. BS350A,
Biosharp, Hefei, China). A Tecan Spark Multimode Microplate Reader (Tecan, Männedorf,
Switzerland) was used to measure absorbance values at 450 nm, according to the manufac-
turer’s instructions.

4.3. RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated from tissues and cells using an RNA isolater (Cat No. R401-01,
Vazyme, Nanjing, China), according to the manufacturer’s instructions. HiScript III All-in-
one RT SuperMix Perfect for qPCR (Cat No. R333-01, Vazyme, China) was used to make
cDNA, and Taq Pro Universal SYBR qPCR Master Mix (Cat No. Q712, Vazyme, China) was
used to perform qPCR on an ABI PRISM 7300 HT sequence-detection system (Applied
Biosystems Inc., Waltham, MA, USA).

4.4. Western Blotting

Western blotting analysis was conducted as previously reported [40]. Anti-Runx2 (Cat
No. WL03358, 1:500, WanleiBio, Shenyang, China), anti-MMP9 (Cat No. WL03096, 1:500,
WanleiBio, China), anti-MMP13 (Cat No. WL04694, 1:500, WanleiBio, China), anti-Col10a1
(Cat No. AF6538, 1:500, Beyotime, Shanghai, China), anti-Caspase 3 (Cat No. WL02117,
1:500, WanleiBio, China), anti-Cleaved caspase 3 (Cat No. WL01992, 1:500, WanleiBio,
China), anti-β-actin (Cat No. 20536-1-AP, 1:1000, Proteintech, Wuhan, China) primary
antibodies were used.

4.5. Immunofluorescent Staining

Following various treatments, the cells cultivated on coverslips were stained using
immunofluorescence. In brief, the cells were fixed for 20 min in 4% paraformaldehyde
before being washed three times in PBS for 3 min. The cells were then permeabilized for
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20 min with 0.3% Triton X-100 and rinsed three times with PBS for 3 min. The cells were
blocked with 5% BSA for 30 min before being treated at 4 ◦C for 14 h with anti-rabbit
polyclonal antibodies to Runx2 (Cat No. 20700-1-AP, 1:100, Proteintech, China). The cells
were then rinsed three times with PBS containing 0.1% tween-20 (PBST) for 3 min before
being incubated for 1 h with an Alexa Flour 488 goat anti-rabbit antibody (Cat No. P0176,
1:1000, Beytime, China). Finally, the cells were rinsed with PBST three times for 3 min
and incubated with 4,6-diamidino-2-phenylindole (DAPI) for 5 min before being washed
with PBST four times for 5 min. An Antifade Mounting Medium was used to secure the
coverslips to the glass slides (Cat No. FSL004, Beyotime, China). An LSM 710 confocal laser
microscope equipment was used to view the images (Zeiss, Jena, Germany).

4.6. Flow Cytometry

The Annexin V-FITC/PI Apoptosis test was used to detect apoptosis (Cat No. A211-01,
Vazyme, China). In brief, each group’s chondrocytes were rinsed with PBS and digested
with 0.25% trypsin without EDTA. The cells were then resuspended in PBS before being
centrifuged twice at 1000 rpm per minute for 5 min. Finally, Annexin V-FITC and PI
staining solutions were added and incubated for 10 min in the dark before being measured
on a BD FACSVerseTM 273 Flow Cytometer (BD Biosciences, Franklin Lakes, NJ, USA)

4.7. Measurement of Caspase-3 Activity

A caspase 3 activity kit (Cat No. C1115, Beyotime, China) was used to detect caspase
3 activity. Caspase 3 has the ability to catalyze the substrate acetyl-Asp-Glu-Val-Asp
p-nitroaniline (Ac-DEVD-pNA) to create yellow p-nitroaniline (pNA), as measured by a
Tecan Spark Multimode Microplate Reader at 405 nm (Tecan, Switzerland).

4.8. Cell Transfection

The miR-30b-5p mimics were chemically synthesized for overexpression (GenePharma,
Shanghai, China). The experimental groups included 4 groups: (1) negative control trans-
fection; (2) MPS exposure after negative control transfection; (3) miR-30b-5p mimics overex-
pression; and (4) miR-30b-5p mimics overexpression followed by MPS exposure. Cells were
transfected with RFect Transfection Reagent (Cat No. 11014, BIOG, Changzhou, China)
as per the manufacturer’s instructions. Cells were used for the further experiment after
transfection for 48 h.

4.9. Dual Fluorescence Assay

To confirm the link between Runx2 and miR-30b-5p, a dual fluorescence test was per-
formed. The wild-type and mutant 3’UTRs of Runx2 mRNA were cloned and inserted into
the GP-miRGLO vector (Promega, Madison, WI, USA) and co-transfected with miR-30b-5p
mimics or miR-NC into chondrocytes. Tecan Infinite M200 Pro NanoQuant (Tecan, Switzer-
land) was utilized to assess firefly and Renilla luciferase activity after transfection for 48 h
using the Dual Luciferase Reporter Assay Kit (Cat No. DL101-01, Vazyme, China).

4.10. Statistical Analysis

The IBM SPSS 25.0 program for Windows was used to analyze all of the results
(IBM Inc., Armonk, NY, USA). Data for each group were represented as mean SD values,
and differences between groups were assessed using one-way ANOVA (ANOVA, LSD).
Significant changes were assessed at two levels of significance: p < 0.05 (significant) and
p < 0.01 (extremely significant).
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