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Abstract

We propose a new version of the forward-backward splitting expectation-maximisation network 

(FBSEM-Net) along with a new memory-efficient training method enabling the training of 

fully unrolled implementations of 3D FBSEM-Net. FBSEM-Net unfolds the maximum a 
posteriori expectation-maximisation algorithm and replaces the regularisation step by a residual 

convolutional neural network. Both the gradient of the prior and the regularisation strength 

are learned from training data. In this new implementation, three modifications of the original 

framework are included. First, iteration-dependent networks are used to have a customised 

regularisation at each iteration. Second, iteration-dependent targets and losses are introduced 

so that the regularised reconstruction matches the reconstruction of noise-free data at every 

iteration. Third, sequential training is performed, making training of large unrolled networks far 

more memory efficient and feasible. Since sequential training permits unrolling a high number 

of iterations, there is no need for artificial use of the regularisation step as a leapfrogging 

acceleration. The results obtained on 2D and 3D simulated data show that FBSEM-Net using 

iteration-dependent targets and losses improves the consistency in the optimisation of the network 

parameters over different training runs. We also found that using iteration-dependent targets 

increases the generalisation capabilities of the network. Furthermore, unrolled networks using 

iteration-dependent regularisation allowed a slight reduction in reconstruction error compared to 

using a fixed regularisation network at each iteration. Finally, we demonstrate that sequential 

training successfully addresses potentially serious memory issues during the training of deep 

unrolled networks. In particular, it enables the training of 3D fully unrolled FBSEM-Net, not 

previously feasible, by reducing the memory usage by up to 98% compared to a conventional 

end-to-end training. We also note that the truncation of the backpropagation (due to sequential 

training) does not notably impact the network’s performance compared to conventional training 

with a full backpropagation through the entire network.
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I Introduction

Positron emission tomography (PET) provides crucial functional information allowing to 

detect abnormalities undetectable by other imaging modalities. However, PET measured 

data often suffers from high noise levels due to detector sensitivities or numerous physical 

processes limiting the number of back-to-back photon pairs collected by the scanner. 

Besides, high injected radiotracer dose can expose patients as well as technicians to 

health risks, leading to the need for dose reductions further degrading the measured data 

quality. The classic maximum likelihood expectation-maximisation (MLEM) algorithm [1] 

or its variant, the ordered-subsets expectation-maximisation (OSEM) algorithm [2] used 

for reconstructing PET images in routine scans tend to fit the noise contained in the 

data. They deliver 'night sky' reconstructions, hence the need for regularisation. The latter 

is currently realised by terminating the MLEM algorithm before it reaches convergence 

or by applying post-smoothing on the reconstructed images. Regularisation can also be 

achieved by introducing prior information in the reconstruction process. Recovering an 

unknown image is therefore done by estimating the maximum a posteriori (MAP) using 

the expectation-maximisation algorithm. Some priors only use the PET image such as 

the quadratic prior or total variation (TV). Nonetheless, depending on the data and/or the 

regularisation strength chosen, these priors show their limitations as they can provide very 

unnatural looking images (over-smoothing or staircase artifacts). Other priors have been 

designed based on the idea that neighbouring voxels should have similar intensity values 

whereas distant voxels should not. Local, initially, then non-local edge-preserving priors [5], 

[6] have successfully provided robust regularisers. In case of extreme levels of noise, the risk 

of missing boundaries remains present. An other approach to improve PET image quality 

is to use anatomical information obtained from magnetic resonance imaging (MRI) [7], [8], 

[9] or computed tomography (CT). These high resolution images can help in guiding the 

PET reconstruction to recover lost boundary information. In spite of years of research, all 

the proposed regularisation methods remained hand-crafted and designed to match some 

desirable mathematical properties or impose beliefs that we have.

Recently, deep learning methods opened a new area of research for image computing, 

demonstrating improved performance compared to state-of-the-art conventional algorithms 

[18]. Deep neural networks can roughly be used in four ways for medical image 

reconstruction: i) for pre-processing of the measured data [16], ii) for post-processing of 

the reconstructed images [17], iii) to learn the entire reconstruction process [10], [11], 

iv) to complement conventional reconstruction algorithms. The focus here will be on the 

latter category, namely physics-informed deep learning. In this framework, the strengths of 

robust statistical noise models are combined with neural networks. Conventional iterative 

reconstruction algorithms are unrolled and neural networks are incorporated to learn the 

parts of the reconstruction that we are not certain of, such as the prior form or the 

regularisation strength. Three main frameworks have been proposed for PET reconstruction. 

The method from Gong et al. [12] named EM-Net and later updated in MAPEM-Net is 

a method based on the alternating direction method of multipliers (ADMM) algorithm. 

They alternatively perform two MAP-EM updates followed by a denoising step using a 

neural network. The resulting denoised image is thereafter used as a prior image for the 
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following two MAP-EM updates. In MAPEM-Net, a U-Net structure is selected for the 

neural networks and eight unrolled modules are used. The networks are trained end-to-end 

which might lead to potential memory issues.

Lim et al. [13] proposed unrolling a block coordinate descent (BCD) algorithm. They 

adapted the so-called BCD-Net [21], first proposed for MR reconstruction, to PET 

reconstruction. In this framework, similarly to MAPEM-Net, they alternate between a 

given number of reconstruction steps and denoising steps. The architecture of the network 

for their iterative NN (INN) is a simple 2-layer convolutional encoder-decoder (CED) 

whose activations (soft-thresholding operations) are learned during the training process. 

The network is initialised with an image obtained after a few EM updates before 

alternating between a pass through a convolutional image denoising (CID) module and 

an image reconstruction module. The framework is designed such that it is possible to 

conduct multiple passes through the image reconstruction module (or conduct an entire 

reconstruction) before to pass once into the CID module. Because the CID modules do not 

contain any time-consuming forward or back projectors, the INN training is considerably 

sped up compared to other unrolled methods. Additionally, the memory requirements are 

lower as the intermediate reconstruction results do not have to be stored in memory. 

Nonetheless, just like MAPEM-Net, a reduced number of unrolled modules is used 

compared to the number of iterations used for the reconstruction of the targets, which 

introduces what we call leapfrogging. The problem with such techniques is that regularisers 

can learn object details and thus become more than simple learned regularisers, putting at 

risk their generalisation abilities. These networks can precipitate the convergence of the 

conventional algorithm.

The third framework is the forward-backward splitting expectation-maximisation (FBSEM) 

network [4]. FBSEM-Net unfolds the MAP-EM algorithm and replaces the regularisation 

step by a residual convolutional neural network to learn both the gradient of the prior and the 

regularisation strength. However, some issues arise from its original implementation that we 

improve upon in this work to make it more practical and offer a slight gain in performance. 

Specifically, we propose using iteration-dependent networks and iteration-dependent targets/

losses such as in [20]. We will be referring to this new version as FBSEM-IS-Net (FBSEM 

iteration-specific). To address potential memory issues occurring during the training of deep 

unrolled networks such as FBSEM-Net, we also investigate the impact of training all the 

modules of the unrolled network independently rather than training the network in an end-

to-end fashion. FBSEM-IS-Net has 60 times more trainable parameters than in the original 

version. Its generalisation abilities are assessed on piece-wise constant phantoms. This 

method, while applied to the FBSEM framework, can be extended to enable or facilitate 

the training of any deep unrolled network. The main contributions of this work are first to 

increase the generalisation capabilities of deep unrolled networks using iteration-dependent 

targets and losses by constraining the regularisers to be pure denoisers. Second, this work 

enables training of unrolled networks for higher numbers of iterations, hence avoiding 

any artificial acceleration of the reconstruction algorithm by leapfrogging. The sequential 

training proposed allows the training of a fully unrolled version of 3D FBSEM-Net for the 

typical numbers of iterations that would be normally chosen for MAP-EM methods.
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The structure of this article is as follows. Section II reviews the basic principles of model-

based PET image reconstruction, describes the FBSEM framework and develops the new 

version proposed. Section III provides information on the data used along with the process 

to generate it, gives implementation details and describes the various reference methods 

compared with our proposed FBSEM-IS-Net. Section IV presents how the different methods 

perform on 2D and 3D simulated test data. Finally, Section V and VI conclude and discuss 

on potential improvements of the proposed method.

II Theory and Methods

A Model-based PET reconstruction

Model-based image reconstruction (MBIR) methods seek to iteratively estimate an image x 
∈ ℝN from noisy measurements y ∈ ℝM, N being the number of voxels and M the number 

of sinogram bins. In PET reconstruction, the yi are assumed to be drawn from a Poisson 

distribution and their mean is modelled by

y = Px + r + s (1)

with P ∈ ℝM×N the system matrix and r + s ∈ ℝM×1 the mean randoms and scatters. The 

image x is estimated by solving the following ML problem:

x = argmax
x

L x y (2)

where L is defined as the Poisson log-likelihood

L x y = ∑
i

yilog yi − yi + log yi! (3)

However, the MLEM algorithm tends to fit the noise contained in the measured data to 

produce noisy estimates. A solution to circumvent this problem is to add a constraint into the 

objective function imposing prior knowledge we have about x. We are no longer seeking to 

estimate the ML but the MAP using the EM algorithm:

x = argmax
x

L x y − βR x (4)

where R is a penalty term that enforces x to be in the set of realistic images and β is the 

regularisation strength.

Notwithstanding the quantity and diversity of priors proposed in the literature, the majority 

are designed to match specific requirements or introduce beliefs that we have about x but are 

unlikely to be optimal. A recent trend has been to use learned priors.

B FBSEM-Net

The optimisation transfer technique can be used to solve Eq. (4) under the condition that a 

differentiable, separable and convex surrogate is used for the prior R. In the FBSEM-Net 

framework, the forward-backward splitting (FBS) algorithm [14] is used. By replacing the 
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projection operator by a proximal mapping, the FBS algorithm offers a generalisation of the 

projected gradient descent algorithm. The optimisation problem can therefore be rewritten as 

follows:

x n = argmax
x

L x y − 1
2γ x−xReg

n 2
(5)

xReg
n = x n − 1 − γβ ∇R x n − 1 (6)

In Eq. (5) a proximal mapping is performed, while in Eq. (6) a gradient descent update is 

performed with a step size of γ. The trade-off between data consistency with the likelihood 

L and the discrepancy between x and xReg
n  is controlled by 1

2 γ . A surrogate can be defined 

for L [15] and Eq. (5) can be reformulated:

x n = argmax
x

∑
j

xj, EM
n ln xj − xj − 1

2γsj
(xj − xj, Reg

n )
2

(7)

with

xj, EM
n, m =

xj
n − 1, m

sj
∑
i

pij
yi

∑kpikxk
n − 1, m + ri + si

(8)

and sj = ∑i pij.

Setting the derivative of Eq. (7) to zero gives the following closed-form solution:

xj
n, m =

2xj, EM
n, m

1 −
xj, Reg

n, m

γsj
(1 −

xj, Reg
n, m

γsj
)2 +

xj, EM
n, m

γsj

(9)

In FBSEM-Net, a convolutional neural network (CNN) is incorporated in the regularisation 

step Eq. (6) to learn the gradient of the prior and the regularisaton strength. Therefore, no 

hyperparameter has to be set by the user. The resulting algorithm is composed of 3 steps: 

i) data consistency update, ii) regularisation update, iii) fusion of the two resulting images 

(see Algorithm 1). We refer to one iteration of the unrolled algorithm (the completion of 

these three steps) as a module. The same set of parameters θ for the CNN is shared across 

all the modules. FBSEM-Net has shown improved results for PET reconstruction compared 

to state-of-the-art methods. Nonetheless, some issues arise from its original implementation. 

First, the training of FBSEM-Net has massive memory requirements. Unrolling 60 modules 

becomes challenging if not impossible when working with 3D data as all the intermediate 

images have to be stored in memory. Second, the use of a single final loss does neither 

limit the residual CNN to act as a pure regulariser nor control the output of the intermediate 

modules. The network could learn object details and artificially accelerate the convergence 
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of the algorithm. It is based on these concerns that we proposed FBSEM-IS-Net along with 

the sequential training method.

Algorithm 1

: FBSEM-Net

Initialize: x(0) = 1, γ ∈ [0,1], Niters = 10, Nsubsets = 6

for n = 1 … Niters do

      for m = 1 … Nsubsets do

            xj, OSEM
n, m =

xj
n − 1, m

sj
∑
i

pij
yi

∑
k

pikxk
n − 1, m + ri + si

            with sj = ∑
i

pij

            xj, Reg
n, m = xj

n − 1, m − γβℱPET (x n − 1, m , θ)

            xj
n, m =

2xj, OSEM
n, m

1 −
xj, Reg

n, m

γsj
+ (1 −

xj, Reg
n, m

γsj
)2 + 4

xj, OSEM
n, m

γsj

      end

end

C FBSEM-IS-Net

Using the same residual CNN architecture composed by 5 convolutional layers with batch 

normalisation and ReLU activations for the regularisation step, we explored the impact of 

using iteration-dependent networks. As the noise level varies when the number of iteration 

increases, using iteration-dependent networks allows having a customised regularisation for 

every iteration. Moreover, in order to ensure that the output of every module throughout 

the reconstruction of low-count data matches the output of the corresponding iteration of 

high-count data reconstruction using the OSEM algorithm, we introduce iteration-dependent 

targets and losses. Consequently, when 60 modules are unrolled, 60 different MSE loss 

terms monitor the training of the network. For FBSEM-Net and FBSEM-IS-Net, 10 

iterations and 6 subsets (i.e. 60 modules) were used in order to have a similar number 

of iterations used as the one used to reconstruct images in routine scans.

The global architecture of FBSEM-IS-Net is shown in Fig. 1. Furthermore, because the 

training of deep unrolled networks has massive memory requirements (especially for 3D 

data), we investigated the impact of training every module independently (or sequentially) 

rather than all at once (end-to-end).
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III Experimental Set-up

A 2D datasets

FBSEM-Net is trained to map low-count sinograms to high-count reference PET images 

(Fig. 1). Twenty brain phantoms from BrainWeb were used to simulate 2D [18F]FDG PET 

images acquired with a Siemens Biograph mMR with a resolution of 2.08×2.08 mm2. 

Circular hot lesions with random radii in 2-8 mm and random locations were introduced in 

the PET phantoms. Attenuation, normalisation and image-space point-spread-function (PSF) 

modelling have been performed, although for simplicity randoms and scatters were not 

modelled. Five non-contiguous slices were selected from each phantom. For each sample, 

high quality PET images were reconstructed from the simulated measured data using the 

OSEM algorithm (Niterations = 10, Nsubsets = 6 and PSF with 2.5 mm full-width-at-half-

maximum (FWHM) Gaussian kernels). These high-count (100M) reconstructions were used 

as targets. Low-count PET measured data (500k) were simulated from the original phantoms 

by introducing Poisson noise. For training, 80 samples were used while 10 samples were 

used for both validation and testing.

B 3D datasets

T1-weighted MPRAGE MR images of 11 epilepsy and dementia patients collected at St 

Thomas' Hospital in London were used to generate realistic brain PET-MR phantoms. 

The process to simulate PET 3D images from real MR volumes was the following: i) 

segmentation into grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), skull 

and skin using the SPM12 software, ii) assignment of random uptake values of 96.0 ± 5.0 

and 32.0 ± 5.0 (arbitrary units) to GM and WM regions with a ratio of 3:1 between GM and 

WM and iii) insertion of spherical lesions with random radii in-between 2-8 mm and random 

locations. An attenuation map was generated by assigning attenuation values of 0.13, 0.0975 

and 0 cm−1 to skull, tissues and air. The shape and voxel sizes from the original MR images 

were 230×230×254 and 1.04×1.04×1.01 mm3. The PET and attenuation maps were resized 

and resampled into the shape and voxel sizes of the standard PET images from a Siemens 

mMR scanner i.e. 344×344×127 and 2.08×2.08×2.03 mm3. All the images obtained were 

then rotated in the axial direction by 5 random angles within [0, 10] degrees, leading to 55 

3D volumes. Once the phantoms were ready, noisy sinograms were generated, using PSF 

modelling in the forward model, attenuation, normalisation and Poisson noise, while again 

random and scatter coincidences were not modelled. Each sinogram had a matrix size of 

344×252×837, identical to the standard sinogram format of the Siemens mMR scanner. The 

training set was composed of 45 samples, both the validation and testing set were composed 

of 5 samples.

C Implementation

The network has been implemented in PyTorch and the training accelerated using a Nvidia 

Quadro k6000 12GB GPU. The data-consistency modules were implemented in Python 

using APIRL GPU-enabled PET projectors. The optimiser selected was the Adam optimiser 

with a learning rate of 0.01 for 50 epochs and a mini-batch size of 5 for 2D data and with a 

learning rate of 0.005 for 100 epochs with a mini-batch size of 1 for 3D data. The training 

was supervised using mean square error (MSE) losses.
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D Reference methods

To compare the different methods’ performance, the networks have been trained 3 times. 

Their performance was assessed with the MSE and the normalized root mean square error 

(NRMSE) defined as follows: NRMSE = RMSE
y , with y the mean of the target dataset. In 

the original paper, FBSEM-Net has been compared to state-of-the-art reconstruction and 

post-reconstruction methods to demonstrate its performance. We compared here FBSEM-IS-

Net trained with and without sequential training with various versions of FBSEM-Net. 

First, the original version from [4], then the original FBSEM-Net using iteration-dependent 

networks. We also trained a variant that we call FBSEM-Net leapfrogging, where the 

only difference with the original version is the target used for training. Rather than 

using the same number of modules as iterations to reconstruct the target, we trained 

FBSEM-Net leapfrogging to match the 60th iteration of the reconstruction of noise free 

data independently of the number of unrolled modules used. Therefore, FBSEM-Net 

leapfrogging matches the original FBSEM-Net only when 60 modules are used. We 

also compared the variants of FBSEM-Net with two conventional methods, the OSEM 

algorithm (Niterations = 10, Nsubsets = 6 with no PSF modelling and PSF with 4mm FWHM 

kernels), and the MAP-EM algorithm with a Tikhonov prior. The regularisation strength 

was optimised based on the MSE criterion. Finally, we compared our method with an 

unrolled method based on the INN from Lim et al. The main differences with the version 

proposed in [13] are that the input and output of the CED modules are neither normalised 

nor rescaled. Moreover, rather than using a ground truth image as target to train the 

networks (which does not exist for real data), high-count data reconstructions were used. 

We compared two different regulariser architectures. First, the CED proposed in the original 

paper consisting of an encoding convolutional layer with 78 kernels of size 3×3 (3×3×3 

for 3D data), followed by a soft-thresholding operator T xj, αj = sign xj max xj − e−αj, 0
with αj initialised at 15 and learned during the training and a decoding convolutional layer 

with 78 kernels each of size 3×3 (3×3×3 for 3D data). Then, the same residual CNN 

used in FBSEM-Net consisting of 5 convolutional layers with ReLU activations and batch 

normalisation. The two methods are hereafter referred to as INN CED and INN ResCNN. 

In this framework, an adaptive learning rate is used, nonetheless the user still has to set 

its strength (c = 0.05 here). Based on our observations, setting a wrong value for c is not 

compensated for by the adaptive learning rate β, it can therefore significantly impact the 

reconstructions. The pseudo-code of the INN used can be found in Algorithm 2. Table II 

clarifies the main differences between the reference methods and FBSEM-IS-Net.

Algorithm 2: INN CED based on [13]

Initialize:

   ck
(n), dk

(n), αk
(n):n = 1…Niters , c = 0.05, K = 78

x0 obtained using 10 iterations of EM algorithm

for n = 1 … Niters do
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      xReg
(n + 1) = ∑

k = 1

K
dk

(n + 1) * T(ck
(n + 1) * x(n), αk

(n)

      β(n + 1) = c .
s−PT y

Px(n) + r + s 2
x(n) − xReg

(n + 1)
2

      with sj = ∑
i

pij

      λj = 1
2 (sj = β(n + 1)xj, Reg

(n + 1)

      Vj = xj
n ∑

i = 1

M
pij

yi

∑
j = 1

N
pijxj

n + ri + si

      xj
n + 1 =

λj2 + β n + 1 Vj − λj
β n + 1 if λj < 0

Vj
λj2 + β n + 1 V + λj

if λj ≥ 0

end

IV Results

A 2D datasets

1) Impact of iteration-dependent networks and iteration-dependent targets—
The MSE between the output of every module and the target (Fig. 2, 3 and 4 top row) show 

that the use of iteration-dependent networks only or combined with iteration-dependent 

targets allows reduction of the MSE compared to the original FBSEM-Net. Quantitatively, 

FBSEM-IS-Net outperforms all the other methods both globally and locally. Qualitatively, 

the new versions offer sharper images compared to the original FBSEM-Net or the two 

INNs. While for the original FBSEM-Net the shape of both lesions is affected, with 

FBSEM-Net with iteration-dependent networks only the smallest lesion is not accurately 

reconstructed. In the case of FBSEM-IS-Net the correct shapes are preserved. Although, 

it can be noticed that the version with sequential training slightly underestimates the 

uptake in the right area of the lesion. This observation has been recurrent while using 

unrolled methods, the shape and/or the uptake of the lesions are often altered during the 

reconstruction. Fig. 4 shows that using iteration-dependent targets notably reduces the 

variance across multiple training runs. The shaded areas designating the standard deviation 

of the loss across multiple training runs, it can be noted that FBSEM-IS-Net is steady for 

each iteration as opposed to the other networks. Training at the module-level improves the 

consistency in the optimisation of the network parameters. The MSE between the output of 

every module and the corresponding OSEM iteration (Fig. 4 bottom row) may indicate that 

using iteration-dependent targets limits the network to only compensate for noise so that the 

entire MAPEM reconstruction of noisy data matches the reconstruction of noise free data. 

The original FBSEM-Net and the version with iteration-dependent networks only exhibit 
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an erratic behavior for intermediate modules (from module 1 to 30 for the original version 

and 1 to 55 for the original version with iterationdependent networks). These networks 

solely learn to match the last module output to the final target. Therefore, one would not 

be able to use a lower number of modules at test time compared to what was used for 

training. In contrast, with FBSEM-IS-Net being trained iteration-wise, it becomes possible 

to train it once for a large number of iterations and use it for any lower or equal number of 

iterations. Using iteration-dependent targets imposes more control over the network training. 

In Fig. 4 and 5, the MSE increases with the number of iterations as high frequency noise 

amplification occurs at higher iterations and images with fine details become harder to 

reconstruct for the network. The output of neural networks, in particular when optimised 

with an MSE loss tend to produce smooth outputs. The use of this loss might as well explain 

the resulting affected lesion shapes. Adding a term to the loss function controlling the 

structure of the image, such as the structural similarity (SSIM), could potentially improve 

the shape of the lesions reconstructed.

2) Impact of sequential training—Going from 2D to 3D real data with iteration-

dependent networks and targets might raise memory issues during the training of such 

deep unrolled networks (Table I). A solution is to train the network sequentially i.e. one 

module at a time. As Fig. 2, 3 and 5 (bottom row) show, the impact of the sequential 

training is negligible both qualitatively and quantitatively. However, the reduced variability 

of the optimised network parameters from independent training runs is retained. The use 

of the sequential method compared to the conventional implementation allowed a reduction 

in memory usage from 224GB to 3.7GB resulting in a cut of about 98%. Nonetheless, 

time-consuming forward and back projectors are present in all the modules. Therefore, there 

is no computational time saving in the training process, as opposed to the INN framework, 

where the regularisers only are trained sequentially. Using the sequential training method 

proposed allows the training of deep unrolled networks that was not possible before due 

to hardware limitations. The memory requirements growing linearly with the number of 

modules, the original FBSEM-Net for 3D data cannot be trained using 60 modules. In the 

original paper, the authors set the number of modules to 12 (Niterations = 3, Nsubsets = 4) 

which uses the full capacity of a 12GB GPU. The sequential training enables the training of 

a fully unrolled FBSEM-IS-Net (60 modules) on any GPU. The possibility of using a higher 

number of unrolled modules thanks to sequential training also permits use of the typical 

number of iterations used for MAP-EM methods.

3) Robustness to various distributions—To demonstrate FBSEM-IS-Net 

generalisation abilities, two datasets with different radiotracer distributions than the data 

used for the network training have been simulated. The phantoms being piece-wise constant, 

we only varied the intensities for the grey matter, the white matter and the skin to generate 

new distributions. The various modifications can be found in Table III. For the first dataset, 

the white and grey matter intensity values were set to be more similar. This led to very noisy 

reconstructed images, the mean of the noise in the white matter being higher. For the second 

dataset, the opposite approach is considered by setting the white matter values low so as 

to increase the contrast between white and grey matter. The results obtained (Fig. 6 & 7) 

show that although the results are impacted by a change in distribution between training and 
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testing, FBSEM-IS-Net is still outperforming the conventional methods. FBSEM performs 

better than MAP-EM with a Tikhonov prior, even though the regularisation parameter β 
has been fine-tuned specifically for the different distributions (β = 0.0650 for dataset 1, 

β = 0.0055 for dataset 2). For FBSEM-Net, no hyperparameter has to be set by the user, 

all were learned during the training phase. FBSEM-IS-Net also offers a reduction of the 

reconstruction error compared to the original version of FBSEM-Net in spite of having 60 

times more trainable parameters. Using iteration-dependent targets appears to be enforcing 

the residual CNNs to remain regularisers only, without learning image details. Indeed, the 

output of every module only differ with its respective target due to noise therefore the 

network learns to account only for noise.

4) Robustness to various noise levels—The original FBSEM-Net and the proposed 

version were tested for various noise levels. We used test data containing higher (1M) or 

lower counts (0.1M and 0.3M) compared to the measured data the networks were trained on 

(0.5M). While FBSEM-IS-Net performs better for 0.3M, 0.5M and 1M counts, the original 

FBSEM-Net is the best method for very low-count level. This might be justified by the low 

number of trainable parameters in this formulation (30k compared to 1.8M for the proposed 

version), which makes it more adaptive to very different noise levels at test time, but also 

by the limited number of training samples (80) in the dataset. Moreover, because the same 

regulariser is used for all the modules in the original FBSEM-Net and noise amplification is 

observed when the number of iterations increases, the residual CNN implicitly learns to deal 

with different reconstruction noises. With the proposed version, regularisation networks are 

iteration-dependent, trained for the reconstruction noise encountered at that iteration.

5) Robustness to multiple noise realisations—The various networks have been 

compared for 50 independent noise realisations using 0.5M counts. Here, for the sake of 

simplicity, all the networks have been trained twice only, however the uncertainties are not 

reported in Fig. 9 as their amplitudes were too low. To ensure a fair comparison, because 

no subsets are used in the INN, no subsets were used for the two FBSEM-Net versions and 

FBSEM-IS-Net to conduct the bias-standard deviation analysis. The reconstructed images 

were evaluated using the root mean square error (RMSE):

RMSE = bias2 + SD2 (10)

with the bias defined by:

bias =
∑

j ∈ Ω
xj − xj

Ref 2

∑
j ∈ Ω

xj
Ref2

(11)

and the standard deviation by:
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SD = 1
S

∑
s = 1

S
∑

j ∈ Ω
xj − xj

Ref 2

∑
j ∈ Ω

xj
Ref 2

(12)

xj being the mean reconstructed value for voxel j, obtained by averaging the S = 50 

realisations, xRef the ground truth image (different to the target obtained by reconstruction 

of high-count data used to train the networks) and Ω the set of the image voxels. Various 

numbers of modules ranging from 10 to 60 for the unrolled methods without sequential 

training, 10 to 120 for the unrolled methods with sequential training and 10 to 180 for 

the OSEM and MAPEM algorithms were used. For every number of modules selected, 

a different network was trained, therefore each marker in figure 9 corresponds to the 

performance of a network trained independently. The results obtained show that FBSEM-IS-

Net with sequential training achieved the lowest bias when using 60 modules or more. This 

trend becomes more significant as the number of modules increases. The performance of 

FBSEM-IS-Net without sequential training has not been reported in Fig. 9 as its curve and 

the one from FBSEM-IS-Net with sequential training were indistinguishable. As expected, 

when the number of modules increases, the bias decreases while the standard deviation 

increases. The gap between the original FBSEM-Net and FBSEM-IS-Net sequential training 

becomes wider with higher numbers of modules. The use of iteration-dependent targets 

and losses helps to reduce the variance of the network by constraining it to remain purely 

a denoiser. The two INNs along with FBSEM-Net leapfrogging are the methods the least 

impacted by a change in the number of modules. It appears that training all the regularisers 

with the same target allows for the performance to be more independent of the number 

of modules used. This effect has benefits if the number of modules were to be limited to 

conduct fast reconstructions for instance.

B 3D datasets

Reconstruction results for 3D data show that FBSEM-IS-Net is the best method in terms 

of NRMSE. The INN using the residual CNN architecture has a similar performance 

to FBSEM-IS-Net, although the shape of the reconstructed lesion seems altered (Fig. 

10). FBSEM-IS-Net offers sharper reconstruction. The output of the INN with the CED 

architecture is noisier than the ones from the INN ResCNN and FBSEM-IS-Net. The 

original FBSEM-Net has not been compared here with the other methods as it is not possible 

to train it for 3D data using 60 modules.

V Conclusion

We have proposed a new version of the forward-backward splitting expectation-

maximisation network [4] as well as a memory-efficient training method for deep unrolled 

networks. We demonstrated that using iteration-dependent networks permits a reduction 

of the reconstruction error compared to the original formulation of FBSEM-Net. We also 

showed that using iteration-dependent targets in FBSEM-IS-Net, intended to ensure that 

the network remains a regulariser only and does not learn object details, stabilises the 

training of the network by improving the consistency in the optimisation of the network 
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parameters. FBSEM-IS-Net has been demonstrated to be stable when tested with test 

data with a different radiotracer distribution than the training data, with multiple noise 

realisations as well as various noise levels, attesting to good generalisation abilities in 

spite of having a high number of trainable parameters. Lastly, we showed that training 

all the modules sequentially rather than in an end-to-end fashion drastically reduces the 

memory requirements. It gives the possibility to train deeper unrolled networks with 2D 

but especially 3D data, without notably affecting the performance of the network. The 

proposed method allows a correct iteration by iteration unrolling of the MAP-EM algorithm, 

which was not previously feasible when end-to-end training was performed. While only 

demonstrated for FBSEM-Net, the use of iteration-dependent targets/losses and sequential 

training can be applied to any unrolled method.

VI Discussion

FBSEM-IS-Net has been shown to be robust for different piece-wise constant distributions 

despite having 60 times more trainable parameters than FBSEM-Net. Nonetheless, a more 

comprehensive assessment of the proposed network's generalisation abilities is still needed. 

Future work will focus on further demonstrating the abilities of unrolled networks trained 

with iteration-dependent networks and targets to generalise better to different distributions 

than unrolled methods with only iteration-dependent networks or with one regularisation 

network whose parameters are shared across all the modules. Ideally, the impact of 

removing some of the backpropagation of the errors by training the modules sequentially 

should be theoretically investigated. When all the modules are trained together, the errors 

are backpropagated from the last module to the first one, whereas in the sequential 

training framework, the final modules regularisers errors do not impact the training of the 

previous ones. Ultimately, various loss functions should be explored in order to assess their 

capabilities for accurate reconstruction of lesions shapes and uptake.
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Fig. 1. 
Overview of FBSEM-IS-Net. In this framework the regularisation network parameters θn are 

iteration-dependent. The output of every module is compared to the corresponding output of 

the OSEM reconstruction of high-count data. In the original FBSEM-Net, only one final loss 

is used and the parameters of the regularisation networks are shared across all the modules. 

The blank squares represent the initial uniform image. CONV = Convolutional layer with 32 

kernels of size 3 × 3, BN = batch normalisation, MSE = mean square error.
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Fig. 2. 
Comparison of the reconstructed images obtained using conventional methods (OSEM and 

MAP-EM with Tikhonov prior) and the various versions of FBSEM-Net and the INN 

on test data. Qualitatively, new versions of FBSEM-Net produced sharper reconstructions, 

quantitatively FBSEM-IS-Net is the best method in terms of NRMSE.
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Fig. 3. 
Zoom on the occipital lobe where two lesions are present. Deep learned methods often 

struggle to reconstruct smaller lesions. INN ResCNN and FBSEM-IS-Net are the two 

methods capable of correctly reconstructing the shape of lesions.
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Fig. 4. 
Top row: MSE computed between every module (i.e. iteration) output of the network and the 

final target (the final iteration from the high quality dataset). As expected, the loss decreases 

when the number of modules becomes closer to the number of iterations used to reconstruct 

the targets. The shaded area show the standard deviation of the loss across multiple training 

runs. Bottom row: MSE computed between every module (i.e. iteration) output and its own 

iteration-dependent target. The loss increases with the number of iterations as it becomes 

harder for the network to match more detailed images. The shaded area show the standard 

deviation of the loss across multiple training runs.
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Fig. 5. 
Top row: MSE computed between every module output of the network and the final target 

(the final iteration from the high quality dataset). Bottom row: MSE computed between 

every module output and its own iteration-dependent target. The shaded area show the 

standard deviation of the loss across multiple training runs.
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Fig. 6. 
Reconstruction results for test dataset 1. The white matter intensity is higher than in the 

training set leading to higher noise levels in the white matter areas.
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Fig. 7. 
Reconstruction results for test dataset 2. The white matter intensity is lower than in the 

training dataset therefore noise is only present in the grey matter areas.
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Fig. 8. 
Reconstruction results for various noise levels. FBSEM-Net and FBSEM-IS-Net were 

trained using 0.5M count measured data.
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Fig. 9. 
Bias-standard deviation trade-off curves. FBSEM-IS-Net is the method achieving the lowest 

bias when 60 modules or more are used. The markers designates the number of modules 

used. OSEM (100M) corresponds to the reconstruction of 50 noise realisations of high-count 

data and shows what ideally regularisation should achieve when used to reconstruct low-

count data.
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Fig. 10. 
Reconstruction of 3D simulated data (from top to bottom: axial, coronal and sagittal views). 

The lesion in the image reconstructed using the iterative NN with the residual CNN 

regulariser seems bigger than in the target (right arrow). It can also be noticed that the 

two INNs add grey matter where there should be only white matter (left arrow).
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Table I
Comparison of Unrolled pet reconstruction methods

Name Architecture [total 
trainable parameters]

No. 
unrolled 
modules

Iteration-
dependent 
networks

Iteration-
dependent 

targets
Leapfrogging Sequential 

Training

Memory 
requirements 
for training 
(mini-batch 
size=l, image 

size 
172×172×127)

EM-Net
Gong et al. 
[19]

U-Net: 3 encoding 
stages (2C+BN+LReLU), 
3 decoding 
stages (2C+BN+LReLU), 
2C+BN+LReLU at 
bottleneck, skip connections 
(add) instead of 
concatenating [~2 million 
parameters]

10 No No Yes No 12.0 GB

MAPEM-Net
Gong et al. 
[12]

U-Net: 3 encoding 
stages (2C+BN+LReLU), 
3 decoding 
stages (2C+BN+LReLU), 
2C+BN+LReLU at 
bottleneck, skip connections 
(add) instead of 
concatenating [~(8×2)=16 
million parameters]

8 Yes No Yes No 12.0 GB

INN
Lim et al. 
[13]

Convolutional autoencoders, 
each composed of 2 C 
layers and soft thresholding 
operator in between 
[~(10×4000) = 40,000 
parameters]

10 Yes No Yes Yes 4.5 GB

FBSEM-Net
Mehranian 
and Reader 
[4]

Residual CNN: 5C layers 
each with BN+ReLU 
[~80,000 parameters]

60 No No No No 222.0 GB

FBSEM-IS-
Net

Residual CNN: 5C layers 
each with BN+ReLU 
[~(60×80000)= 4800000 
parameters]

60 Yes Yes No No 224.0 GB

FBSEM-IS-
Net with 
sequential 
training

Residual CNN: 5C layers 
each with BN+ReLU 
[~(60×80000)= 4800000 
parameters]

60 Yes Yes No Yes 3.7 GB

*
C = Convolutional layer, BN = Batch normalisation, LReLU = Leaky ReLU
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Table II
Comparison Of The Proposed And Reference Deep Learned Methods

Name No. of 
targets Target image

Leapfrogging 
factor*

Regularisation 
hyperparameter

No. 
regularisers Architecture Training Initialisation

FBSEM-Net 
original 
version

1 Last iteration 
of noise free 

data 
reconstruction

1 Learned 1 Residual 
CNN

End-to-
end

Uniform 
image

FBSEM-Net 
leapfrogging

1 Last iteration 
of noise free 

data 
reconstruction

60/No. 
modules

Learned 1 Residual 
CNN

End-to-
end

Uniform 
image

FBSEM-IS-
Net

No. 
modules

Corresponding 
iteration of 

noise free data 
reconstruction

1 Learned No. 
modules

Residual 
CNN

Sequential Uniform 
image

INN CED 1 Last iteration 
of noise free 

data 
reconstruction

60/No. 
modules

Non learned No. 
modules

Convolutional 
Encoder-
Decorder

Sequential 10th iteration 
of EM 

reconstruction

INN 
ResCNN

1 Last iteration 
of noise free 

data 
reconstruction

60/No. 
modules

Non learned No. 
modules

Residual 
CNN

Sequential 10th iteration 
of EM 

reconstruction

*
Leapfrogging factor: If the number of modules used in the unrolled network is equal to the number of iterations used to reconstruct the targets, the 

factor equals to 1. When 10 modules are used to match a target reconstructed with 60 iterations, the factor equals 60/10.
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Table III
Intensity values set for the different distributions

Training dataset Test dataset 1 Test dataset 2

White matter 32 64 5

Grey matter 96 80 120

Skin 16 32 32
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