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The tumor microenvironment is composed of tumor cells, stroma cells, immune
cells, blood vessels, and other associated non-cancerous cells. Gene expression
measurements on tumor samples are an average over cells in the microenvironment.
However, research questions often seek answers about tumor cells rather than the
surrounding non-tumor tissue. Previous studies have suggested that the tumor purity
(TP)—the proportion of tumor cells in a solid tumor sample—has a confounding effect
on differential expression (DE) analysis of high vs. low survival groups. We investigate
three ways incorporating the TP information in the two statistical methods used for
analyzing gene expression data, namely, differential network (DN) analysis and DE
analysis. Analysis 1 ignores the TP information completely, Analysis 2 uses a truncated
sample by removing the low TP samples, and Analysis 3 uses TP as a covariate in
the underlying statistical models. We use three gene expression data sets related to
three different cancers from the Cancer Genome Atlas (TCGA) for our investigation.
The networks from Analysis 2 have greater amount of differential connectivity in the
two networks than that from Analysis 1 in all three cancer datasets. Similarly, Analysis
1 identified more differentially expressed genes than Analysis 2. Results of DN and
DE analyses using Analysis 3 were mostly consistent with those of Analysis 1 across
three cancers. However, Analysis 3 identified additional cancer-related genes in both
DN and DE analyses. Our findings suggest that using TP as a covariate in a linear model
is appropriate for DE analysis, but a more robust model is needed for DN analysis.
However, because true DN or DE patterns are not known for the empirical datasets,
simulated datasets can be used to study the statistical properties of these methods in
future studies.

Keywords: tumor purity, RNA-seq data, differential network analysis, differential gene expression analysis, gene
expression data, confounding effects

INTRODUCTION

The tumor microenvironment (TME) is composed of tumor cells, stroma cells, immune cells,
blood vessels, and other associated non-cancerous cells. It is recognized that TME is a key
contributor to tumor growth, progression, and metastasis (Quail and Joyce, 2013; Turley et al.,
2015). Advances in high-throughput sequencing technologies have enabled a comprehensive view
of this heterogeneous collection of cells. The tumor purity (TP) is defined as the proportion of
tumor cells in a solid tumor sample. TP is important to know because it contributes to a better
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prediction of prognosis and clinical management (Mao et al.,
2018; Gong et al., 2020). It also plays a crucial role in classifying
cancer subtypes (Zhang et al., 2017).

Conventionally, the TP is estimated through a visual
inspection of tumor specimens between trained pathologists
(Rajan et al., 2004), which can cause a poor interrater agreement
and be time-consuming for large studies (Yuan et al., 2012;
Haider et al., 2020). Researchers have been investigating the
estimation of TP directly from data. Several studies have
proposed methods of estimating the TP in DNA methylation
data (updated version of InfiniumPurify; Zheng et al., 2017),
DNA somatic copy number data (ABSOLUTE algorithm; Carter
et al., 2012), high-throughput DNA-sequencing data (Tumor
Heterogeneity Analysis algorithm; Oesper et al., 2013), and
whole-exome sequencing data (AbsSN-Seq algorithm; Bao et al.,
2014). Lastly, Yoshihara et al. (2013) developed the ESTIMATE
(Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data) algorithm for TP estimation in
microarray data, which is based on a scoring system using the
proportion of stromal and immune cells in tumor samples.

In this study, our interest lies in RNA-seq data. Research
involving the estimation of TP from RNA-sequencing (RNA-
seq) data was presented with the eXtreme Gradient Boosting
(XGBoost) ensemble learning algorithm (Li et al., 2019) and
with the gene co-expression network-based TSNet model
(Petralia et al., 2018).

Beyond the estimation of TP, Aran et al. (2015) analyzed RNA-
seq data across 21 cancer types from The Cancer Genome Atlas
(TCGA; Cancer Genome Atlas Research Network et al., 2013)
using the TP in their analyses. They examined the association
between TP and clinical variables and differences in TP across
different subtypes of cancer. Evidence from their studies indicates
that the TP confounds the association between gene expression
and overall survival (OS) in the differential expression (DE)
analysis. They conducted the DE analysis across 13 types of
cancer, then compared it to a similar analysis with the inclusion
of purity estimates as an additional covariate. Genes that were
initially DE between tumor and normal samples before adding
TP as a covariate turn out not to be DE, and a set of new
genes were introduced as DE after adding TP into the analysis
(Aran et al., 2015). In another recent study, Rhee et al. (2018)
performed the gene cluster analysis using a partial correlation
to identify the relationship between the gene expression and
mutation abundance while adjusting for TP.

However, there are a limited number of studies that assess
the effect of TP on other statistical methods (Zhang et al., 2017;
Petralia et al., 2018) that are widely used for analyzing gene
expression data, such as differential network (DN) analysis. In
this article, we have two main objectives. These will contrast
results from three different analyses: analyzing the complete
dataset without TP information (Analysis 1); analyzing the
dataset after dichotomizing TP and removing the low-purity
samples (Analysis 2); and analyzing the complete dataset with TP
included as a continuous covariate (Analysis 3).

In the first objective, we compare results of Analysis 1 to
Analysis 2. In the second objective, we compare results between
Analysis 1 and Analysis 3. In both objectives, we analyzed

breast invasive carcinoma (BRCA), head and neck squamous
cell carcinoma (HNSC), and lung squamous cell carcinoma
(LUSC) datasets from the TCGA (Cancer Genome Atlas Research
Network et al., 2013). Figure 1 summarizes the analysis plans
and objectives of the study. The approach described in this paper
provides a general strategy for assessing the effect of TP on gene
expression data analyses.

MATERIALS AND METHODS

Clinical Data
An initial sample of 1,093 patients were obtained from the BRCA
dataset. After exclusion of patients with incomplete data on age
at diagnosis, OS, and TP, 1,029 patients remained eligible for the
study. Similarly, 509 and 474 patients were used for analysis after
excluding 11 and 27 patients from the HNSC and LUSC datasets,
respectively. The primary endpoint was OS, calculated as the time
from diagnosis to the time of death. Patients who were alive at the
last follow-up were considered censored. The rate of censoring
was 85.6, 58, and 57.8% for BRCA, HNSC, and LUSC.

RNA-Seq Data
The normalized RNA-seq data consisting of 20,155 genes from
TCGA for the breast cancer samples were obtained from
LinkedOmics (Vasaikar et al., 2017), a publicly available portal
that contains multi-omics data and clinical data across 32 cancer
types from TCGA. For all analyses, genes without an Entrez gene
ID were removed. A total of 16,485 genes were mapped to its
Entrez gene ID. It was further reduced to 6,963 genes which
were also found in 7,618 unique genes from Reactome pathways
(Jassal et al., 2020). The Reactome database is an open-source
and peer-reviewed database of biological pathways. To filter out
lowly expressed genes, genes with zero Reads Per Kilobase of
transcript per Million reads mapped (RPKM) expression in more
than 80% of 1,029 samples were removed, leaving 6,747 genes.
Upon applying the same data processing scheme, 6,698 out of
original 20,165 genes from 509 samples and 6,712 out of original
20,104 genes from 474 patients were available for the analysis
of HNSC and LUSC, respectively. We considered genes that are
within 649 pathways (Supplementary Files for complete list) that
have more than 20 or less than 100 genes for the analysis of DN.

Statistical Methods
Our objective is to assess the effect of TP on DN analysis,
which has not been studied previously, and on DE analysis by
comparing Analysis 1 vs. Analysis 2 and Analysis 1 vs. Analysis
3. The methods to the analyses of DN and DE are described
below. Study samples are dichotomized into high-survival (HS)
and low-survival (LS) groups based on the median value of OS.
All statistical analyses were performed in R version 4.0.2 (R
Foundation for Statistical Computing, Vienna, Austria).

Differential Network Analysis
The DN analysis is a method for identifying changes among
gene–gene associations. These changes are indicative of
dysfunctional regulation that is affecting the ability of genes
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FIGURE 1 | Flowchart of analysis plans and objectives of the study.

to interact with one another (either through their mRNA or
protein products; de la Fuente, 2010). Genes do not work alone;
in other words, they interact with each other in complicated
ways. However, the DE analysis assumes that the gene expression
is independent of each other, which lacks in identifying the
dynamics of physical and genetic networks directly (Ideker and
Krogan, 2012; Kim et al., 2018). DN analysis is different from
DE analysis in that it compares a weighted network from study
samples with different clinical characteristics to identify a set of
genes involved in a specific cancer-related pathway or to find a
hub gene that regulates its neighbor genes. The HS and LS groups
are compared to identify gene pathways that have differentially
connected (DC) co-expression networks. The dnapath package
(Grimes et al., 2019) was used to perform the DN analysis using
649 different Reactome pathways, using partial correlations to
infer the individual gene networks. The p-value of the differential
connectivity score is computed from a permutation test (20
random permutations).

Differential Expression Analysis
The DE analysis was performed to identify the number of
differentially expressed genes (DEGs) between HS and LS groups.
The edgeR package (Robinson et al., 2010) was utilized to
obtain the count matrix of gene counts. Subsequently, the gene-
wise linear model is fitted to the data, followed by estimating
contrasts of each gene using the limma package (Ritchie et al.,
2015). Empirical Bayes smoothing was also applied to obtain
the unadjusted gene-wise p-value. The Benjamini–Hochberg
correction was then applied to control the false discovery rate for
multiple-hypothesis testing.

Tumor Purity-Adjusted Analysis: Plans for Analysis 3
Tumor purity-adjusted analysis (Analysis 3) is compared to
Analysis 1 to assess the confounding effect of TP on the
association between gene expression and OS. We fit the simple
linear regression model for each gene as a function of TP.
The residual of each separate linear model is then utilized
as TP-adjusted gene expression level for the TP-adjusted DN
analysis. For the TP-adjusted DE analysis, TP is introduced as an
additional covariate into the design matrix, as performed by Aran
et al. (2015).

RESULTS

Define High Tumor Purity and Survival
Groups
In order to compare results of Analysis 1 to Analysis 2 in later
sections, we firstly need to define a cutoff value for “high” purity.
The median TP from each three datasets is about 0.7 when
rounding to the nearest 10th. Specifically, median (Q1, Q3) TPs
for BRCA, HNSC, and LUSC are 0.747 (0.656, 0.825), 0.688
(0.613, 0.767), and 0.684 (0.590, 0.789), respectively. Therefore, it
makes sense to treat TP greater than or equal to 0.7 as high purity.
For DN and DE analyses, survival groups are dichotomized based
on the median OS. Figure 2 displays boxplots of TP for two
survival groups for the three cancer datasets.

Analysis Without Tumor Purity
Adjustment: Analysis 1 vs. 2
Differential Network Analysis on Three Cancer Types
The DN analysis was performed on the following study samples:
full BRCA containing 1,029 samples (509 and 474 samples for
full HNSC and full LUSC), and on a high-purity subset, which
contained 659 samples (240 and 225 samples for HNSC and
LUSC) after removing those with TP less than 0.70. The top five
significant pathways from the DN analysis on BRCA are shown in
Tables 1, 2 for Analysis 1 and Analysis 2, respectively. The top 20
significant pathways for Analyses 1 and 2 on BRCA are presented
as Supplementary Tables 1, 2, respectively.

Among the top five results from Analysis 1 on BRCA (Table 1),
four are non-tumor-related pathways: “Inflammasomes,” “PD-1
signaling,” and “antigen” are related to immune cells and “Fibrin
clot formation” pathways are related to blood, except the “MET
activates PTK2 signaling” pathway, which is related to the cell
cycle. On the other hand, the top pathways from Analysis 2
(Table 2) are cancer-progression-related pathways, including cell
cycle and transcription factor.

“Degradation of AXIN” is identified as one of the DC
pathways in both analyses; in particular, it was the top 11th and
3rd in the full dataset and in the high-purity subset, respectively.
AXIN is a protein that is related to a cytoskeletal regulation
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FIGURE 2 | Boxplots of tumor purity (TP) between high and low overall survival (OS) groups, dichotomized based on the median OS using breast invasive carcinoma
(BRCA; left), head and neck squamous cell carcinoma (HNSC; center), and lung squamous cell carcinoma (LUSC; right); HS, high overall survival; LS, low overall
survival.

TABLE 1 | Five most significant pathways from DN analysis using BRCA without subsetting.

Pathway DC score No. of genes No. of DC genes Avg. expr. in low-risk Avg. expr. in high-risk

Inflammasomes 0.077 23 4 7.83 7.82

MET activates PTK2 signaling 0.075 30 3 10.2 10.2

Intrinsic pathway of fibrin clot formation 0.072 22 3 5.03 5.03

PD-1 signaling 0.072 23 3 7.12 7.09

Antigen activates B cell receptor (BCR) leading to
generation of second messengers

0.072 32 4 8.98 8.93

Columns include Reactome pathway names, differentially connectivity (DC) score, number of genes in the pathway, number of significant DC genes, and average
expression level of genes in the pathway.

TABLE 2 | Five most significant pathways from DN analysis using BRCA subsetting on samples with tumor purity (TP) above 70%.

Pathway DC score No. of genes No. of DC genes Avg. expr. in low-risk Avg. expr. in high-risk

G0 and early G1 0.086 27 3 8.97 8.89

Transcription of E2F targets under negative control by DREAM
complex

0.085 19 5 9.31 9.24

Degradation of AXIN 0.081 55 6 10.3 10.3

SCF (Skp2)-mediated degradation of p27/p21 0.081 60 9 10.5 10.5

Cross-presentation of soluble exogenous antigens (endosomes) 0.08 50 3 9.79 9.8

Columns include Reactome pathway names, DC score, number of genes in the pathway, number of significant DC genes, and average expression level of
genes in the pathway.

and a molecular controller of cerebral cortical development
(Ye et al., 2015).

Incidentally, the mean expression of the “Degradation of
AXIN” pathway is the same in both Analyses 1 and 2 (10.3
vs. 10.3), which we would not expect since the full dataset will
contain more immune cells. However, the signal in the DN is
stronger in Analysis 2 (Figure 3). Some of the edges (differential
connections) are more prominent in Analysis 2 results. This
suggests that the associations among genes in this pathway may
be a result of dysregulation in the tumor cells rather than in the
immune cells of the TME.

The “G0 and Early G1” pathway is significantly DC in Analysis
2, but not in Analysis 1. Upon inspection (Figure 4), we find that
the two estimated DN show a greater difference compared to the
previous comparison in Figure 3. This pathway is related to cell

proliferation and may not be an active process within non-tumor
cells in the TME. This would explain why the signal is weak in the
full dataset. By subsetting on high-purity samples, the noise from
the non-tumor cell in the TME is reduced.

Supplementary Table 3 summarizes the top 20 results of
Analysis 1 on HNSC; of the top five pathways, three pathways are
relevant to non-tumor cells in TME. Similar with BRCA, more
cancer-progression-related pathways are found as top pathways
in Analysis 2 on HNSC (Supplementary Table 4). However,
based on the top five results of Analyses 1 and 2 on HNSC
(Supplementary Tables 5, 6, respectively), there are four cancer-
related pathways in Analysis 1 and three in Analysis 2. In all
cancer datasets, the network plots (Supplementary Figures 1–3)
for Analysis 2 shows greater amount of differential connectivity
than Analysis 1.

Frontiers in Genetics | www.frontiersin.org 4 August 2021 | Volume 12 | Article 642759

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-642759 August 17, 2021 Time: 14:56 # 5

Ahn et al. Gene Expression Analysis With Tumor Purity

FIGURE 3 | Differential network (DN) analysis results for the degradation of AXIN pathway using BRCA. On the left is the DN estimated from the full dataset, and on
the right shows the estimated DN from the high TP subsample. The edge width and opacity are scaled based on (1) the p-value of the differential connectivity score
and (2) the relative magnitude of the change in association. Blue edges indicate stronger association in the LS group, and red edges are stronger in the HS group.
No connected edge between genes means that there is no statistical evidence of a gene–gene association. The edge color represents the relative mean gene
expression for a specific grouping factor (HS and LS). The network will contain more disconnected components if the hub genes are no longer hubs, which
potentially alter the network structure.

FIGURE 4 | Differential network analysis results for the G0 and early G1 pathway using BRCA. On the left is the DN estimated from the full dataset, and on the right
shows the estimated DN from the high TP subsample.

Differential Expression Analysis on Three Cancer
Types
A total of 6,747 genes are analyzed to identify DEGs between
two survival groups in BRCA. One hundred seventy-seven
genes are selected as DEGs between HS and LS groups in
Analysis 1 (n = 1,029). Of these, 84 genes are upregulated
and 93 genes are downregulated. Among the top five DEGs
in Table 3, the Fc fragment of IgG receptor IIIa (FCGR3A)
is linked to rheumatoid arthritis (Shimizu et al., 2019) and is
associated with HIV infection (Poonia et al., 2010). Ribosomal
protein (RPL22) plays a critical role in regulating lymphoma

development (Rao et al., 2012). On the other hand, there is no
DEG found (at the 0.05 significance level) between two survival
groups in Analysis 2 (n = 659; Table 4).

For HNSC, 755 out of 6,698 genes are DE between HS and
LS groups in Analysis 1 (n = 509) whereas nine genes are DE
in Analysis 2 (n = 240). The top five DEGs are summarized in
Supplementary Tables 7, 8 for Analyses 1 and 2, respectively.
For LUSC, there are 3 out of 6,712 genes identified as DEGs in
Analysis 1 (n = 474), but no DEG is found in Analysis 2 (n = 225).
Supplementary Tables 9, 10 list the top five DEGs from Analyses
1 and 2, respectively. Similar with BRCA, cancer-related genes
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TABLE 3 | Five most significant differentially expressed genes (DEGs) from
differential expression (DE) analysis using BRCA without subsetting.

Gene logFC Avg. expr. BH adj. p-value

FCGR3A 0.33 10.5 0.006

RPL22 −0.16 12.7 0.006

SLCO2B1 0.30 9.6 0.006

RPS25 −0.19 12.7 0.006

SMPD1 0.18 9.5 0.006

TABLE 4 | Results from DE analysis using BRCA subset on samples
with TP above 70%.

Gene logFC Avg. expr. BH adj. p-value

STAB1 0.29 9.4 0.062

SLCO2B1 0.31 9.1 0.102

RPS24 −0.24 14.1 0.102

RPL15 −0.16 14.0 0.111

HMGB1 −0.16 12.4 0.111

are found among DEGs in HNSC and LUSC, which are shown
in Supplementary Summary.

Analysis With Tumor Purity Adjustment:
Analysis 1 vs. 3
Tumor Purity-Adjusted Differential Network Analysis
on Three Cancer Types
We further investigated the effect of TP by modeling it as
a covariate. Previous studies have suggested that TP has a
confounding effect on gene expression and conducted their
analyses with TP adjustment (Aran et al., 2015; Rhee et al., 2018).

TABLE 5 | Five most significant pathways from TP-adjusted DN analysis on BRCA.

Pathway DC
score

No. of
genes

No. of DC
genes

Avg. expr.
in low-risk

Avg. expr.
in

high-risk

MET activates
PTK2 signaling

0.076 30 2 −0.0311 0.0312

Inflammasomes 0.073 23 4 −0.00432 0.00434

PD-1 signaling 0.072 23 3 −0.00249 0.0025

Listeria
monocytogenes
entry into host cells

0.072 21 1 0.0235 −0.0237

Regulation of
ornithine
decarboxylase
(ODC)

0.071 51 7 −0.00403 0.00405

Columns include Reactome pathway names, DC score, number of genes in
the pathway, number of significant DC genes, and average expression level of
genes in the pathway.

Here, we perform TP-adjusted analyses of DN and DE (Analysis
3), and compare results with Analysis 1 in earlier sections.

The top five pathways from Analysis 3 on BRCA (Table 5)
resulted in a similar list of significant pathways compared to
the ones from Analysis 1 (Table 1). The top 20 results are
summarized in Supplementary Table 11; of these, “Listeria
monocytogenes” is a pathogenic bacterium that has been studied
for its use as cancer vaccines (Flickinger et al., 2018). ODC is an
enzyme, whose overexpression is associated with the poorer OS
in endometrial cancer (Kim et al., 2017). These two pathways
are found as top 7th and 8th in Analysis 1 as well. Upon
inspection of the first two significant pathways (Figures 5, 6),
both analyses have similar network structures. However, some
changes in differential connectivity are observed when adjusting

FIGURE 5 | MET activates the PTK2 signaling pathway from DN analysis results using BRCA. On the left is the DN estimated from the full dataset not adjusted by
TP, and on the right shows the estimated DN from the full dataset adjusted by TP.

Frontiers in Genetics | www.frontiersin.org 6 August 2021 | Volume 12 | Article 642759

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-642759 August 17, 2021 Time: 14:56 # 7

Ahn et al. Gene Expression Analysis With Tumor Purity

FIGURE 6 | Inflammasome pathway from DN analysis results using BRCA. On the left is the DN estimated from the full dataset not adjusted by TP, and on the right
shows the estimated DN from the full dataset adjusted by TP.

for TP. For example, two edges that were not detected in
Analysis 1 but appear in Analysis 3 include COL27A1-PTK2
and NFKB1-TXNIP in Figures 5, 6, respectively. PTK2 is linked
to worse OS in ovarian and invasive breast cancer (Sulzmaier
et al., 2014). Low expression in TXNIP is observed in different
types of cancers including breast and stomach cancers (Nagaraj
et al., 2018). These cancer-related DC genes may be useful
for therapeutic development for cancer treatment, but should
be carefully interpreted as these findings are estimates, not
representing the true gene–gene association.

Supplementary Tables 12, 13 display the top 20 results of
Analysis 3 on HNSC and LUSC, respectively. As shown in BRCA,
Analysis 3 resulted in a similar list of pathways with Analysis
1. Upon the inspection of Supplementary Figures 5–7, the
networks in Analyses 1 and 3 maintain a homogeneous structure
with some minor differences, which we also observed in BRCA.
Supplementary Summary further discusses findings about new
edges detected on HNSC and LUSC.

Tumor Purity-Adjusted Differential Gene Expression
Analysis on Three Cancer Types
Table 6 summarizes the top five DEGs found from Analysis 3
on BRCA. Two hundred forty-three out of 6,747 genes are DE
between HS and LS groups. Among 243 DEGs, 125 genes are
upregulated and 118 genes are downregulated. One hundred
seventy-seven DEGs from Analysis 1 on BRCA are overlapped
with these 243 DEGs found in Analysis 3. In addition, 66
DEGs are introduced in Analysis 3. Of 66 new DEGs, cytohesin
4 (CYTH4) is linked to bipolar disorder (Rezazadeh et al.,
2015). Neutrophil cytosolic factor 4 (NCF4) is associated with
the risk of colorectal cancer (Ryan et al., 2014). Triggering
receptor expressed on myeloid cells 2 (TREM2) is related to
Alzheimer’s disease development (Gratuze et al., 2018). Cyclin T2
(CCNT2) and acyl-CoA synthetase long-chain family member

5 (ACSL5) are involved with breast cancer (Stelzer et al., 2016).
These findings about additional genes from Analysis 3 will
facilitate research in understanding underlying mechanism
of breast cancer.

With HNSC, 615 out of 6,698 genes are found DE between
HS and LS groups in Analysis 3. Six hundred two out of 615
DEGs overlap with DEGs from Analysis 1, and the remainder
of 13 DEGs are detected in Analysis 3 only. The top five DEGs
are summarized in Supplementary Table 14. For LUSC, 8 out
of 6,712 genes are identified DE in Analysis 3; of these eight
DEGs, five are found additionally and three overlap with DEGs
from Analysis 1. Supplementary Table 15 displays the top five
DEGs from Analysis 3. A cancer-related gene such as PLK3 is
found DE. More details about HNSC and LUSC are discussed
in Supplementary Summary. We have also included a complete
list of genes and pathways that are identified from DE and DN
analyses as Supplementary Files for each cancer types.

DISCUSSION

In this study, we assessed the effect of TP on DN and DE analyses
by analyzing three RNA-seq datasets from TCGA. In both
cases, qualitatively different results were obtained when filtering
samples based on the TP or by including TP as a covariate.

TABLE 6 | Five most significant DEGs from TP-adjusted DE analysis using BRCA.

Gene logFC Avg. expr. BH adj. p-value

SLCO2B1 0.33 9.6 1.04e-06

FCGR3A 0.35 10.5 3.57e-05

C3AR1 0.27 8.3 3.57e-05

STAB1 0.28 9.7 3.57e-05

C1QC 0.29 10.6 3.58e-05
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For DN analysis, pathways related to immune and blood cells
in TME were found in Analysis 1, while more cancer-related
pathways were obtained in Analysis 2 except for LUSC. The
same was not true for Analysis 3, which identified the same
list of pathways as Analysis 1 in all three cancer datasets. This
suggests that using TP as a covariate may not be sufficient for
controlling its confounding effects on the association between
gene expression and OS. Analysis 2 does not rely on any
model assumptions, so it is more robust and may be able to
identify the effect of TP. However, one limitation of Analysis
2 is that the decrease in sample size after removing low TP
samples may influence the differences in results found when
compared to Analysis 1.

For DE analysis, Analysis 1 revealed DEGs between HS and
LS groups, while no or a few DEGs were identified in Analysis
2 in BRCA and HNSC. In LUSC, no or a few DEGs were
found in either Analysis 1 or 2. When comparing Analysis
1 with Analysis 3, we observed similar results as in previous
studies: adding TP as a covariate causes some DEGs to be
removed while others are added. The linear model for the
effect of TP on gene expression is reasonable for DE analysis,
because we expect the aggregate gene expression of tumor-
related genes to increase linearly as the ratio of tumor cells
increases. Hence, Analysis 3 would have more power to detect
the effect of TP on gene expression compared to the more
robust approach of Analysis 2. By removing low TP samples,
Analysis 2 is unable to utilize the full information provided by
TP. However, results for DN analysis suggest that the linear
model for TP is not the best choice in general. When comparing
DEGs identified in our study to Aran et al., two genes are found
in both studies using BRCA: TCF7 and MSR1. Sixteen DEGs
are identified in both studies using HNSC: KCNA3, ABCD2,
AQP1, FOXP1, C2orf49, PIK3CG, KDR, INPP5D, NFATC2,
TNFAIP8L1, AVPR1A, MYO9B, F5, ARHGEF6, FBLN5, and
ABCA6. However, there was no DEG overlapped with their
studies using HNSC. This may be due to a different data
processing scheme applied in each study.

We anticipate that our findings will lead to the improvement
in understanding how to incorporate the TP when using two
statistical methods: DN and DE analyses.

Future research could extend the current findings to examine
how the TP-adjusted analysis affects the sensitivity and specificity
compared to the unadjusted analysis. For example, we obtained
more DEGs in BRCA and LUSC, but fewer DEGs in HNSC from
the TP-adjusted DE analysis. In this paper, we did not include

a simulation experiment on DN and DE analyses. It requires
complex sampling methodology, which is beyond the scope of
this paper. A possible simulation scenario is to set different model
assumptions for gene expressions. For example, we consider a
linear combination of gene expression level that is weighted by
TP, and we also consider the null case when the gene expression
level is independent from TP in which the linear combination
assumption is not applied. DN and DE analyses can be performed
using these simulated samples. Future studies are warranted
focusing more on the effect of TP in a simulation-based study to
validate our findings.
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