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Abstract: Aptamers are short and single-stranded DNA or RNA molecules with highly programmable
structures that give them the ability to interact specifically with a large variety of targets, including
proteins, cells, and small molecules. Multivalent aptamers refer to molecular constructs that combine
two or more identical or different types of aptamers. Multivalency increases the avidity of aptamers,
a particularly advantageous feature that allows for significantly increased binding affinities in
comparison with aptamer monomers. Another advantage of multivalency is increased aptamer
stabilities that confer improved performances under physiological conditions for various applications
in clinical settings. The current study aims to review the most recent developments in multivalent
aptamer research. The review will first discuss structures of multivalent aptamers. This is followed
by detailed discussions on design strategies of multivalent aptamer approaches. Finally, recent
developments of the multivalent aptamer approach in biosensing and biomedical applications
are highlighted.
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1. Introduction

The concept of multivalency is intrinsic to nature. For instance, marine mussels use
multiple byssal threads to ensure attachment to rock surfaces, and octopus appendages
make use of numerous suckers to efficiently capture preys. Likewise, multivalent inter-
actions play a vital role in biological systems, down to the cellular level. Examples of
biological processes utilizing multivalence include viral entry, cell–cell interaction, host–
pathogen interaction, and immune synapse formation [1]. In each of these processes,
multiple functional units work synergistically to improve overall performance. By taking
advantage of the working principle of multivalency, researchers have applied this strategy
in many molecular-recognition-based applications, such as targeted drug delivery [2,3],
pathogen inhibition [4,5], cell capture and downstream analysis [6,7], detection [8,9], and
in vivo imaging [10,11]. To this end, multimeric nucleic acids [12], antibodies [13–15], and
aptamers have all been used to enhance functional performance in comparison to their
monomeric counterparts.

Among the multivalency-based strategies mentioned above, the multivalent aptamer
approach has attracted the most attention in recent years. Aptamers are short single-
stranded DNA (ssDNA) or RNA molecules that bind to targets via specific structures [16]
and possess advantages over other binding mechanisms, such as antibody-antigen bind-
ing. These short aptamer oligonucleotides are artificially selected from a process called
Systematic Evolution of Ligands by EXponential Enrichment (SELEX) [17]. Aptamers can
be selected to target ligands that are extremely small, highly toxic, or non-immunogenic,
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characteristics that are not readily achievable with conventional antibodies. In addition,
thanks to large-scale oligonucleotide synthesis, the production of aptamers is significantly
more cost-effective and accessible than that of antibodies.

In general, multivalent aptamer approaches aim to achieve enhanced binding avidities
toward their target ligands. The avidity of an aptamer describes the overall affinity of
the interactions between an aptamer and its target; by linking two or more aptamer units,
multivalent aptamers have been shown to work cooperatively to increase the avidity of
interactions [18,19]. Higher local aptamer concentration leads to a higher chance of interac-
tion between aptamers and cell-surface ligands. In addition, after the initial binding of an
aptamer with its ligand, nearby aptamers can be readily recruited to facilitate additional
binding, thereby leading to a higher avidity. Physiological conditions present another
challenge for aptamers; in their monomeric form, aptamers have been shown to be rapidly
degraded by nuclease, a major drawback limiting their in vivo applications [20]. However,
studies have demonstrated that conjugating multiple aptamers onto nanoparticles can suc-
cessfully provide resistance to enzymatic degradation and increase nucleic acid stabilities
due to increased local salt concentrations on the surfaces of the nanoparticles [21,22].

The current review focuses on the structures and design principles of multivalent
aptamer approaches developed in recent years. To this end, multivalent aptamers are first
divided into several categories based on their structures. This will set the stage for detailed
discussions on the design principles and strategy highlights of multivalent aptamers.
Subsequently, applications based on recently published studies related to multivalent
aptamers are reviewed, followed by a brief discussion of current challenges and future
research directions.

2. Multivalent Aptamer Structures

Based on their structures, multivalent aptamers can be generally divided into three
categories: spherical [23,24], single-layer [25,26], and linear [27,28] (shown in Figure 1);
other varieties of structures are also shown in Figure 1, and they are discussed in Section 2.4.
In general, aptamers of interest are composed of three parts: a head-group moiety for at-
tachment, a spacer, and an outward-extending capturing unit. While conjugating aptamers,
one must tailor the conjugation method to the surface chemistry of each material. For
different immobilization strategies, interested readers are encouraged to refer to recent
review papers for details [29,30].
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2.1. Spherical Multivalent Aptamers

For spherical multivalent aptamers, the aptamers are connected onto a hollow or
solid core particle in an organized and radial polyvalent arrangement [31]. The core
particles can be gold [32], silver [33], metal oxides [34–36], silica [37,38], polymers [39], or
DNA self-assemblies [40]. Spherical carriers allow the greatest directional extension of
aptamers into sample solutions, resulting in enhanced contact surface areas and thus better
aptamer–target interactions. Furthermore, additional plasmonic [41], magnetic [24], or
luminescent [42] properties of the particles can also offer added advantages for applications
such as imaging and detections.

2.2. Single-Layer Multivalent Aptamers

After the first ground-breaking study on the two-dimensional (2D) material graphene
was published in 2004 [43], a new chapter has started in the history of material science.
The atomic thickness of 2D materials is the origin of their unique physical and chemical
properties, which are considerably different from those of three-dimensional (3D) structures.
For example, their unique optical properties make them a promising tool for photothermal
therapy [44], detection, and imaging applications [45]. Moreover, the large surface-to-
volume ratio of 2D materials also allows for increased loading of therapeutic agents [46,47].
Typical examples of 2D materials are graphene, transition metal dichalcogenides (e.g.,
molybdenum disulfide, MoS2), and phosphorene.

Besides 2D materials, conjugating aptamers onto DNA origami nanosheets can also
achieve monolayer aptamer configuration. This type of aptamer has been used as a delivery
vehicle for drugs [48,49], antisense oligonucleotides [48], antimicrobial lysozymes [50],
and RNase A [51]. In addition to possessing high loading capacities and programmable
structures, DNA origami-conjugated aptamers have also been shown to have good bio-
compatibilities. Additionally, the angstrom level precision of DNA origami scaffolds and
their excellent spatial addressability created the possibility to realize single-molecule-level
biosensing [25,52].

2.3. Linear Multivalent Aptamers

Conjugating aptamers onto linear scaffolds—either flexible or rigid—allows aptamers
to be arranged into linear configurations. The linear scaffolds can be made of polymers [53]
or nucleic acids, such as ssDNA [54,55], double stranded DNA (dsDNA) [56–58], and
DNA nanotubes [59,60]. The physical properties of each scaffold type confer specific
advantages to their resultant linear constructs. For flexible scaffolds such as ssDNA and
polymers, the scaffold chains can easily adapt to the surface topography of targets, while
the multivalent aptamers work synergistically, thus enhancing binding avidities [53]. Linear
multivalent aptamers with flexible scaffolds are commonly used for therapeutic [4,61] or
detection purposes [23,53,55]. Because of these long and flexible aptamer chains, the linear
multivalent aptamers can reach tens of micrometers into the sample solutions, providing
sufficient interactions with targets for more enhanced target capturing [55]. In addition,
these flexible multivalent aptamer chains have been shown to wrap around their targets,
resulting in even higher target-capturing efficacies [62]. In contrast, rigid scaffolds endow
the aptamers with more precise arrangements and orientations. Typical rigid scaffolds
include DNA nanowires and nanotubes; these rigid scaffolds are also commonly used as
drug-loading sites for therapeutic agents [28,63].

2.4. Other Multivalent Aptamer Structures

Multivalent aptamer strategies can also be found in other configurations. For ex-
ample, in an attempt to increase the avidity of molecularly imprinted polymers (MIPs),
the multivalent aptamer approach has been used [64,65]. After removal of the template
molecules, the polymers are left with binding sites and shapes that are complementary
to the original template molecules. This MIP approach will likely find wider applica-
tions in molecular-recognition-based sensing and detection, especially if it is combined
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with multivalent aptamers to further enhance binding avidity [66,67]. In addition, DNA
origamis, such as nanoboxes [68,69], nanorobots [60], and tetrahedral [70,71] and triangular
origamis [72,73], can also be used to construct nanostructures that feature multivalent
aptamers, as summarized in Figure 1.

3. Design Strategies

The design of multivalent aptamer composites combines multiple identical or different
aptamers with structural and other additional elements. The structural elements can be
either a polymer (e.g., poly(ethylene glycol), PEG) or a non-specific nucleotide sequence
(e.g., homo-polymeric oligonucleotides, such as oligo-T, with different lengths [4,54,55,74]).
These structural elements are designed to maintain intra- and inter-molecular space that
allow for independent activities of functional elements. Additional elements include
functional nucleotide sequences, such as DNAzyme, small interfering RNA (siRNA), or
signaling probes. In order to achieve optimal performances, other factors are also consid-
ered, such as spacers, heterovalent aptamers, and spatial arrangements of the aptamers, as
shown in Figure 2. These factors will be discussed individually in the following sections.
By applying one or combinations of these strategies, the efficiency of multivalent aptamer
composites can be further enhanced. For example, by combining spacer designs with
heterovalent aptamers, Lao and coworkers [75] demonstrated a hundred- to a thousand-
fold enhancement of microarray sensitivity compared to single-type aptamers without
any spacers.
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Figure 2. Schematic illustration of designs of multivalent aptamers. The optimization strategies
include adding different lengths or types of spacer motifs, using a mixture of two or more different
types of aptamers, and applying spatial arrangements of aptamers tailored for the geometries of
target ligands and binding pockets.

3.1. Spacers

Spacers refer to short-strand polymers or oligonucleotides between the recognition
domains of aptamers and the conjugated surface that they are attached to. Although multi-
valent aptamer strategies can enhance avidities compared to free aptamer monomers even
without added structural elements [76], avidities can be further improved by employing
properly designed spacers. This is because these spacers can either offer enhanced abilities
for surface-tethered aptamers to properly bind to their targets or prevent aptamer units
from forming unexpected secondary structures.
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In general, surface-tethered aptamers with spacers show better performance when
compared with those without. With properly selected lengths and materials, spacers can
increase the avidities of multivalent constructs by overcoming steric hindrances due to
adjacent aptamers. The most common spacers are PEG [77,78]; alkyl [78,79]; ssDNAs, such
as oligo-T and oligo-A [78,80,81]; and dsDNA [82]. Among these different types of spacers,
oligo-T spacers are perhaps the most commonly used [75]; therefore, in this section, we
focus on oligo-T spacers.

Spacer length is an important consideration in spacer design. A spacer with properly
designed length should both support the aptamer sequence and allow the aptamers to
stand out from the conjugated surface or backfilling molecules [83]. Surface-immobilized
aptamers with no or short spacer lengths experience impairments in freedom motions [84],
while long spacer lengths can be too long to ensure correct folding of either the aptamers [81]
or the spacers themselves [85] for correct secondary structures. For instance, Qin and
coworkers [81] demonstrated the importance of spacer length by conjugating sgc8 ap-
tamers onto poly(amidoamine) (PAMAM) dendrimers via oligo-Ts of lengths from 2 to
20 nucleotides for capturing circulating tumor cells (CTCs). The researchers observed
that excessively long spacers resulted in unfavorable alterations in aptamer secondary
structures, thereby negatively impacting the capturing performance. In addition, Edwards
and coworkers [86] reported that an increase in oligo-T spacer length resulted in decreasing
number of aptamers immobilized onto capturing surfaces. Furthermore, the researchers
also reported that increasing oligonucleotide spacer lengths also caused increasing electro-
static repulsion, which, in turn, resulted in stronger electric-charge barriers that eventually
inhibited additional aptamers to be immobilized onto the capturing surfaces [86].

3.2. Heterovalent Aptamers

Heterovalent aptamer strategies, also known as aptamer cocktails, use two or more
types of aptamers that target different moieties of the target. In comparison with single type
of aptamer, heterovalent aptamer approaches have been shown to result in the cooperative
enhancement of overall aptamer performances. For example, an 18-fold improvement of
limit of detection (LOD) was observed using an aptamer cocktail-modified electrode (three
different aptamers targeting different moieties on the surface of E. coli cells) compared to
an electrode modified with a single-type aptamer [87].

The aptamer-cocktail strategies have shown exciting potentials in CTC detections.
Traditionally, CTC detections face issues such as low CTC occurrences in clinical samples
and difficulties in targeting appropriate CTC biomarkers, since the presence of these sur-
face markers is known to be non-uniform between individual patients [18]. To overcome
these obstacles, one can target different arrays of CTC biomarkers simultaneously to both
increase binding avidities and prevent the off-target effects due to the reduced or loss
of certain surface biomarker expressions on the CTCs [88]. For example, Lin et al. [18]
developed a dual-aptamer-tethered network system that allowed DNA-triggered reversible
isolation-and-release of CTCs by tethering Sgc8c and Sgc4f aptamers onto a ssDNA scaffold.
This dual-type aptamer network system showed significantly higher capturing efficiency
compared to a single-type aptamer network. Similarly, Zhao et al. [89] combined the
aptamer-cocktail strategy and poly(dimethylsiloxane) (PDMS) microfluidic detection plat-
form to detect CTCs, as shown in Figure 3. The researchers showed that the aptamer
cocktail exhibited a synergetic effect in target capturing and that the aptamer-cocktail
approach demonstrated a higher overall capturing efficiency when compared with the
single-type aptamer approach.
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Figure 3. Schematic description of aptamer-cocktail-based microfluidic approach for CTC detection.
(a) A microfluidic device is composed of an aptamer-conjugated silicon nanowire and a PDMS chaotic
mixer. (b) When a single type aptamer is incorporated, the capturing affinity of the device is relatively
weak due to the lack of synergistic binding. (c) By using an aptamer cocktail, the synergistic effects
among individual aptamers lead to an enhanced capturing affinity. (d) Different aptamer cocktails
are expected to have differential capture performance for CTC subpopulation recognition [89].

Another way of utilizing heterovalent aptamers is multiplex detection, which allows
for the simultaneous detection of more than one target. Multiplex detections significantly
reduce sample size and runtime required for detection. For example, by combining aptamer-
conjugated gold nanoparticles (AuNPs) with magnetic graphene nanosheets, Dou and
coworkers [90] developed a sensitive electrochemical platform for detecting CTCs in blood
samples. Both Sgc8 and Td05 aptamers were incorporated to target two types of CTCs:
CCRF-CEM cells and Ramos cells, respectively. This platform demonstrated successful
detection of rare CTCs in clinical blood samples. In another interesting study, Dai et al. [91]
developed an optical multiplex system based on a 3D triangular-shaped DNA nanotube
(DNANT), as shown in Figure 4. As a proof-of-the-concept, three different aptamers to
individually target thrombin, adenosine triphosphate (ATP), and insulin were conjugated
onto three edges of the nanotube. This work demonstrated that the aptamer-conjugated
DNA nanotube was able to achieve multiple binding activities that also generated discrimi-
native signals for multiple targets in one detection system. The authors further suggested
that by simply altering the design of the scaffold from triangular to square, pentagonal,
and hexagonal nanotubes, it would be possible to simultaneously detect four, five, or even
six targets.
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3.3. Spatial Arrangements

The spatial arrangements of aptamers or their positioning relative to binding motif
alignments on the target surfaces have recently become an interesting field in the study
of multivalent aptamers. The optimal arrangements of aptamers—characterized by the
distance and geometry of surface ligands or binding pockets—is believed to be more
important than high local aptamer concentrations [5,61], since placing aptamers at an
optimal distance and position can result in increased avidity [92].

Spatial arrangements can be achieved by either altering the distance between two
adjacent aptamers [92,93] or positioning aptamers in a desired geometry [5,94]. Distance
arrangements can be achieved by positioning aptamers onto rigid scaffolds (i.e., dsDNA,
dsRNA [95], or DNA origami [96]). By conjugating two different anti-thrombin aptamers
onto multi-helix DNA tiles and DNA origami scaffolds at various distances, Rinker et al.
demonstrated that placing two different thrombin binding aptamers at an optimal distance
on a rigid DNA tile nanostructure could lead to significant improvements in binding affinity,
with results suggesting an estimated 50-fold enhancement in binding strength compared
to aptamer monomer approach [97]. Using rigid scaffolds for spatial arrangement is
particularly effective when the arrangements of binding moieties on the target surface
can be perfectly aligned with those of the aptamers. However, it should be noted that
even minor structural mismatches could result in suboptimal binding, due to unfavorable
steric interactions in such cases [98]. In an elegant study, Kwon et al. [5] developed a
star-shaped multivalent aptamer-conjugated DNA architecture by using tile-based DNA
assemblies. In these star-shaped DNA nanoconstructs, each dsDNA intra-molecular spacer
between the adjacent aptamers contained a hairpin structure, which could be unzipped
and stretched to fine tune in order to fit the distance between adjacent surface ligands.
This spatial arrangement of multivalent aptamers enhanced binding to their targets while
reducing off-target binding through pattern matching. Significantly, the researchers also
showed that aptamers with a mismatched geometric arrangement displayed an unexpected
lower affinity to their targets, suggesting that specific bindings between aptamers and
their targets are dependent on not only individual aptamer–ligand interactions but also
geometry matching and pattern recognition. As shown in Figure 5, a heptagon-shaped
complex showed a poor detection performance despite correct spacing and a higher level
of valency, thus strongly suggesting the importance of geometric positioning [5].
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Figure 5. A schematic representing the inhibitory nanostructures for dengue virus with their corre-
sponding mean EC50 (half maximal effective concentration) values. The hexagonal spacing resulted
in reduced detection compared to the star-shaped spacing, despite its being the correct spacing.
The schematic for the star and hexagon shows an unzipped hairpin region because potent pattern
matching occurs. Other scaffolds represent the hairpins as stem–loop structures to indicate a lack of
potent pattern matching ([5]).

4. Biosensing and Biomedical Applications
4.1. Biosensors

Aptamer–target interaction is an important recognition mechanism in biosensing
applications. In particular, multivalent aptamers allow elevated local concentrations of
aptamers and increased binding avidities between the capturing motif and the target. As a
result, the multivalent strategy has been widely used in many large-sized target detections,
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such as human cells [6,18,42,67,99] and bacterial cells [87,100–102] in whole-cell assays.
In addition, the multivalent strategy has also been used to detect smaller sized targets,
such as extracellular vehicles [54,103] and small molecules [104]. In comparison with
antibodies, aptamers allow readily and reversible capturing of targets for further analysis
and characterizations [105].

Linear aptamers and spherical aptamers (see Figure 1) are the most frequently used
aptamer forms in detection applications; to further increase multivalency, the combinations
of the two forms have also been reported [24,100]. For instance, Chen et al. [24] proposed a
NanoOctopus to capture CTCs in blood samples. To achieve this, the researchers conjugated
multivalent aptamer chains onto the surfaces of magnetic nanoparticles (i.e., NanoOctopus),
and they showed that the multivalent NanoOctopus significantly increased binding avidity
to their targets. Subsequently, the captured cells were released for further analysis. Similarly,
DNA nanochains that contain multiple copies of aptamers have also been used [55,62,100].
Inspired by climbing plants, Liu et al. [53] developed a multivalent aptamer nanoclimber
(MANC)-functionalized PDMS microfluidic device for minimal residual disease testing.
This work demonstrated a 57.5-fold increase in binding affinity in comparison with a mono-
aptamer approach when the MANCs was used to capture target cells in human plasma
samples, suggesting that the MANCs are clinically applicable to assay minimal residual
disease in peripheral blood. The captured cells were then released by using complementary
DNA displacement or nuclease digestion for downstream analysis.

Spherical multivalent aptamers have also been used in microfluidic devices [6,19,23,106]
to increase detection performances of the microfluidic devices. Inspired by octopus ten-
tacles, Song et al. [23] conjugated SYL3C aptamers onto AuNPs that were subsequently
attached to the inner surfaces of a micropillar-decorated microfluidic channel. The re-
searchers showed that approximately 250 SYL3C aptamers were attached onto each AuNP
and that the detection platform was able to detect CTCs directly in blood samples with-
out any sample pretreatments. In addition, the authors further demonstrated that the
multivalent aptamer approach improved the binding efficiency by 100-fold and that the
capturing efficiency was enhanced by more than 300% in blood samples when compared
with aptamer-monomer-modified microfluidic devices. The captured target cells were
released by using a thiol-exchange reaction that was shown to be of high efficiency and
maintained high cell viability. Alternately, polymeric dendrimers, such as PAMAM, have
also been used to construct spherical multivalent aptamers structures [101]. Jiang and
coworkers [100] developed a fluorescent microfluidic sensing platform for detecting E.
coli O157:H7, using rolling circle amplification (RCA) chain-conjugated PAMAM den-
drimers as an inner-channel surface modification. In this work, the PDMS microfluidic
channel was modified with PAMAM dendrimers that were subsequently conjugated with
capturing long ssDNA chains containing hundreds of repeating aptamer units. The re-
sultant channel modified by multivalent aptamer chains captured approximately 5-fold
more target cells compared to a channel modified by aptamer monomers. More impor-
tantly, this multivalency-driven improvement was observed to be more significant under
higher flow rates, suggesting that this multivalent strategy can be a potential solution for
achieving higher throughput in microfluidic devices while maintaining sufficient captur-
ing efficiencies.

4.2. Biomedical Applications

Targeted therapeutic-treatment deliveries generally require specific interactions be-
tween cell-surface biomarkers and recognition elements [107]. This specific recognition
mechanism enables accumulation of therapeutic agents in pathological sites while reducing
systemic toxicity [63]. Aptamer-mediated drug-delivery systems take advantage of the en-
hanced avidities, bio-stability, and intracellular uptake to their targets via multimerization.
For instance, Wang et al. [108] used a DNAzyme-driven DNA nanosponge with multivalent
aptamers for targeted delivery and controlled release of doxorubicin. In addition, carriers
such as aptamer-conjugated DNA self-assemblies can also enable targeted delivery of
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gene therapies, such as the delivery of siRNA [56,109], DNAzyme [110], and Cas9/sgRNA
(small guide RNA) [111,112]. It is conceivable that co-deliveries of more than one type of
therapeutic agents are also possible.

Another important area of in vivo multivalent aptamer applications is focused on
cancer treatment. Over the past decades, many aptamers that specifically target can-
cer cells have been successfully selected, including AS1411 (nucleolin-targeted) [113,114],
MUC1 (MUC1-targeted) [115], and Sgc8 (protein tyrosine kinase-7-targeted) [38], among
others [39,74]. However, aptamers have not yet been widely used in in vivo cancer treat-
ments. This is likely, in part, due to their poor performances under physiological conditions.
For example, aptamers are known to be vulnerable to nuclease degradations [116]; in
addition, conditions such as temperature [61,117], pH [118], and shear stress [105,119] have
also been shown to affect the abilities of aptamers to bind to their targets. As a promising
solution to these challenges, multimerizing aptamers have been used to mitigate in vivo
instabilities associated with aptamers, since multimerizing aptamers have been shown
to increases steric hindrance, thereby concealing specific cleavage sites from nuclease ac-
cess [120]. For example, Li et al. [28] prepared a self-assembled DNA nanocentipede as a
multivalent drug carrier by hybridization chain reaction (HCR). This drug carrier remained
stable after treatment with Exonuclease III for 2 h, demonstrating significantly increased
resistance to degradation.

In addition, multimerizing aptamers for in vivo applications can enhance the internal-
ization of the delivery vehicle by target cells. Endocytosis is of interest in understanding
the mechanisms that guide the entry of nanomaterials into target cells, which is particu-
larly meaningful for in vivo applications [121]. The multivalent effect has been shown to
enhance cellular uptake via receptor-mediated endocytosis by improving the local concen-
tration of aptamers [56,63,122]. To demonstrate this concept, Kang et al. [123] immobilized
multivalent aptamers onto a DNA or a DNA/RNA hybrid structure to build a targeted
drug-delivery system. For comparison, the researchers separately conjugated dual-type ap-
tamers (AS1411 and MUC-1) and single-type aptamers onto multiple scaffolds of different
levels of valency (i.e., monomers, pentamers, nonamers, or RCA generated multivalent scaf-
folds). The RCA-generated multivalent dual-type aptamer system outperformed monomer
aptamer systems with a 2.9-fold higher intracellular uptake in serum-free media.

4.3. Summary of Recent Research

In addition to the applications discussed above, recently published studies on mul-
tivalent aptamers are summarized Table 1. The table lists applications, aptamers, targets,
conjugated materials, structures, and demonstrated advantages of aptamer multivalency;
interested readers are encouraged to refer to the original publications for more details.
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Table 1. A summary of recently published multivalent-aptamers-related papers.

Application Aptamer Conjugated Material Target Functional
Component Spacer Advantages of Multivalency Reference

Spherical multivalent aptamer

Drug delivery SZTI01
(DNA)

RCA generated spherical
DNA self-assembly

Prostate cancer membrane
antigen (PCMA)-positive

C4-2 cells (PCMA)

Drug-loading sites;
doxorubicin pH-sensitive oligo-T Very stable in physiological

environment; high specificity [74]

Drug delivery 5TR1
(DNA)

Poly(lactic-co-glycolic acid)
(PGLA) dendrimer;

chitosan

MCF7 cancer cells (MUC1
receptor)

Drug-loading sites;
epirubicin N/A High affinity and specificity; good

internalization [39]

Drug delivery S2.2
(DNA)

Lipid-capped polymer
nanoparticle Cancer cell Drug-loading sites;

vinorelbine PEG2000

Significantly higher uptake efficacy;
enhanced cell targeting efficiency
with increased density of the S2.2

aptamer

[124]

Drug delivery AS1411 (DNA) Chitosan-silica
nanoparticle SKOV-3 ovarian cancer cell Drug-loading sites;

epigallocatechin gallate N/A Higher internalization efficacy [125]

Imaging/Therapeutic AS1411 (DNA) AuNPs; Silver
nanoclusters (AgNCs) Cancer cell

Drug-loading sites;
doxorubicin;

DNA-templated silver
nanoclusters (signaling,

fluorescent)

Adenine-rich sequence Increased the stability of DNA
probe; better internalization [114]

Detection and isolation MUC1 (DNA)

Hybrid membrane;
Fe3O4@SiO2 magnetic

nanoparticle; Ag2S
nanodots

CTC
Ag2S nanodots (signaling,
near-infrared fluorescence

signal)
DNA scaffold

Greatly enhanced the
anti-interference from background;

improve binding ability; good
specificity

[42]

Single-layer multivalent aptamers

Imaging Sgc8
(DNA)

Manganese dioxide
nanosheet CCRF-CEM cells

MnO2 (signaling, contrast
agent); fluorescent-labeled

aptamer (signaling,
fluorescence)

N/A
Target-specific binding and

internalization; low background
signal; high sensitivity

[126]

Chemo-photothermal
therapy AS1411 (DNA) Black phosphorus

nanosheet PC3 cells
Doxorubicin; black

phosphorus nanosheet
(photothermal therapy)

N/A Specific and high photothermal
cytotoxicity for target cells [26]

Drug delivery system C2NP (DNA) DNA origami K299 cells
(CD30 receptors) Doxorubicin N/A

Increased internalization;
significantly increased aptamer

bioactivity
[49]
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Table 1. Cont.

Application Aptamer Conjugated Material Target Functional
Component Spacer Advantages of Multivalency Reference

Linear multivalent aptamers

Detection AS1411
(DNA)

RCA generated
multivalent chain B16 cells Signaling molecular

beacon (fluorescent) 18-bp dsDNA Enhanced sensitivity; enhanced
selectivity [27]

Therapeutic LS Aptamer (DNA) RCA generated
multivalent chain Jurkat cells (L-selectin) Aptamer (L-selectin

inhibitor) 20 oligo-T
High avidity (103-fold higher

affinity than L-selectin aptamer
monomers); high specificity

[4]

Detection/cell
manipulation Split ZY11 (DNA) RCA generated DNA chain Human liver cancer Signaling probe

(fluorescent)

41 oligo-T; also served as
signaling compartment by

hybridization with
signaling probe

Improved performance in avidity (a
~2.8-fold increase in

signal-to-background-ratio);
increased recognition; extended the
tolerance range of temperature for

target binding

[127]

Detection SYL3C (DNA)
RCA generated

multivalent aptamer
network electrode interface

CTC
(EpCAMs)

Anti-EpCAM antibody;
horseradish peroxidase

conjugated gold
nanoparticle probe

(signaling.
electrochemical)

20 oligo-T Greatly increased current response;
reduced detection time [55]

Drug delivery AS1411 and MUC-1 (DNA) DNA and DNA-RNA
hybrid structures MCF-7 cells Drug-loading site dsDNA or siRNA duplex

Increased intracellular uptake of
dual aptamer systems (increase in

aptamer valency led to higher
intracellular uptake)

[123]

Detection Zy1
(DNA)

HCR generated DNA
self-assembly

Human liver cancer
SMMC-7721 cells

Signaling branch
(fluorescent)

10 oligo-T; HCR generated
backbone

High stability in the presence of
nuclease or in human serum; higher

signal-to-background ratio
compared with aptamer monomers;
reduced dissociation constant (1/10)

compared with Zy1 monomers

[128]

Others

Drug delivery Sgc8
(DNA)

DNA origami generated
self-assembly (triangular) Cancer cell/HeLa cell Drug-loading sites;

doxorubicin N/A

Enhanced drug-delivery efficiency
and therapeutic efficacy; decrease
systemic toxicity; high stability in

cell culture medium for 24 h

[73]

Targeted gene therapy Sgc8
(DNA) AAV2 vectors CCRF-CEM cells (PTK7) Gene for green fluorescent

protein DNA dendrimer
21-fold enhanced binding affinity
and enhanced resistance against

nuclease degradation
[129]

Immunotherapy KK1B10
(DNA)

HCR generated DNA self-
assembly-functionalized

natural killer cells
K562 cells Natural killer cells HCR generated backbone

Greatly increased binding avidity
compared to the aptamer monomers;

good stability under physiological
shear stress

[119]

Detection and capture ZY-sls (DNA) Cell imprinted hydrogel SMC-7721 cells N/A Trifunctional cleavable
crosslinker

Enhanced interaction between
enhanced sites and target cells; high

capture efficiency and selectivity
[67]
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5. Challenges and Outlook

Multivalency is a strategy inspired by nature. In the last decade, multivalent aptamers
have attracted a significant amount of interest as a promising solution to overcome the
intrinsic challenges facing aptamer monomers by significantly improving avidity and
stability. The rapid growth of research in material science further accelerates the ongoing
development of multivalent aptamer-based devices. Encouraged by the significant advan-
tages held by this approach, recent research is now focusing on developing constructs that
excel in performance and possess potentials for use in real-life applications. However, there
are many challenges that need to be addressed before the potential of the multivalency
strategy can be fully realized.

Although the enhancement of local concentration is one of the advantages of mul-
tivalent aptamers, in some cases, it is not optimal to follow the idea of “the more, the
better”, but rather, “less is more”. When designing an aptamer device, one must ensure the
aptamers are properly positioned to expose their binding pockets to the greatest extent. In
order to achieve this, different types of structural elements are often used, and the effects of
these structural elements are critically important and warrant further investigations.

Spatial arrangements of aptamers is another important factor to consider in multivalent
aptamer design. Proper spatial arrangements, optimal positioning, and correct orientation
of aptamers can also significantly enhance overall avidities. As discussed, there has
been some work performed to investigate the proper geometries between neighboring
aptamers, with significantly higher avidities observed at certain geometric configurations.
To properly configure the spatial arrangements of the aptamers in designing multivalent
aptamer constructs, a deep understanding of target morphologies, ligand alignments, and
aptamer–target interactions is necessary, and more research in this area is needed.

6. Conclusions

Multivalent aptamer-based applications have shown great potentials due to their
enhanced performances in comparison with their monomer aptamer counterparts. By
combining the design considerations of spacers, spatial arrangements, and the heterovalent
effect, multivalent aptamer constructs have great potential for even more efficient functions
and improved performance. Furthermore, by incorporating nanotechnologies, signaling
molecules, and functional oligonucleotides into multivalent aptamer constructs, multifunc-
tional smart devices that combine properties for applications in imaging, drug delivery,
and diagnostics in real-world applications are perceivable in the near future.
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