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Lake Tauca highstand (Heinrich Stadial 1a) driven by a
southward shift of the Bolivian High
Léo C. P. Martin1,2*, Pierre-Henri Blard1,3*, Jérôme Lavé1, Thomas Condom4, Mélody Prémaillon1,
Vincent Jomelli5, Daniel Brunstein5, Maarten Lupker6, Julien Charreau1, Véronique Mariotti1,
Bouchaïb Tibari1, ASTER Team†, Emmanuel Davy1

Heinrich events are characterized by worldwide climate modifications. Over the Altiplano endorheic basin (high trop-
ical Andes), the second half of Heinrich Stadial 1 (HS1a) was coeval with the highstand of the giant paleolake Tauca.
However, the atmospheric mechanisms underlying this wet event are still unknown at the regional to global scale. We
use cosmic-ray exposure ages of glacial landforms to reconstruct the spatial variability in the equilibrium line altitude
of the HS1a Altiplano glaciers. By combining glacier and lake modeling, we reconstruct a precipitation map for the
HS1a period. Our results show that paleoprecipitation mainly increased along the Eastern Cordillera, whereas the
southwestern region of the basin remained relatively dry. This pattern indicates a southward expansion of the east-
erlies, which is interpreted as being a consequence of a southward shift of the Bolivian High. The results provide a new
understanding of atmospheric teleconnections during HS1 and of rainfall redistribution in a changing climate.
INTRODUCTION
A major uncertainty in our understanding of 21st century climate
concerns the global redistribution of rainfall and modification of mon-
soonal systems in response to global warming (1). Past global climatic
oscillations are of particular interest for understanding the teleconnec-
tions that lead to rainfall modifications during periods of global scale
climatic change. These oscillations constitute a baseline against which
various scenarios can be tested (2, 3) and provide case studies of abrupt
redistributions of rainfall and major regional hydrologic changes. The
Heinrich stadials that characterized late Pleistocene climate were
marked bymassive iceberg discharges accompanied by global reorgani-
zations of the atmosphere-ocean system, involvingmajormodifications
of monsoon dynamics and the positions of the westerly wind belts in
both hemispheres (4–8). Understanding the climatic processes at work
and their interconnections during these periods is therefore crucial. In
South America, Heinrich Stadial 1 [HS1; 18.5 to 14.5 thousand years
(ka) before present (BP) (9)] presents one of the most notable examples
of abrupt rainfall redistribution and major hydroclimatic change: the
transgression, highstand, and regression of the giant paleolake Tauca in
the endorheic Altiplano basin (Bolivian Andes). Lake Tauca reached a
depth of 120 m and covered an extent of 52,000 km2 during the second
half ofHS1 (HS1a; 16.5 to 14.5 kaBP). It is the largest paleolake expansion
in the Altiplano in the last 130 ka (10–12).

The distribution of precipitation responsible for suchmarkedhydro-
climatic changes remains unknown. Most previous studies of South
American paleorainfall were based on oxygen isotope records from
speleothems in the northeast (NE) and southwest (SW) Amazonian
lowlands. These studies show that atmospheric circulation over sub-
tropical Brazil changed in pacewith theHeinrich stadials (5, 13–15) and
numerous sites record wetter conditions during these episodes [see
compilations (15, 16)]. Nevertheless, these records do not provide
spatially distributed information on the regional precipitation changes
that induced the Tauca highstand. Over the Altiplano, two studies that
couple lake and glacier mass balance models propose a range of overall
temperature shifts of between −5° and −7°C and an overall annual rain-
fall increase of between 70 and 150% (17, 18) during the Tauca high-
stand. However, these studies were unable to determine the spatial
variability of the precipitation during this period, which precludes iden-
tification of the moisture sources and mechanisms associated with the
substantial redistribution of rainfall concurrent with the worldwide cli-
maticmodifications ofHS1. The persistent LaNiña–like conditions that
are assumed to have occurred in the central Pacific during theTauca cycle
have been suggested as a possible forcing for the precipitation anomaly
(10), but none of paleoclimatic data available to date have been able to
confirm this theory.

Today, two modes of moisture transport, involving different atmo-
spheric features of the South American summermonsoon (SASM), have
been identified for the Altiplano basin (19). In the northern Altiplano
basin, rainfall anomalies result from advection by the easterlies of
tropical moisture driven south by the low-level jets. Precipitation
anomalies located further south on theAltiplano result from southward
deflectionof theBolivianHigh (BH), anupper troposphere high-pressure
cell centered over Amazonian Bolivia that develops during the austral
summer (20, 21) and promotesmoisture transport from theGranChaco.
The interplay between these two rainfall modes creates interannual var-
iability, which has already been discussed in the context of central Andes
paleoclimate (22, 23). However, the relative contribution of each
component during the hydroclimate changes responsible for the Lake
Tauca highstand remains unknown. Constraining the spatial distribution
of precipitationduring this period is therefore crucial to (i) track the source
of humidity, (ii) understand the connections between the Altiplano
and the South American climate dynamics, and (iii) identify possible
interhemispheric forcings that link the SASM toNorth Atlantic cooling
events (14, 17).

Here, we gather a large set of new cosmogenic exposure ages and
previously published ages to identify a set of nine valleys distributed over
the Bolivian Altiplano that display moraines left by glacial stillstands or
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readvances synchronous with the Lake Tauca highstand (Fig. 1). By
combining a precipitation-temperature–dependent glacier model at
these sites with lake budget modeling of Lake Tauca, we then use an
inverse method to derive a paleoclimate reconstruction that incorpo-
rates a regional cooling and a quantitative precipitation field over the
Altiplano during the Lake Tauca highstand. The spatial pattern of pre-
cipitation in the reconstruction enables identificationof the atmospheric
processes involved in this unparalleled redistribution of rainfall linked to
global climate change.
Martin et al., Sci. Adv. 2018;4 : eaar2514 29 August 2018
Settings and approach
We can explore past climate conditions by simultaneously recon-
structing the fluctuations of lakes and glaciers because these variations
both depend on precipitation (rainfall and snowfall) and temperature
(soil and lake evaporation and ice/snow melting). The abundant
shoreline records andubiquity of glacialmorphologies over theAltiplano
make this location particularly suited to this approach. The nine glacial
sites we rely on for this study span from 14.3°S to 22.3°S and 66.5°W to
69.8°W, ensuring good coverage of the Altiplano basin (Fig. 1). The
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Fig. 1. Paleoglacial extent of glacial cover during the Lake Tauca highstand (16.5 to 14.5 ka BP) at the nine paleoglaciatedmountains where amoraine synchronous
with theLakeTaucahighstandwas identified. (A) Nevado Sajama (data fromthis study). (B) CerroPikacho (data from this study). (C) Cerro Luxar (data from this study). (D) Cerro
Uturuncu (59). (E) Cerro Tunupa (17, 25). (F) Cerro Tambo (data from this study). (G) Cerro Azanaques (27). The additional featuremapped here is the Challapata fan delta and its
boulder field (light orange; see section S1.2.1). (H) Zongo Valley. Thewhite arrows indicate the former ice-flow direction (60). (I) Laguna Aricoma (61). Aerial photographs are from
Google Earth. Paleo-ELAs were reconstructed using the AAR method (see the Supplementary Materials for more details).
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LagunaAricoma, ZongoValley, Cerro Azanaques, and Cerro Tambo
sites spread from north to south in different subranges of the Eastern
Cordillera and present various petrologies, from siliciclastic meta-
sedimentary rocks to granite and granodiorite. The other sites cor-
respond to isolated andesitic and dacitic volcanoes located close to the
western (Nevado Sajama, Cerro Pikacho, andCerro Luxar) and south-
ern (Cerro Uturuncu) edges of the basin. Cerro Tunupa occupies a
central position close to the center of paleolake Tauca. All of these sites
contain a detailed sequence of moraines, probably formed during the
Last Termination (from the Last Glacial Maximum to the Holocene),
that can be used to produce a precise reconstruction of the former suc-
cessive glacial extents (see the Supplementary Materials).

Given the available lithologies along the basin, the total exposure age
data set includes both 10Be ages in quartz and 3He ages in pyroxenes. For
both isotopic systems, recent independent and convergent studies re-
ported robust and locally calibrated in situ production rates (24–28).
For consistency, all ages were systematically recalculated using the on-
line cosmic ray exposure program (CREp) calculator (29), following a
scaling procedure shown to be appropriate for the high tropical Andes
(see the Supplementary Materials) (27).
Martin et al., Sci. Adv. 2018;4 : eaar2514 29 August 2018
For all sites, determination of the extent of ice coeval with the Lake
Tauca highstand required a comprehensive view of the broad de-
glaciation sequence. Stratigraphic relationships between successive or
synchronous glacial landforms provided additional relative time con-
straints that allowed one moraine coeval with the highstand to be iden-
tified at each site (Fig. 2 and see the Supplementary Materials). The
equilibrium line altitude (ELA) was then calculated for each paleo-ice
extent using the accumulation area ratio (AAR)method (30). The AAR
used for this calculation, 0.63 to 0.73, was derived from monitoring of
modern glaciers in the high tropical Andes (see the Supplementary
Materials for the method) (31, 32).

The determination of paleoclimatic conditions was achieved by ex-
ploring incremental values of uniform cooling (DT) over the Altiplano
basin. For each incremental value, we derived local precipitation values
at each glacial site using a robust empirical relation that links the ELA
position to local precipitation and temperature (see fig. S16) (32). By
extrapolating from these nine precipitation values, we built a precipita-
tion grid over the Altiplano. We then used a distributed lake budget
model (17, 35) with a quarterly time resolution and finally retained
the optimal values of the uniform cooling (DT) and the precipitation
grid over the Altiplano to allow us to balance the annual hydrologic
budget of LakeTauca at its highstand. Present-day climatic observations
over the Altiplano basin support the assumption of uniform cooling re-
quired by this algorithm (see the SupplementaryMaterials). In addition,
because the precipitation grid was interpolated from precipitation
values from nine glacial sites, it cannot capture small-scale precipitation
anomalies such as that currently observed over Lake Titicaca (Fig. 3A).
To compare present-day and Tauca precipitation regimes, we therefore
downsampled the present-day rainfall map at a similar resolution (see
the Supplementary Materials). Finally, for estimating the uncertainties
in the map reconstruction, we applied a Monte Carlo method to prop-
agate both those associated with the present mean temperature and an-
nual rainfall at each site and that associated with the ELAs.
RESULTS AND DISCUSSION
Our reconstruction provides quantitative constraints on the climatic
conditions associated with the Tauca highstand. We derive a uniform
cooling of 2.9° ± 0.2°C frommodern for thewhole endorheic catchment
and an average value of 900 ± 200 mm for the annual rainfall,
corresponding to a 130% increase compared to the present. The annual
paleorainfall grid (Fig. 3B) shows a clear and strongN-S toNE-SW gra-
dient characterized by abundant precipitation not only over the Titicaca
watershed in the northern Altiplano but also further south along the
Eastern Cordillera, defining a band of abundant precipitation (1200
to 1300mm year−1) spreading from 14°S to 19°S. In contrast, the south-
western part of the Altiplano is the driest zone with a mean annual pre-
cipitation of 100 to 500mm year−1 (Fig. 3B). The relative uncertainty in
the annual precipitation value ranges from 9 to 23%, with a mean value
of 14 ± 3% (Fig. 3E), confirming the robustness of the overall spatial
pattern that we report for the basin. Given the strong contrasts that
we calculate, even an overall relative uncertainty of 20% would not sig-
nificantly alter this spatial distribution or the related discussion. Addi-
tional sensitivity tests on the AAR and the ELA-P-T relation were
performed to establish the robustness of the results and can be found
in the Supplementary Materials.

A map showing the precipitation difference (Fig. 3C) exhibits sev-
eral important features: (i) During the Tauca phase, the whole central
Altiplano received on average significantly more precipitation than
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Fig. 2. Map of the Altiplano basin showing locations of the nine paleoglaciated
sites and associated geochronological constraints (3He and 10Be dating in thou-
sand years BP) and ELA (in meters above sea level). CRE ages (presented in age
probability density function plots) at each site (yellow points) constrain the extent of
glacier cover coeval with the Tauca highstand (16.5 to 14.5 ka BP, above 3760m, dark
blue contour on the map, and vertical blue bands on the age plots). The horizontal
axis of each graph shows the CRE age (in thousand years before 2010). The blue
number in each age plot is the associated ELA in meters above sea level (see the
Supplementary Materials)
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today (+500mm; that is, a 130% increase, or a 2.3× amplification); (ii) the
maximum increase is observed along the central-eastern part of the ba-
sin, whereas the southwestern part of the basin was almost as dry as
today; and (iii) the maximum rainfall along the Eastern Cordillera
was clearly further south than it is in the present spatial distribution; how-
ever, this southward shift is limited in extent to 4° of latitude as it does not
affect the extreme south of the basin (Fig. 3B). The asymmetric precipita-
tion anomaly during the Tauca phase arises from a regional modification
ofmoisture transport—in this case, an enhanced eastern input ofmoisture
from the southwestern Amazonian basin, across the Eastern Cordillera.

A further observation that can be established from themap showing
the ratio of the Tauca to the present-day precipitation field (Fig. 3D) is
that the rainfall amplification is much greater in the center of the paleo-
lake Tauca (where the maximum anomaly reaches a factor of 4) than it
is in the surrounding regional field (where the rainfall amplification is
smaller and relatively homogeneous). As it is centered on the paleolake,
this anomaly probably results from local recycling of moisture in a daily
Martin et al., Sci. Adv. 2018;4 : eaar2514 29 August 2018
cycle of evaporation of water during the day and rainfall at night. These
anomalies are also observed today over large lakes, such as Lake Titicaca
or Lake Victoria (36). The occurrence of this type of anomaly was pre-
viously postulated for Lake Tauca (17), and our study confirms this hy-
pothesis. While this local rainfall anomaly contributed to the Lake
Tauca highstand, the spatial mismatch between the maximum precip-
itation ratios (Fig. 3D) and the maximum absolute increase in rainfall
along the easternmargin (Fig. 3C) highlights the dominant contribution
of moisture from sources located outside the Altiplano. Overall, our
study quantifies the inner South American paleoprecipitation at a re-
gional scale with unprecedented spatial resolution.

Today, the SASMis themaindriver of precipitationover theAltiplano
basin, and our results should therefore be discussed in the framework of
the present-day SASM and its past variations. The Altiplano today re-
ceives between 100 and 900 mm of annual rainfall from the SW to the
NE,mostly during the austral summer [December, January, andFebruary
(DJF)], which corresponds to themature phase of the SASM (Fig. 4) (37).
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During this period, Atlantic moisture advected by the trade winds pene-
trates the tropical latitudes of the Amazonian basin and is channeled
southward along the Andes by low-level jets. South of this, strong con-
vective activity over central and southern Brazil is linked with the
development of the South Atlantic convergence zone (SACZ), a
southeast-oriented band of precipitation that extends from southern
Amazonia toward southeastern Brazil (38).

Over the Altiplano, during the same period (DJF), the weakening of
the dry westerly winds in favor of wet easterlies promotes moisture
transport from tropical and subtropical Brazil (19, 20, 39, 40). Thiswest-
ward transport is not uniform over the Altiplano basin; however, in the
north of the Altiplano rainfall is fed by tropical moisture brought to the
basin from the northeast (Fig. 3A). The El Niño–Southern Oscillation
(ENSO) conditions modulate the present-day interannual variability of
this NE rainfall contribution over the Altiplano. La Niña periods are
characterized by strengthened easterlies and precipitation anomalies
from the NE precipitation source. In the center and south of the basin,
easterlymoisture transport is linked to the formation of the BH. The anti-
Martin et al., Sci. Adv. 2018;4 : eaar2514 29 August 2018
clockwise circulation associated with this high-pressure cell generates
upper-level easterly flows toward the Altiplano basin, which advect
moisture from the Gran Chaco and generate precipitation (Fig. 4). This
second mode of moisture advection, modulated by the position of the
BH, is independent of ENSO conditions (19, 22).

In the context of the Tauca highstand, these present-day atmospheric
controls can aid interpretation of our rainfall reconstruction. Although
tropical moisture inputs are responsible for precipitation anomalies
restricted to the north of the basin, a southward shift of the BH during
the austral summer creates significant precipitation anomalies further
south in the basin (19). Therefore, the rainfall pattern that we report for
the Tauca period strongly suggests that a southward shift of the seasonal
BHwas themajor driving force behind the Tauca highstand precipitation.

Today, precipitation anomalies linked to a southward shift of the BH
are also associatedwith an intensification of the atmospheric circulation
(19, 39). Our paleoprecipitation estimates also show a large overall in-
crease in precipitation (130% average increase), and we suggest that the
southerly shift of the BH was accompanied by an intensification of the
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BH allowing greater transport of moisture to the Altiplano during the
Tauca highstand (Fig. 4).

Intensification and southward movement of the BH have already
been predicted from atmospheric modeling to be the main contributor
to rainfall anomalies in the central Andes during the Little Ice Age (41).
The possible role of the BH in glacial dynamics during the late glacial of
the central Andes has also been discussed (42, 43). Our results provide
independent constraints and additional validation of the crucial role of
the southward shift of the BH. Furthermore, our interpretation is
consistentwith severalmodifications of the SASMduringHS1. The sea-
sonal onset and withdrawal of the BH presently proceeds in pace with
the southward and northward migration of the dry westerlies, which
preventsmoisture transport from theAmazonian basin to the Altiplano
during the dry austral winter (June, July, and August) (40). In a paleo-
climatic perspective, a long-term southward shift of the BH is thus con-
sistent with the prolonged southward shift of the westerlies (44) observed
during periods of AMOC weakening, such as HS1a (45). This common
southward movement underscores the consistent responses of two syn-
optic climatic features of SouthAmerican climate to theHeinrich stadials.

The BH today develops in response to condensational heating over
the Amazon basin (46, 47) and its north-south position is related to the
position and intensity of the SACZ (48). The modern climatology,
which ties the BH to the SACZ dynamic, highlights the probable influ-
ence of the SACZ on the Tauca highstand. The SACZ has experienced
periods of intensified activity over the lateglacial period [mega-SACZ
events (14)], one of which (16.1 to 14.7 ka BP) was coeval with the high-
stand. These events are periods ofmajor convective activity in the SACZ
and are responsible for large amounts of precipitation over central and
southern Brazil. Similarly, the d18O signal of the Jaragua Cave speleo-
them (Fig. 4) (16), located between the SACZ influence zone and the
Altiplano basin, also records a wet period between 16.0 and 14.8 ka, also
concurrent with the highstand (Fig. 4). Hence, the second half of HS1
seems to be a distinctive period of continental-scale modification of
SASM activity, during which the atmospheric conditions over central
and southern Brazil were favorable to amodulation of the BHdynamics
and provided significant levels of moisture in the source region.

Observations suggest that the precipitation transport outlined
here is independent of ENSO modulations (19, 22) and is, instead,
controlled by humidity levels in the source area located east of the
Altiplano (14, 15). Our results do not exclude potential superimposition
of a Pacific forcing on the influence of the BH, given that La Niña
conditions bring increased precipitation to the north of the basin. How-
ever, the locations of the precipitationmaxima (1250 to 1300mmyear−1)
at between 16°S and 19°S rather than in the north of the basin (1000mm
year−1 from 14°S to 15°S) do not support this hypothesis. As our results
highlight the driving role of the BH in the precipitation regime, this sug-
gests that atmospheric changes that led to the Tauca highstand were
dominantly controlled by the moisture levels observed over the central
Brazil–Gran Chaco region, under the influence of the SACZ and, in the
end, an Atlantic forcing (14).

During the first half of HS1 (18.5 to 16.5 ka BP), the Altiplano basin
was not as dry as today, as attested to by shoreline deposits. The period
from 18.5 to 17 ka BP exhibits shorelines around 3660 m, indicating a
shallowand small extent lake (maximal depth, <20m; area, <10,000km2).
The 17 to 16.5 ka correspond to the transgression of the lake (11). This
progressive increase in the lake level indicates that the atmospheric
mechanisms at work during the highstand have been evolving during
the first half of HS1 to reach a stable state that permitted the high-
stand of the Tauca in the Altiplano basin. The midwestern and central-
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easternBrazilian speleothem records show convergent behaviors during
the first half of HS1 (14, 15), indicating a consistent dynamic of the
SASM for this period as well. As it is designed, our approach only allows
us to produce results for the Tauca highstand. For this reason, our dis-
cussions and interpretations are restricted to this 2-ka period (16.5 to
14.5 ka BP). Considering the short-time response of the lake to a rainfall
change [0.1 to 0.2 ka; see (34)] compared to the durations of the high-
stand and transgression, precipitationwas necessarilymuch higher dur-
ing the highstand than during the transgression. The rapid (<1 ka)
regression of Lake Tauca after 14.5 ka BP (11) implies a sudden return
of the BH to a more northerly location and possibly weaker circulation.

These abrupt changes in regional-scale atmospheric dynamics are
supported by other paleoclimatic studies [for example, (15, 16, 48–50)].
Considering the global climatic changes reported during HS1, a south-
ward shift of the BH is consistent with the concurrent southward shifts
of (i) the ITCZ, as observed in offshore and continental records for same
period (50, 51); (ii) theNorthHemisphere (NH)westerlies as reproduced
in modeling (52, 53) under the influence of NH ice sheets; and (iii) the
southernwesterlies (44, 54). Thus, our new results support the hypothesis
of a global southward shift of atmospheric circulation features during the
Heinrich events. They highlight the propensity of the atmosphere to
propagate and modulate climatic perturbations across both hemispheres
and to drive major redistributions of rainfall over very short time scales.
Ultimately, our results emphasize the versatility and interdependence of
Earth’s hydroclimatic systems under a changing climate.
MATERIALS AND METHODS
For a detailed presentation of the geological settings, methods, results,
and sensitivity tests, see the Supplementary Materials.

Cosmogenic nuclide measurements
Samples for 10Be dating were prepared and processed at Centre de
Recherches Pétrographiques et Géochimiques (CRPG; all steps from
quartz extraction through to chemical insulation of the in situ produced
cosmogenic 10Be component) and then analyzed at the ASTER French
NationalAMS (acceleratormass spectrometry) Facility [CentreEuropéen
de Recherche et d’Enseignement en Géosciences de l’Environnement
(CEREGE)]. For each analytical session, the blank correction was taken
as the averages of 2 to 5 10Be/9Be full-process blanks realized during the
same analytical session. This average value was then subtracted to the
10Be/9Be ratio of each sample of the session to calculate the 10Be concen-
tration. It induced a correction of 1.4 ± 1.5% on the values (maximum of
5.5%). Uncertainty on 10Be concentration of a sample includes the uncer-
tainty of the 10Be/9Be ratio of the sample and the uncertainty over the
blanks (taken as the standard deviation of the blank values of the session).

Samples for 3He dating were processed and analyzed at CRPG. Black
and green pyroxenes were first examined and identified using a scanning
electronmicroscope and thenhandpickedunder a binocularmicroscope.
Total 3He concentrations weremeasured on an split flight tubemass spec-
trometer, as described in (25). Pyroxene aliquots were fused in a vacuum
furnace at 1400° to 1500°C for 15min.The extractedgaswaspurifiedusing
activated charcoals, getters, and a cryogenic pump, beforemeasurement of
the 3He and 4He abundances in themass spectrometer. The furnace blanks
induced a mean correction of 4 ± 3% (maximum of 12%).

Cosmic ray exposure ages calculation
For the sea-level high-latitude production rate used to calculate 10Be
CRE ages, we used the uncertainty-weighted mean of the production
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rates of Blard et al. (26), Martin et al. (27), and Kelly et al. (28). All of
these studies, particularly, Blard et al. (26) andMartin et al. (27), provide
robust and local production rates for the high tropical Andes over time
spans that are similar to the age of Lake Tauca (ca. 15 ka). The produc-
tion rate value used here can therefore be considered a synthetic local
value that is both robust and able to limit age dependence on scaling
procedures (29).

The same method was used for calculation of 3He ages, using the
weighted mean of the local 3He production rates of Delunel et al. (24)
andBlard et al. (25). Age calculationswere based on theLal-modified time-
dependent scaling scheme (55, 56), along with the ERA-40–spatialized
atmosphere (57) and the geomagnetic database of Muscheler et al. (58),
and were performed on the CREp calculator (29).

ELA calculations
ELAs were determined using the AAR method. The AAR parameter
was derived from glacier monitoring observations conducted by the
GLACIOCLIM–IRD (Les GLACIers, un Observatoire du CLIMat–
Institut de Recherche pour le Développement) National Observation
Service at (i) Huayna Potosi, summit of the Zongo Valley, (ii) Antizana
(Ecuador, 0.5°S to 78.1°W), and (iii) Artesonraju (Perú, 9.0°S to 77.6°W),
over the periods 1991–2010, 1995–2010, and 2004–2011, respectively
(31, 32). To derive the AAR values, we performed a linear regression
on the AAR = f(mass balance) relationship and then computed the
AAR0 value (AAR for mass balance = 0). This AAR0 value represents
theAAR for a steady-state glacierwith a nullmass balance, as is required
to study moraine stillstands during the Tauca highstand.We calculated
AAR0 values of 0.65 for theZongo glacier (r

2 = 0.73), 0.72 for theAntizana
(r2 = 0.83), and 0.68 for the Artesonraju (r2 = 0.77; fig. S12).We used an
AAR range of 0.63 to 0.73 to take into account the uncertainty asso-
ciatedwith the paleo-ELAdetermination. The hypsometry data required
for the AAR method were derived from the Shuttle Radar Topography
Mission (SRTM) 1 Arc-Second Global digital elevation models from
NASA–U.S. Geological Survey (USGS).

The glaciers used for the calibration have various orientations, and
the AAR range that we used only resulted in 30 to 50 m uncertainty on
the ELA values, making the spatial ELA gradient highly significant. As
AAR values are sensitive to the climate settings, we moreover propose
an iterative use of our model that optimizes spatialized values of AARs
over the basin in section S4.3.7. This alternative way to reconstruct the
Tauca highstand precipitation yields similar results to those presented
here, which support the robustness of the calculation.

Glacier modeling
We combined glacier and lake modeling in an inversion algorithm to
identify a precipitation grid for the Altiplano basin that satisfied both
glaciers and lakes extents during the Lake Tauca highstand. For the
glacier model, we used the ELA = f(P,T) model of Condom et al. (33)

ELA ¼ 3427� 1148� log10ðPÞ þ TðzÞ=LR þ z ð1Þ

where ELA is the elevation of the ELA inmeters above sea level, P is the
annual rainfall in millimeters, T is the mean annual temperature in
degrees Celsius, LR is the atmospheric lapse rate in degrees Celsius
per meter, and z is the altitude of the temperature measurement in
meters above sea level. Present-day climate variables for the nine glacial
sites were derived from meteorological station data (37). We derived
identical results (precipitation map and uniform cooling) when repla-
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cing themodel of Condom et al. (33) by the one of Greene et al. (34) in
our algorithm. Those kinds of empirical relationships are more effi-
cient to link the ELA and the climate than the PDD (positive degree
day) for the Altiplano where sublimation is important and where pre-
cipitation can be low (section S2.3.1).

Lake modeling
The hydrological budget of Lake Taucawasmodeled using a distributed
model derived from that of Condom et al. (35). The model is run at a
quarterly time resolution and at a spatial resolution of 5 km. Tempera-
ture and precipitation inputs were derived from the New et al. (36) data
set. Elevation was based on the SRTM 1 Arc-Second Global digital ele-
vation model from NASA-USGS. The model parameters were cali-
brated on the Titicaca watershed for the present period.

Paleoclimatic inversion algorithm
To determine a precipitation field for the Tauca highstand, we applied
the following algorithm (fig. S16). First, we assumed a uniform DT
cooling over the whole basin and applied this DT cooling at each glacial
site. Second, using the present-day annual rainfall, mean annual tem-
perature, the Tauca ELA, and the chosen cooling, we were able to
compute the paleomean annual rainfall at each site using Eq. 1. From
these nine rainfall values, we then interpolated a precipitation grid for
the whole Altiplano. Third, using this interpolated precipitation grid
and the actual mean annual temperature (36) modified by the uniform
DT, we computed the hydrological budget of the basin with the mod-
ified version of the model by Condom et al. (35). Finally, depending on
the final value obtained, we modified the initial DT cooling and then
repeated the same calculations until the hydrologic lake balance reached
a null value (characteristic of the Tauca highstand). This condition
allows identification of a precipitation field that is representative of
the Lake Tauca highstand and that satisfies the concurrent Tauca glacial
extents at each site. We based the spatial interpolation of precipitation
on the square inverse of the distance.Weused aMonte Carlomethod to
propagate the uncertainties attached to the paleo-ELAs and to present-
day climatic conditions (precipitation and temperature) in the paleo-
precipitation grid.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaar2514/DC1
Section S1. Geological settings
Section S2. Methods
Section S3. Results
Section S4. Method sensitivity and result accuracy
Fig. S1. Seasonality of the annual rainfall over South America.
Fig. S2. Locations of the different sites in the scope of this study.
Fig. S3. Sampled moraines in the Zongo Valley.
Fig. S4. Sampled moraines and sample locations on Cerro Azanaques.
Fig. S5. Sampled moraines and sample locations on Cerro Tambo.
Fig. S6. Sampled moraines and sample locations on Cerro Pikacho.
Fig. S7. Sampled moraines and sample locations on Nevado Sajama.
Fig. S8. Sampled moraines and sample locations on Cerro Luxar.
Fig. S9. Moraine studied in (59) on Cerro Uturuncu.
Fig. S10. The Tunupa glacial features studied in (17).
Fig. S11. Moraine studied in (61) at Laguna Aricoma.
Fig. S12. Calibration of the AAR value from the GLACIOCLIM-IRD glaciological data set (31, 32).
Fig. S13. Comparisonbetween thePDDand theCondom et al. (33)methods to reproduce the ELAof
six High Andes tropical glaciers (determined from toe-to-headwall altitude ratio and AAR).
Fig. S14. Location of the temperature and precipitation stations relative to the glacial valleys.
Fig. S15. Snow management workflow in the lake model.
Fig. S16. Workflow for precipitation field reconstruction during the Tauca highstand.
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Fig. S17. Accuracy of the interpolated rainfall grid.
Fig. S18. Moraine age computations and identification of glacial extents coeval with the Tauca
highstand at Cerro Azanaques, Cerro Tambo, Cerro Pikacho, and Cerro Uturuncu.
Fig. S19. Moraine age computation and identification of glacial extents coeval with the Tauca
highstand for the sites of Cerro Luxar, Cerro Tunupa, Zongo Valley, Laguna Aricoma, and
Nevado Sajama.
Fig. S20. Influence of the scaling scheme on the CRE age results.
Fig. S21. Comparison of the DJF temperature from station data (37) and the New et al. (36) data set.
Fig. S22. Sensitivity of the ELA-P-T relation.
Fig. S23. Glacier retreat at Cerro Tambo between the Lake Tauca highstand and the
consecutive deglaciation.
Fig. S24. Lake Tauca highstand annual rainfall reconstruction using a spatially variable AAR
compared to a fixed one.
Table S1. Present annual rainfall and mean temperature at the studied sites.
Table S2. 3He CRE age results on and Nevado Sajama, Cerro Pikacho, and Cerro Tunupa.
Table S3. 3He CRE age results on Cerro Luxar y Uturuncu.
Table S4. 10Be CRE age results on Cerro Tambo, Azanaques, at the Zongo Valley, and at Laguna
Aricoma.
Table S5. Details of our new 10Be measurements on Cerro Tambo, Azanaques, and at the
Zongo Valley.
Table S6. ELA of the glacial extents coeval with the Tauca highstand and associated
paleoprecipitation results.
Table S7. Compilation of paleoclimatic studies related to SASM dynamics during HS1
(5, 13–16, 49–51) (107, 112–114).
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