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Simple Summary: Gastrointestinal stromal tumors (GIST) are potentially malignant tumors and
require evidence-based surgical and/or medical treatment. Laparoscopy has similar safety and
prognostic outcomes to those of laparotomy and is currently a standard procedure for localized
GISTs. However, surgery for gastric GISTs less than 2 cm may be re-evaluated due to the indolent
nature of the GIST and other competing risks among GIST patients. A work-up with endoscopy
and endoscopic ultrasonography as well as endoscopic or percutaneous biopsy is important for the
preoperative diagnosis of GISTs. Medical treatment with tyrosine kinase inhibitors is the mainstay
for recurrent/metastatic GISTs. The activity of an individual drug is well correlated with gene
alterations, and, in the era of precision medicine, cancer genome profiling should be considered
before medical treatment.

Abstract: Gastrointestinal stromal tumors (GISTs) are the most frequent malignant mesenchymal
tumors in the gastrointestinal tract. The clinical incidence of GISTs is estimated 10/million/year;
however, the true incidence is complicated by frequent findings of tiny GISTs, of which the natural
history is unknown. The initial work-up with endoscopy and endoscopic ultrasonography plays
important roles in the differential diagnosis of GISTs. Surgery is the only modality for the permanent
cure of localized GISTs. In terms of safety and prognostic outcomes, laparoscopy is similar to
laparotomy for GIST treatment, including tumors larger than 5 cm. GIST progression is driven by
mutations in KIT or PDGFRA or by other rare gene alterations, all of which are mutually exclusive.
Tyrosine kinase inhibitors (TKIs) are the standard therapy for metastatic/recurrent GISTs. Molecular
alterations are the most reliable biomarkers for TKIs and for other drugs, such as NTRK inhibitors.
The pathological and genetic diagnosis prior to treatment has been challenging; however, a newly
developed endoscopic device may be useful for diagnosis. In the era of precision medicine, cancer
genome profiling by targeted gene panel analysis may enable potential targeted therapy even for
GISTs without KIT or PDGFRA mutations.

Keywords: gastrointestinal stromal tumor; submucosal tumor; subepithelial tumor; gene panel
analysis; precision medicine

1. Introduction

The gastrointestinal stromal tumor (GIST) is a potentially malignant mesenchymal
tumor (sarcoma) that usually expresses KIT or DOG1 proteins by immunohistochemistry
(IHC). GISTs are considered to be a lineage of immature mesenchymal cells capable of
differentiating into the interstitial cells of Cajal (ICC), which serve as pacemaker cells of
the gastrointestinal (GI) tract [1–4]. Hence, GISTs are exclusively found in various parts
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of the GI tract, including the stomach (approximately 60–65%, with most found in the
upper stomach), the small intestine (20–25%, mainly in the proximal small intestine, the
duodenum, and proximal jejunum), and the colon, as well as in the rectum (comprising a
low % of GISTs, mostly in the distal rectum), the esophagus (1%), and, rarely, in parts of
the extra-GI tract, such as the peritoneum and major omentum. The majority of GISTs have
a gain-of-function mutation in either KIT (70%) or PDGFRA (10–15%), and some (nearly
15%) may have other mutations in BRAF, RAS family genes, and NF1, and alterations in
the SDH (succinate dehydrogenase; complex III in the mitochondrial electron transport
system) complex or in NRTK translocation (Table 1) [4–11]. These mutations and alterations
are mutually exclusive in primary GISTs.

The incidence of clinical GISTs, symptomatic GISTs or GISTs requiring treatment, is
assumed to be 6–22 cases per million per year [1–4]. However, the true incidence of GISTs is
more complicated and unknown because of the presence of mini-GISTs (asymptomatic GISTs
less than 2 cm incidentally found by endoscopy) and of micro-GISTs (GISTs that are usually less
than 1 cm and incidentally found by pathological examinations of resected specimens) [2,4,12].
Pathological examination of the stomachs and rectums of middle-aged adults reveals micro-
GISTs in 10–35% and in 0.1–0.2% of cases, respectively [12–15]. Small submucosal tumors
(SMTs) that are less than 2 cm are relatively frequent endoscopic findings in the stomach. It
has been reported that endoscopy may reveal small neoplastic SMTs in 0.15% of middle-
aged adults and that half of them are considered to be GISTs [12,16,17]. The natural
history of mini-GISTs and micro-GISTs is unknown, and its clinical relevance needs to
be elucidated.
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Table 1. Features and mutations of GISTs.

Alterations Estimated
Frequency Main Location Characteristics Sensitivity to Drugs & Potential Drugs

KIT mutations in
the autoinhibited

form
KIT mutation #

exon 9 (or exon 8), typically
duplicated insertion of

A502-Y503 codons
5–10% Small intestine Spindle cell type

Aggressive features
Less imatinib sensitive, sensitive to sunitinib,

regorafenib, ripretinib, avapritinib

exon 11 (deletions, missense,
insertions etc.) ~60%

All sites

Aggressive features with del 557-558, which is
very sensitive to imatinib

Sensitive to imatinib, sunitinib, regorafenib,
ripretinib, avapritinib

exon 13 (K642E) <1% Sensitive to imatinib, sunitinib, regorafenib,
ripretinib, avapritinib

exon 17 (D820Y,
N822K, Y823D) 1% Sensitive to imatinib, regorafenib, ripretinib,

avapritinib, and less sensitive to sunitinib

PDGFRA
mutations in the

autoinhibited
form

PDGFRA
mutation #

exon 12 (V561D etc.) <1%

Stomach>>small
intestine

Epithelioid cell type
Indolent clinical course in main

Probably sensitive to imatinib, sunitinib,
regorafenib, ripretinib, avapritinib

exon 14 (N659K) <1% Probably sensitive to imatinib, sunitinib,
regorafenib, ripretinib, avapritinib

exon 18 (del, Y849H etc., other
than D842V) 1–2% Sensitive to imatinib, sunitinib, regorafenib,

ripretinib, avapritinib

KIT or PDGFRA mutations in the
activated form

PDGFRA exon 18 D842V,
rarely KIT exon 17 D816V ~10% Stomach>>small

intestine Epithelioid cell type D842V is resistant to imatinib, sunitinib, regorafenib.
D842V is sensitive to avapritinib & ripretinib

No mutation in
KIT and PDGFRA

SDHB-competent

NF1 mutation $ 1–2% Small intestine
Spindle cell type

Generally indolent clinical course
associated with Neurofibromatosis type I

not sensitive to
available drugs

possibly sensitive to MEK
inhibitors, such as selumetinib

BRAF mutation <1% Small intes-
tine/stomach

Spindle cell type
VE1-positive

possibly sensitive to BRAF
inhibitors (e.g., vemurafenib,

dabrafenib)

HRAS, NRAS or KRAS
mutation very rare no data no data MEK inhibitors (e.g., trametinib)

may possibly have some activities

Others including PIK3CA,
CBL, ETV6–NTRK3 et al. very rare no data no data NTR-fusion is sensitive to

entrectinib and larotrectinib

SDHB-deficient

SDHA, SDHB, SDHC or
SDHD mutation (including

Carney-Stratakis syndrome #)
~3% Stomach>>small

intestine
Epithelioid cell type

SDHB-negative
Children/adolescent and young adult

Frequent lymph node metastasis
Indolent clinical course

not sensitive to available drugs
VEGFR inhibitors may have temporary

stabilizing effectsLoss of SDHB expression
(including Carney Triad $) <1% Stomach

#: there are some GISTs with germline mutations; familial GIST; $: syndromic GIST.
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2. Diagnosis

There are no symptoms or signs specific to GISTs. The most frequent symptoms include
gastrointestinal bleeding and subsequent anemia, followed by abdominal pain, weight loss,
and a palpable abdominal mass [4,9]. GISTs are unusually associated with bowel obstruction
or perforation, except in cases of large tumors. It should be noted that a significant number
of GISTs are asymptomatically found as SMTs by cancer-screening endoscopy or may be
incidentally found in explorations of other diseases. GISTs are diagnosed from childhood to
late adulthood, and the reported median age is in the 60 s [1–4]. There is no sex difference
in terms of the incidence or clinical and genetic features of GISTs, except GISTs with SDH
alterations which appear to be relatively predominant in females. Multiplicity is rarely
seen except among patients with familial predispositions for germline mutations in KIT,
PDGFRA, or SDH [18–20] or for multiple small intestinal GISTs in neurofibromatosis type
I patients [21,22] When patients have germline mutations in KIT, PDGFRA, or NF1, they
may have early onset of GISTs, ICC hyperplasia in the normally appearing GI tract, and
characteristic clinical features, such as skin pigmentation, dysphagia, and other tumors, in
addition to multiple GISTs. When there are multiple GISTs in a patient without a hereditary
background, we may consider that these tumors are multiple sporadic GISTs if each GIST
has different KIT or PDGFRA mutations [23,24]. If they have the same mutation type, they
may be considered a metastatic disease. There are no reported environmental risk factors
for GISTs.

2.1. Pathological Diagnosis of GIST

The diagnosis of GISTs is based on pathological examinations, but not clinical exami-
nations. Morphologically, GISTs can be divided into three types: the spindle cell type with
eosinophilic fibrillary cytoplasm (70%), epithelioid type (20%) with clear eosinophilic cyto-
plasm, and mixed type with spindle and epithelioid cells (10%) [25–27]. Spindle cell-type
GISTs should be differentiated from both benign and malignant diseases, including smooth
muscle tumors (leiomyoma or leiomyosarcoma), schwannoma, hemangioma, plexiform
fibromyxoma, desmoid, inflammatory myofibroblastic tumor (IMT), and solitary fibrous
tumor (SFT), and epithelioid-type GISTs from melanoma, perivascular epithelioid cell
tumor (PEComa), neuroendocrine tumors, clear cell sarcoma, and epithelioid variants of
leiomyosarcoma [4,25,26]. Some characteristic pathological findings of each tumor are
shown in Table 2. There are some correlations between clinicopathological features and
the genotype of the GIST, as described later [28]. Epithelioid transformation or mixed type
may also be found in aggressive GISTs in the small intestine.

Differentiation of GISTs from other tumors in the GI tract described above usually
requires IHC in addition to hematoxylin and eosin staining, and, occasionally, genotyping
(Table 2) [4,25–27]. In IHC, KIT (CD117) is expressed in ~95% of GISTs, and DOG1, a
calcium-dependent, receptor-activated chloride channel protein, is expressed in ~95% of
GISTs [25–29]. These two biomarkers usually show diffuse expression in tumor cells. KIT
expression is regulated by ETV1, a transcription factor required for the proliferation of
GISTs and ICCs, and the expression of which is, conversely, regulated by the MEK-MAPK
pathway downstream of the KIT and PDGFRA tyrosine kinases [30]. It should be noted that
melanoma, angiosarcoma, Ewing’s sarcoma, childhood neuroblastoma, seminoma, and
small cell lung carcinoma may also show expression of the KIT protein by IHC [4,25,26,29].
In contrast, KIT expression is sometimes weak and faint in PDGFRA-mutated GISTs,
in which DOG1 may be expressed [1,2,4,31]. CD34 may be expressed in GISTs but is
less specific and less frequent (~70% of GISTs) [4,25]. S-100 is an immunohistochemical
marker of neurogenic tumors, and alpha-smooth muscle actin and desmin are markers of
myogenic tumors. As most GISTs with loss-of-function mutations in SDH subunits or with
loss of expression due to methylation substantially do not express SDH subunit B, they
are generally negative for SDHB in IHC [31]. A few GISTs may face diagnostic difficulty
even with these IHCs and may require mutation research of the KIT and PDGFRA genes
for their diagnosis.
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Table 2. Endoscopic and EUS features of gastric submucosal tumor.

Disease
Endoscopic Findings EUS Findings Pathological Features

Surface, Form, etc. Major Location Main Layer Echo Findings Morphology IHC; Genetic Changes

GIST
hemi-spherical,

occasionally with delle
or ulcer

body proper muscle, rarely
submucosa

hypoechoic,
heterogenous with

increased malinancy
spindle cell > epithelioid cell KIT, DOG1; mutation in

KIT or PDGFRA

Myogenic tumor &
Leiomyoma

hemi-spherical,
intact mucosa near cardia proper muscle,

sometimes submucosa
round, hypoechoic,

homogenous spindle cell (eosinophilic cell) Desmin, α-SMA

Schwanomma &
neurogenic tumor

hemi-spherical,
intact mucosa

body, lesser
curvature

proper muscle,
sometimes

submucosa~deep
mucosa

hypoechoic,
homogenous~slightly

heterogeneous

spindle cell, palisading, Verocay
body, lymphoid cuff

in Schwannoma

S-100, SOX10, NSE in
neurogenic tumor

Heterotopic Pancreas
hill-shaped, intact

mucosa, maybe dimple
or aperture

antrum submucosa

sometimes lobulated,
ductal structure,

heterogeneous internal
echo, thickend
proper muscle

Heimlich classification &

Neuroendocrine tumor
hemi-spherical, mucosal

color~yellowish~red,
occasionally dimple

body initially deep mucosa or
submucosa

homogenous,
heterogeneous with
increased malinancy

epithelioid cell,
organoid pattern

CD56, synaptophysin,
chromogranin A, NSE

MALT lymphoma various surface,
multiple lesions anywhere deep

mucosa~submucosa

beltlike~multiple round,
hypoechoic,

homogenous

Centrocyte-like,
lymphoepithelial lesion, plasma

cell differentiation

κ or λ chain;
t(11;18)/API2-MALT1

Malignant lymphoma various surface,
multiple lesions anywhere initially deep

mucosa~submucosa

beltlike~advanced
carcinoma-like,

hypoechoic,
homogenous

CD20+, CD79a+;
t(3;14)/BCL6-IGH

Lipoma & lipogenic
tumor

hill-shaped to
pedunculated, intact
mucosa (~yellowish),

cushion sign

antrum submucosa round~oval, hyperechoic Lipoblast (spider-web cell)
MDM2, CDK4 in well

differenciated
liposarcoma

Granular cell tumor
hemi-spherical,

molar-like appearance,
intact~ivoly

body submucosa round, heterogenously
hypoechoic eosinophilic granules S-100, SOX10, CD68
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Table 2. Cont.

Disease
Endoscopic Findings EUS Findings Pathological Features

Surface, Form, etc. Major Location Main Layer Echo Findings Morphology IHC; Genetic Changes

inflammatory fibroid
polyp (IFP)

pedunculated or penis-like,
may with erosion/ulcer antrum deep

mucosa~submucosa
hypoechoic, relatively

homogeneous
perivascular fibrosis (onion skin
pattern), eosinophil infiltration

CD34, α-SMA;
mutations in PDGFRA

inflammatory
myofibroblastic tumor

(IMT)

hill-shaped,
mucosal color fornix~body hypoechoic (not definite) spindle cell & inflammatory

cell infiltration
ALK, α-SMA,

ALK-fusion, CD34,

Solitary fibrous
tumor (SFT) n.d. n.d. n.d. spindle cell, patternless pattern

CD34, nuclear STAT6,
bcl2, CD99;

NAB2-STAT6 fusion

Glomus tumor hemi-spherical, same color
as mucosa antrum proper muscle relatively hypere-

choic~heterogenous
eosinophilic cell with

oval nucleus α-SMA

lymphangioma or
cavenous hemangioma

flat-elavated, intact mucosa
(whitish or dark-reddish,

respectively), cushion sign
n.d. deep

mucosa~submucosa
aechoic~hyperechoic,

multicystic endothelial cells CD31, CD34, Factor VIII
in vascular tumor

PEComa hemi-spherical~polypoid,
intact mucosa n.d. submucosa hypoechoic,

homogenous
epithelioid cell with clear

cytoplasm
α-SMA, HMB45, Melan

A; LOH of TSC2

Melanoma

pedunculated or lobular
protrusion (may with

melanosis), occasionally
with erosion

n.d. initially deep
mucosa~submucosa

iso-hypoechoic, maybe
regional lymph
node metastasis

S-100, HMB45, Melan A,
SOX10; mutations in

BRAF ot KIT

Desmoid n.d. n.d. n.d. spindle cell nuclear β-catenin;
alterations in CTNNB1

Metastatic tumor bull’s eye~various,
multiple lesions n.d. deep

mucosa~submucosa
round~oval, hyperechoic

& heterogenous

n.d.: no definite data; &: Heimlich classification; Type 1: normal pancreatic tissue, Type 2: acinar cells & ducts, Type 3: ducts & hyperplasia of smooth muscle fibers.
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2.2. Molecular Aspects of GIST

Molecularly, GISTs consist of heterogeneous subgroups, including GISTs with muta-
tions in the KIT, PDGFRA, SDH genes, RAS genes, BRAF, NF1, or other rarely mutated
genes as well as alterations [1,4,7,29,32,33]. KIT and PDGFRA have similar structures and
similar downstream signaling pathways and are a type III receptor tyrosine kinase (RTK),
a family including PDGFRB, CSF1R (macrophage colony-stimulating-factor receptor), and
FLT3 (FMS-like tyrosine kinase 3) [34]. Small GISTs, including micro-GISTs and mini-GISTs,
have KIT or PDGFRA mutations similar to those of clinical GISTs [16,35], and familial GISTs
with germline mutations in KIT or PDGFRA accompanied by diffuse hyperplasia of ICC
cells and multiple micro-GISTs and mini-GISTs with benign features [18,19,36]. These data
and results from knocked-in mice indicate that mutations in the KIT or PDGFRA gene are
an early neoplastic event and are considered to be causative of the GIST but are not always
involved in malignant transformation [37].

The frequent driver mutations found in GISTs include mutations in KIT (~70%) or
PDGFRA (10~15%), followed by mutations in SDH family genes, in NF1, in BRAF, in RAS
family genes [1,4,7,29,32,33], or, rarely, in other gene alterations including fusion genes
involving the TRK family [38,39]. The molecular subtypes may somewhat correlate with the
primary location as well as clinicopathological features (Table 1). For example, PDGFRA-
mutated GISTs, found mainly in the stomach, may frequently show epithelioid cell features,
and SDH-GISTs are located mainly in the stomach and show epithelioid features separated
by fibrous bands, whereas NF1-mutated GISTs usually appear as spindle cell tumors in the
small intestine [19–22,25,40]. More importantly, mutations are considered the most reliable
biomarker of medical therapy. The molecular correlation with the clinicopathological
features of GISTs and drug sensitivities are briefly summarized in Table 1 and Figure 1.
GISTs without KIT or PDGFRA mutations, so-called “Wild-type GISTs”, may be divided
into SDHB-competent (SDHB-positive by IHC) and SDHB-deficient (SDHB-negative by
IHC) GISTs [4,31]. The latter may have mutations in a subunit of the SDH complex,
including SDHA, SDHB, SDHC, or SDHD, or may have downregulated expression of the
SDH complex through site-specific hypermethylation of the promoter regions [9,19,20].
The SDH-GIST is resistant to all available tyrosine kinase inhibitors (TKIs) in most cases
and may partly show transient stabilization or decrease in size under VEGFR inhibitor
treatment because its progression is thought to be driven by the expression of insulin
growth factor-1 receptor (IGF1R) and vascular endothelial growth factor receptor (VEGFR)
induced by hypoxia-inducible factor-1α (HIF-1α) [4,40]. The former includes GISTs with
mutations in NF1, BRAF, or RAS, which are usually accompanied by activation of the MEK-
MAPK pathway, implying that GISTs with these mutations may be potentially sensitive to
MEK inhibitors and/or BRAF inhibitors (Table 1) [41,42].

2.3. Clinical Diagnosis of GIST

GISTs are initially found as SMTs and/or abdominal masses during exploration of
the GI tract due to the abovementioned symptoms and signs or are incidentally found
during cancer screening as mentioned. Less frequently, a work-up for emergent admission
with GI bleeding or perforation may reveal a GIST [4]. Clinical diagnosis is performed
by endoscopy, endoscopic ultrasonography (EUS), ultrasonography and/or CT scan, and
a definitive diagnosis can be made only by pathological examinations after surgery or
biopsy sampling. Figure 2 shows the diagnostic flow of gastric SMT proposed in the
Japanese GIST guidelines [43]. Although CT scans may have advantages in terms of
diagnosis, especially for tumors showing extramural growth and for the evaluation of
disease spread [44], CT scans have accompanying radiation exposure, and EUS is still a
major diagnostic tool for GISTs in the stomach and rectum. Gastric GIST is frequently
found by endoscopy and/or fluoroscopy; thus, the initial work-up with endoscopy and
EUS is important in the differential diagnosis of GISTs from other neoplastic SMTs. Here,
we quickly summarize the characteristic endoscopic and EUS features of several neoplasms
found in the stomach (Table 2). The other important role of endoscopy and EUS may be to
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identify SMTs that require treatment, such as GISTs. An irregular shape (Figure 3a), ulcer
formation (Figure 3b), and/or rapid growth between endoscopy intervals together with
an irregular shape (Figure 3c), heterogeneous internal echo (Figure 3d), and/or regional
lymph node swelling by EUS may indicate malignant tumors including a GIST, and, thus,
these findings are considered as high-risk features for SMTs [2,12,45]. If patients with small
SMTs have high-risk features, we recommend surgical resection or tissue acquisition for
pathological diagnosis depending on tumor size, location, and conditions (Figure 2).

In practice, the pathological diagnosis of GISTs is infrequent before surgery [4], and the
clinical diagnosis is not always consistent with the pathological diagnosis. The pathological
diagnosis can be obtained by pre-treatment biopsy. Sampling biopsy is usually performed
either endoscopically or percutaneously when neoadjuvant therapy is considered for locally
advanced GIST or medical therapy for metastatic, recurrent, and/or unresectable GIST
(hereafter “metastatic/recurrent GIST”). The biopsy method may be dependent on tumor
location, disease spread, and accessibility.
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2.4. Tissue Acquisition for Pathological Diagnosis

The diagnostic yield of conventional endoscopic forceps biopsy is low in GISTs and is
accompanied by a relative risk of bleeding [46]. EUS-guided fine needle aspiration (EUS-
FNA) is safe and useful for pathological diagnosis, although the rate of tissue acquisition
of EUS-FNA for GISTs and SMTs varies dependent on the tumor, location, and skill of the
specialist, and is lower than that for pancreatic lesions [46–48]. The diagnostic accuracy of
EUS-FNA may be improved by the introduction of rapid on-site evaluation (ROSE) [49,50].
Recently, EUS-guided biopsy sampling (EUS-FNB), equipped with the side-fenestrated
reverse bevel design needle, was shown to be more reliable in obtaining sufficient tissue
(91%) from pancreatic cancer than EUS-FNA (67%) [51]. EUS-FNB may be useful for IHC
and genomic sequencing and, thus, may be a promising theranostic of GISTs. Alternative
endoscopic approaches may include mucosal incision-assisted biopsy (MIAB) using the
technique of endoscopic submucosal dissection (ESD) or endoscopic mucosal resection
(EMR). MIAB has been shown to have similar diagnostic accuracy and safety to EUS-FNA
with ROSE [50].
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Although EUS-guided biopsy is preferred to percutaneous biopsy in terms of the risk
of tumor cell dissemination, a percutaneous biopsy may be required for small intestinal
lesions and metastatic diseases, depending on the situation. Several retrospective studies have
indicated that percutaneous biopsy does not increase the risk of recurrence among patients
with localized high-risk GISTs in the settings of postoperative adjuvant therapy [52,53]. In
clinical practice, when a patient presents with an abdominal tumor that is highly likely
to be a GIST, and that is resectable without extended surgery, one may consider surgery
(Figures 2 and 4). In fact, when surgery is scheduled ahead, EUS-FNA is unlikely to be
recommended in the clinical guidelines of the European Society of Gastrointestinal En-
doscopy (ESEG) [54]. For metastatic/recurrent diseases, a percutaneous image-guided
biopsy is feasible and appropriate. However, when a percutaneous biopsy is not applicable
and/or accessible and when medical treatment is urgently required, imatinib may be
started without biopsy after clinical diagnosis of GISTs. In these situations, we recom-
mend early response evaluation by enhanced CT scan or PET-CT approximately 1 month
after treatment.
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3. Surgery
3.1. Surgical Therapy of Primary GISTs

Surgery is a mainstay and the only modality providing a permanent cure for primary
localized GIST [2,4,43,55]. GISTs usually show expansive growth and rarely metastasize to
lymph nodes except SHD-GIST. There is no known efficacy of prophylactic dissection of
regional lymph nodes, and cherry-picking dissection of potentially metastatic lymph nodes
is considered sufficient for GISTs, even for SDH-GISTs, which show frequent metastasis to
lymph nodes [2,4]. GISTs are fragile and highly vascularized tumors; thus, they are gently
manipulated and carefully de-vascularized during operations to avoid tumor rupture [2].
The principles of surgery in GIST cases include macroscopic complete resection (R0) and
functional preservation of resected organs, ideally, by wedge resection [2,43]. R1 surgery
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may not always require re-excision in the imatinib era, and GISTs may be followed by
watchful waiting with low relapsing risk, or may be treated with adjuvant therapy when
the GIST is high risk in the risk stratifications and has imatinib-sensitive mutations [56–58].

For GISTs with imatinib-sensitive mutations, preoperative imatinib (neoadjuvant therapy)
is recommended when the GIST is large, namely, when it is more than 10 cm, and/or is
considered marginally resectable on technical grounds and location, or when the GIST is
likely to have significant morbidity or functional deficit after surgery (Figure 4) [2,4,55,59,60].
The preoperative treatment period may be between approximately 6 and 12 months and
should not exceed 1 year. Early evaluation of imatinib activities approximately 1 month
after treatment is important, and imatinib could be continued when there is no disease
progression by enhanced CT scan. When imatinib treatment is active, GISTs are decreased
not only in size but also in vascularity, which may increase the safety of surgery and may
prevent intraoperative rupture [61,62]. In a few cases, however, massive necrosis of GIST
tumor cells may cause inflammatory responses and fibrous adhesions to surrounding
tissues, and GIST may become brittle. Imatinib neoadjuvant therapy shows significant
safety and feasibility [61,63]. The efficacy in prognostic improvement, preservation of organ
function, such as in duodenal GISTs and rectal GISTs, and increase in R0 resection, as well
as resectability, has yet to be determined, although several retrospective and prospective
studies have indicated these possibilities [61–64]. At present, most GISTs undergoing
neoadjuvant therapy are considered to be high-risk GISTs, at least before the treatment,
and may be recommended to receive adjuvant therapy even after R0 surgery.

3.2. Surgical Therapy of Small GISTs

The incidence of clinical GISTs is estimated to be 10/million/year, whereas that of mini-
GISTs is reportedly 1/1000, as described above. Several retrospective cohort studies have shown
that there are a small but significant number of recurrences (less than 10%) after R0 surgery of
GISTs less than 2 cm (<2 cm GIST) after 10 years of follow-up [65–67]. A subanalysis of the
large epidemiologic study of <2 cm GISTs, however, did not show a significant decrease
in disease-specific mortality of patients by surgical resection compared with observation
(10.9% vs. 27.9%, p = 0.13), probably due to low statistical power [67]. Gastric GISTs have
different immunohistochemical and genetic features from small intestinal GISTs [68,69].
The former is thought to be clinically indolent compared with the latter [2,4,11,24,65]. Most
gastric mini-GISTs do not show malignant features or behaviors [2,12,13,16]; thus, they
may not become clinical GISTs. There is inconsistency in the recommendations for surgical
resection of gastric GISTs <2 cm. Surgical resection is recommended for gastric GISTs <2 cm
in the Japanese and Asian GIST guidelines (Figure 2; upper panel) [43,55], whereas the
NCCN guidelines recommend surgical resection for gastric GISTs <2 cm when they have
“high-risk features” based on empirical evidence; otherwise, they could be followed by
periodical EUS after shared decision-making (Figure 2; lower panel) [2]. All guidelines,
including the NCCN and ESMO guidelines [2,43,55,59], recommend complete resection
for GISTs in the rectum that are <2 cm because of their different clinical features and
prognostic outcomes.

There have been many reports describing endoscopic resection of small GISTs and
SMTs using ESD techniques, endoscopic full-thickness resection (EFTR), or others [70–73].
Endoscopic resection of small GISTs has been shown to be safe and feasible, and it has
shown good prognostic outcomes. However, we need to be careful in interpreting these
prognostic outcomes. Most gastric mini-GISTs may have an indolent clinical course and
do not progress even without resection [12,16,74,75]. Furthermore, GIST patients have
significant competing risks, including secondary cancer and cardiovascular diseases [57,76].
Hence, we need to identify features of small gastric GISTs indicating disease progression,
resulting in a poor prognosis without treatment. Thus, it is necessary to narrow down
small gastric GISTs requiring surgical resection. In this regard, the clinical features of GISTs
indicating highly malignant potential are indicated to include an irregular shape, mucosal
ulceration, and tumor size > 2 cm [77]. High-risk features of small gastric GISTs should
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be re-evaluated by prospective studies, and indications of surgery for gastric GISTs <2 cm
should be reconsidered.

3.3. Laparoscopic Surgery for GISTs

Laparotomy has been standard in GIST surgery; now, laparoscopic surgery is also
considered the standard procedure for surgery in cases of small GISTs less than 5 cm [4,12].
Laparoscopic surgery for GISTs has been shown to be less invasive, less painful, and have a
faster postoperative recovery and better cosmetic outcomes than open surgery, with similar
oncologic prognoses [12,78]. In laparoscopy, concomitant use of endoscopy may facilitate
securing oncological margins and adequate patency of the remnant gastrointestinal lumen.
One of the typical surgeries includes laparoscopic endoscopic cooperative surgery (LECS)
and related procedures, which are feasible and safe in short-term outcomes and have
similar oncological outcomes to those of open surgery after long-term follow-up [79,80].
These procedures benefit organ function preservation by minimizing resection of normal
organs in addition to being less invasive. They may work for surgery of GISTs near the
esophagogastric junction (EGJ) or pylorus, although surgery itself is technically demanding
in these locations.

Initially, laparoscopic surgery is predominantly performed for GISTs that are smaller
than 5 cm, but currently, it is applied to GISTs larger than 5 cm. Several retrospective studies
and their meta-analyses suggest that laparoscopic surgery for large GISTs shows similar
operation times, and less blood loss, postoperative morbidity, and shorter in-hospital
days than open surgery [81–83]. Long-term oncologic outcomes in terms of disease-free
survival (DFS) and overall survival (OS) are similar between the two. However, evidence of
laparoscopy is very limited when the tumor is over 8 cm, and the application of laparoscopy
may vary depending on the tumor location and conditions.

3.4. Risk Evaluation in GIST

Risk assessment in localized GISTs aims to identify GISTs likely to recur after surgery,
hence, to identify GISTs requiring multidisciplinary treatment and/or intense follow-
up. Tumor size, location, and mitotic count of tumor cells under a microscope are well-
established independent prognostic factors [2,27,84]. They are included in several risk
stratifications and nomograms, such as the National Institutes of Health (NIH) consen-
sus criteria, the Armed Forces Institute of Pathology (AFIP) criteria, the modified NIH
classification, and the Gold’s nomogram [84–87]. In the stratification systems, size was
categorized as <2 cm, 2~5 cm, 5~10 cm, and >10 cm, and mitosis was categorized as
<5/5 mm2, 5~10/5 mm2, > 10/5 mm2. However, these factors are continuous variables
showing a non-linear relationship with recurrence risk [65]. Afterward, the prognostic
contour map and the Gold’s nomogram were introduced [84,87]. Genotype, the presence
of clinical symptoms, and histological necrosis, among other factors, have been reported to
be possible prognostic factors; however, no factor is superior to size, location, or mitosis
as an independent prognostic factor [4,88]. For example, GISTs with deletion mutations
of codons 557–558 have been shown to have aggressive clinicopathological features and
poorer prognosis, and most PDGFRA-mutated GISTs and SDH-GISTs show indolent fea-
tures and better prognoses; however, they are not always shown to be independent for
prognostic evaluation.

The modified NIH classification includes tumor rupture as a prognostic factor [65,84].
Rupture is a clinical factor that was not universally defined. Some retrospective studies
have reported rupture as an independent prognostic factor, whereas others have not,
probably due to different criteria for tumor rupture [58,89–91]. Recently, the universal
definition of tumor rupture was proposed [58,89]. The composite definition of the rupture
includes tumor fracture or spillage, blood-stained ascites, gastrointestinal perforation at the
tumor site, microscopic infiltration of an adjacent organ, piecemeal resection, or incisional
biopsy. In contrast, R1 surgery, intraluminal penetration of the tumor, needle biopsy, and
peritoneal penetration of tumor cells in pathological examinations were not considered
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tumor rupture. Even with this definition, 10 to 20% of GISTs with tumor rupture do not
recur during follow-up; in particular, GISTs with low mitotic counts show low recurrence
rates even in the presence of tumor rupture [92]. The prognostic significance of tumor
rupture should be prospectively re-evaluated according to the definition.

When patients have a significant risk of recurrence, imatinib adjuvant therapy is
indicated after R0/R1 surgery. Details of the indication and duration of adjuvant therapy
are discussed elsewhere [2,4,11,59,84], and, here, we briefly provide an overview of ad-
juvant therapy. Values indicating “significant risk” may vary depending on individuals.
Clinical studies show that patients with high-risk GISTs in the risk stratifications may
benefit from adjuvant therapy. Recurrence rates of high-risk GISTs may be estimated to
be more than 40~50% after 10 years of follow-up [65,84]. The other important factor to be
considered is imatinib sensitivity [4]. The guidelines do not recommend adjuvant therapy
for PDGFRA D842V-mutated GISTs [2,4,59], nor is the therapy indicated for GISTs without
KIT or PDGFRA mutations (“wild-type GIST”) because of the relatively indolent nature as
well as their lack of imatinib responsiveness [59]. Clinical evidence suggests that adjuvant
therapy for 3 years improves recurrence-free survival (RFS) as well as OS among patients
with high-risk GISTs compared with 1-year adjuvant therapy [92,93]. The duration of
adjuvant therapy may depend on the estimated recurrence risk and patient preference
as well as conditions [4,59] and has not yet been established. Five years of adjuvant ther-
apy shows that recurrences are rare during therapy and are frequently observed within a
couple of years after stopping imatinib [94]. Recurrence after discontinuation of adjuvant
therapy is very similar among 1-year, 2-year, 3-year [95], and 5-year adjuvant therapies,
suggesting that imatinib activities are cytostatic. Thus, we may consider longer adjuvant
therapy for very high-risk GISTs, such as ruptured GISTs. In fact, the ESMO guidelines
indicate life-long adjuvant therapy for ruptured GISTs [59], if tolerable and if GISTs have
imatinib-sensitive mutations.

4. Medical Therapy
4.1. Medical Therapy for Metastatic/Recurrent GISTs

TKIs are the primary choice for metastatic/recurrent GISTs [2–4,11,59]. Currently, five
TKIs, namely, imatinib, sunitinib, regorafenib, ripretinib, and avapritinib, have significant
clinical evidence for GIST treatment, but insurance reimbursement for recent two TKIs,
ripretinib and avapritinib, may depend on the country. The details of the initial three
TKIs, namely, imatinib, sunitinib, and regorafenib, are not addressed in this manuscript
and are referred elsewhere for this information [2–4,11]. This paper focuses on emerging
therapy and newly developing drugs for GISTs. Briefly, metastatic/recurrent GISTs with
conventional KIT or PDGFRA mutations stabilized in the autoinhibited form (Table 1
and Figure 1) are initially treated with imatinib, and when resistance or intolerance to
imatinib develops, sunitinib serves as the second-line treatment. When the GIST becomes
refractory to sunitinib, regorafenib is used as the third-line, followed by ripretinib as the
fourth-line treatment (Figure 1 and Table 1) [4,96]. When PDGFRA D842V mutations
stabilized in the activated form are found, GISTs may be treated with avapritinib [4,97].
When there is no mutation in either the KIT or PDGFRA gene, the GIST should be subjected
to targeted gene panel analysis or whole-exome sequencing; then, the patient can be
advised to receive potential therapeutic agents based on the results (Figure 1 and Table 1).
When no mutational information is available, the conventional first-line imatinib, second-
line sunitinib, and third-line regorafenib are recommended. Regarding the correlation
between mutation types and TKI activity, sunitinib has significant activity against KIT
exon 9-mutant GISTs after imatinib therapy [98]. The majority of GISTs, which are initially
responsive to imatinib, become refractory to the drug due to secondary mutations in either
the ATP-binding domain (exons 13 and 14) or the activation loop domain (exons 16, 17,
and 18) [99]. Sunitinib is active for ATP-binding domain mutations, but not for mutations
in the activation loop [100]. Regorafenib, in contrast, has significant activity against GISTs
with mutations in the activation loop [101,102].
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4.2. Newly Emerging Therapy: New TKIs and Drugs for the NTRK Fusion

Ripretinib, a switch-control TKI inhibiting both KIT and PDGFRA kinases by securing
the kinases in an inactive conformation, inhibits most primary and secondary mutations of
KIT and PDGFRA in vitro [103]. In a pivotal phase III study, ripretinib was compared with
placebo in GIST patients previously treated with imatinib, sunitinib, and regorafenib [96].
Progression-free survival (PFS; median PFS: 6.3 months for ripretinib and 1.0 months
for placebo; hazard ratio (HR) = 0.15, p < 0.0001) and OS (median OS: 15.1 months for
ripretinib and 6.6 months for placebo; HR = 0.36; p = 0.0004) were better with ripretinib.
Toxicity was mild, and the drug was well tolerated. The most common adverse events
observed in the ripretinib arm were alopecia, nausea, diarrhea, myalgia, fatigue, and
palmar-plantar erythrodysesthesia syndrome. The FDA approved ripretinib for patients
with metastatic/recurrent GIST who have received prior treatment with three or more
kinase inhibitors. A phase III study comparing ripretinib with sunitinib in the second-line
therapy for metastatic/recurrent GISTs is currently in progress.

Avapritinib is another oral TKI designed to selectively target the active conformation of
KIT and PDGFRA via a type 1 inhibition mechanism and inhibits various KIT and PDGFRA
mutations, including those resistant to the three approved TKIs. In the phase I study,
avapritinib showed substantial clinical activity against PDGFRA-mutant GISTs [97]. Among
patients with PDGFRA D842V-mutant GISTs, the response rate was 88% (49 of 56 patients),
with five (9%) complete responses and 44 (79%) partial responses. There were no dose-
limiting toxicities at doses of 30–400 mg per day. The FDA has approved avapritinib for
PDGFRA exon 18 mutation-positive unresectable or metastatic GISTs. Avapritinib was
evaluated in the third- or fourth-line settings by comparison with regorafenib, and failed
to demonstrate superiority to regorafenib in terms of PFS (median PFS 4.2 months for
avapritinib and 5.6 months for regorafenib; HR = 1.25; p = 0.055) [104].

GISTs without KIT and PDGFRA mutations may be called “wild-type GISTs”. A
small proportion of gastrointestinal mesenchymal tumors and “wild-type GISTs” may
have NTRK fusions, which are candidates for TRK inhibitors [105], although there is some
discussion on GISTs with NTRK fusions. It is reported that NTRK rearrangement-containing
mesenchymal tumors in the GI are clinically and morphologically heterogeneous, and that
few may be related to GISTs [39]. Even so, larotrectinib, a selective oral TRK inhibitor, the
first drug approved for solid tumors with an NTRK gene fusion, has shown a response rate
(RR) of 79% in the pooled analysis of a phase 1 study in adults, a phase 1/2 study in children,
and a phase 2 basket study [106]. Common adverse events include fatigue, dizziness,
nausea, vomiting, increased AST, and cough. Entrectinib, which inhibits ROS1, ALK, three
TRKs, and TRK-fusion tyrosine kinases, has shown an RR of 57% (31 of 54 patients) [107],
and is approved by the FDA for NTRK gene fusion-positive solid tumors and ROS1-positive
non-small cell lung cancer.

4.3. Developing Therapy

There are many developing drugs for GISTs, and here, we quickly discuss a few
emerging drugs other than TKIs. Immune checkpoint inhibitors have been approved for a
wide range of tumors, including lung cancer, melanoma, head and neck cancer, esophageal
cancer, gastric cancer, urothelial cancer, and breast cancer, among others. Anti-programmed
death-1 (PD-1) and anti-programmed death-ligand 1 (PD-L1) antibodies have also been
evaluated in GISTs. A randomized phase II trial including 40 metastatic/recurrent GIST
patients explored nivolumab, a monoclonal antibody for PD-1, combined with or without
ipilimumab, a monoclonal antibody for the human T-cell receptor cytotoxic T-lymphocyte-
associated antigen 4 (CTLA4), and the results showed only one response among 12 patients
in the combination arm [108]. Pembrolizumab, an anti-PD-L1 antibody, was evaluated
with epacadostat, a selective indoleamine 2,3-dioxygenase (IDO1) inhibitor; however, the
study was terminated earlier due to insufficient clinical efficacy [109].

HSP90 is a molecular chaperone that stabilizes client proteins, including KIT, BRAF,
and SDHs. HSP90 inhibitors have been evaluated in TKI-resistant GISTs. However, the
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development of a first-generation of HSP90 inhibitors, such as retaspimycin (IPI-504) and
luminespib (AUY922), has failed to develop due to drug toxicities [110,111]. Additionally,
the second-generation of pimitespib (TAS-116), an oral competitive inhibitor of cytosolic
Hsp90α and β, showed a meaningful disease control rate of 85.0% and a median PFS of
4.4 months in the phase II study (n = 40). The drug was compared with placebo in a phase
III clinical study. The results showed significantly improved PFS (median PFS = 2.8 months
for pimitespib and 1.4 months for placebo; HR = 0.51; p = 0.006), and the median OS times
were 13.8 months for pimitespib and 9.6 months (HR = 0.63; p = 0.081) for placebo, with
tolerable safety profiles [112,113].

Selinexor, an oral selective inhibiter of nuclear export that functions by blocking ex-
portin 1 (XPO1), is currently being explored in combination with imatinib for GISTs [114].
DS-6157a is an antibody-drug conjugate targeting G protein-coupled receptor 20 (GPR20),
which is selectively expressed in GISTs [115], and currently, a phase I study is under-
way in the US and Japan. XmAb18087, a bispecific antibody against somatostatin re-
ceptor 2 (SSTR2) and CD3, is now being explored in a phase I study of patients with
metastatic/recurrent GISTs [116].

5. Conclusions

GISTs are potentially malignant tumors in the GI tract, and clinical GISTs require
treatment; however, the treatment impact for gastric GISTs that are less than 2 cm may be
reconsidered because of their indolent nature and competing risks among these patients.
Preoperative diagnosis of GISTs is challenging, and a work-up by means of endoscopy
and EUS as well as endoscopic or percutaneous biopsy may be useful for the differential
diagnosis and subsequent therapy of GISTs. Laparoscopy has similar safety and prognostic
outcomes to those of laparotomy in terms of surgery of GISTs, including for tumors larger
than 5 cm. Medical treatment with TKIs is the mainstay for recurrent/metastatic GISTs. The
activity of each drug is well correlated with gene mutations and alterations; thus, in the era
of precision medicine, cancer genome profiling should be considered when treatments are
used. Targeted gene panel analysis and whole-exome sequencing may provide potential
targeted therapy for “wild-type GISTs” and GISTs that are refractory to conventional TKIs.
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Abbreviations

AFIP Armed Forces Institute of Pathology
CSF1R macrophage colony-stimulating-factor 1 receptor
CTLA4 cytotoxic T-lymphocyte-associated antigen 4
DFS disease-free survival
EGJ esophagogastric junction
EMR endoscopic mucosal resection
ESD endoscopic submucosal dissection
ESEG European Society of Gastrointestinal Endoscopy
ESMO European Society for Medical Oncology
EUS endoscopic ultrasonography
EUS-FNA EUS-guided fine needle aspiration
FDA Food and Drug Administration
FLT3 FMS-like tyrosine kinase 3
GI tract gastrointestinal tract
GIST gastrointestinal stromal tumor
GPR20 G protein-coupled receptor 20
HIF-1α hypoxia-inducible factor-1α
HR hazard ratio
IGF1R insulin growth factor-1 receptor
IHC immunohistochemistry
IMT inflammatory myofibroblastic tumor
LECS laparoscopic endoscopic cooperative surgery
MIAB mucosal incision-assisted biopsy
NCCN National Comprehensive Cancer Network
NIH National Institutes of Health
OS overall survival
PD-1 programmed death-1
PD-L1 programmed death-ligand 1
PEComa perivascular epithelioid cell tumor
PFS progression-free survival
RFS recurrence-free survival
ROSE rapid on-site evaluation
RR response rate
RTK receptor tyrosine kinase
SDH succinate dehydrogenase
SFT solitary fibrous tumor
SMT submucosal tumor
TKI tyrosine kinase inhibitors
Tx therapy
VEGFR vascular endothelial growth factor receptor
SSTR2 somatostatin receptor 2
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