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Abstract: Monitoring graft recipients remains dependent on traditional biomarkers and old tech-
nologies lacking specificity, sensitivity, or accuracy. Recently, metabolomics is becoming a promising
approach that may offer to kidney transplants a more effective and specific monitoring. Furthermore,
emerging evidence suggested a fundamental role of gut microbiota as an important determinant
of patients’ metabolomes. In the current study, we enrolled forty stable renal allografts recipients
compared to twenty healthy individuals. Samples were taken at different time points from patient
to patient following transplantation surgery, which varied from 3 months to 22 years post-graft.
All patients started the immunosuppression therapy immediately following kidney graft (Day 0).
Gas chromatography–mass spectrometry (GC–MS) was employed to perform untargeted analysis of
fecal metabolites. Globally, the fecal metabolic signature was significantly different between kidney
transplants and the control group. Fecal metabolome was dominated by lipids (sterols and fatty
acids) in the stable transplant group compared to the controls (p < 0.05). Overall, 18 metabolites
were significantly altered within kidney transplant recipients. Furthermore, the most notable al-
tered metabolic pathways in kidney transplants include ubiquinone and other terpenoid-quinone
biosynthesis, tyrosine metabolism, tryptophan biosynthesis, and primary bile acid biosynthesis. Fe-
cal metabolites could effectively distinguish stable transplant recipients from controls, supporting the
potential utility of metabolomics in rapid and non-invasive diagnosis to produce relevant biomarkers
and to help clinicians in monitoring kidney transplants. Further investigations are needed to clarify
the physiological relevance of fecal metabolome and to assess the impact of microbiota modulation.

Keywords: fecal metabolome; kidney transplantation; microbiota; biomarkers

1. Introduction

Chronic kidney disease (CKD) is a prevalent and chronic life-threatening disease
marked by socioeconomic impact as well by high morbidity and mortality [1]. Due to
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the high complexity of its clinical management, 2–3% of the total healthcare expenditure
in developed countries is directed to treating patients with end-stage renal disease [2].
For instance, kidney transplantation is a long-term treatment for CKD. However, it is closely
correlated with poor outcomes of rejection and the development of side risk factors, such as
dyslipidemia, diabetes, obesity, hypertension, and chronic viral infections (Hepatitis B Virus
(HBV), Cytomegalovirus (CMV), or Betapolyomavirus (BK virus)), or immunosuppressive
nephrotoxicity. Yet, there are still doubts about the markers that can predict a better
graft function or promptly detect a kidney rejection. The current clinical measurements
are simplistic, i.e., the used biomarkers, such as serum creatinine or urinary albumin,
blood pressure, or blood glucose, lack sensitivity and specificity. First, it has been shown
that serum creatinine lacks a high predictive value. In fact, increased serum creatinine was
reported only when 40–50% of the renal parenchyma was damaged [3]. This may lead
to the lack of detection of early stages of acute or chronic kidney failure and, therefore,
to the delayed application of detailed diagnostics and the implementation of therapeutic
interventions [4]. Second, although it has been established that microalbuminuria could
indicate kidney damage, considerable doubt has emerged that it is a predictor of diabetic
nephropathy [5]. Therefore, there is a need for more sensitive and specific biomarkers
that can predict a patient’s kidney function. Although renal biopsy remains the gold
standard by which essential diagnostic and prognostic information is obtained after kidney
transplantation, recent studies suggest that even the “gold-standard” histology assays
could be problematic [6]. Therefore, considering the limitations of routinely used methods
in the clinical setting, new analytical tools are essential to find robust biomarkers for the
right prediction of the graft function and/or renal side effects of calcineurin inhibitors in
kidney transplantation. The ideal biomarkers are those that can be detected easily and
non-invasively to distinguish patient subgroups [7]. In this clinical context, metabolomics is
a high-throughput measurement and analysis of metabolites. It has emerged as a promising
method for the identification of metabolic signatures related to diseases. By covering a huge
spectrum of metabolites, metabolomics aims to draw a representative picture of a biological
system and more closely reflects the dynamic phenotype [8]. Therefore, metabolomics is
an exciting approach to find key biomarkers that may contribute to more effective and
specific disease monitoring. However, its clinical application in the context of kidney
transplantation is still very much in its infancy. Recent advances have recognized that
metabolomics studies that have been performed on the serum and urine samples of patients
suffering from kidney diseases may offer a predictable explanation for kidney function,
kidney injury, and immunosuppressive drug toxicity [9,10]. Accordingly, earlier reports
have identified altered levels of several classes of metabolites that have been recognized
as crucial markers to delineate renal stress or dysfunction [11]. One major concern that
has emerged from the recent findings is the contribution of the gut microbiome to the
metabolome signature. Several gut-derived metabolites were previously described to be
linked to kidney disorders, including indoxyl sulfate, p-cresol sulfate, and trimethylamine-
N-oxide (TMAO) [12,13]. Nevertheless, dysbiosis of gut microbiota may aggravate the
clinical outcomes in kidney allograft patients. Despite the important role played by host gut
microbiota to modulate the metabolic profile, the mechanisms underlying this interaction
remain to be fully investigated.

Several research studies have reported a metabolomic comparison between kid-
ney graft recipients and healthy controls to assess the shift in certain metabolic path-
ways [14]. Hence, all the earlier studies that have successfully reported the application of
metabolomics to kidney transplantation have mainly explored urine, plasma, or serum
samples, but never fecal samples. Therefore, in this pioneering study, we recruited stable
kidney graft recipients; samples were taken at different time points from patient to patient
following transplantation surgery. We divided our cohort into subgroups depending on the
post-graft period, short post-graft period (“SG”: from 3 months to 1 year; n = 11), medium-
length post-graft period (“MG” from 1 year to 10 years; n = 20), and long post-transplant
period (“LG” from 10 to 22 years n = 9). See data in Table S1. All patients started im-
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munosuppression therapy immediately following kidney graft (Day 0). We performed the
metabolomics approach using the GC–MS platform to explore the changes in metabolites in
the feces of renal transplant patients. We aimed to 1: identify and characterize specific fecal
metabolite profiles in stable kidney transplants following immunosuppressive therapy com-
pared to healthy subjects; 2: provide novel metabolic biomarkers to gain further insights
into the crosstalk underlying the gut–kidney axis; 3: establish a non-invasive, more sen-
sitive, and specific method to complement existing ones to improve current diagnostic
standards and the monitoring of kidney transplants that may prevent organ rejection.

2. Materials and Methods
2.1. Samples Collection

Fecal specimens from (n = 40) stable kidney allograft recipients were collected from
the organ transplantation unit at the Military Hospital of Tunis. Samples were taken at
different time points from patient to patient following transplantation surgery. We divided
our cohort into subgroups depending on the post-graft period, short post-graft period
(“SG”: from 3 months to 1 year; n = 11), medium-length post-graft period (“MG” from
1 year to 10 years; n = 20), and long post-transplant period (“LG” from 10 to 22 years
n = 9). We conducted further analysis of the fecal specimens based on the health status
of the participants and whether or not they suffered from any lifestyle diseases that were
named associated diseases and labelled as (AD). In the present study, n = 24 patients
suffered from one or multiple complications from the following list: obesity, diabetes,
high blood pressure, and dyslipidemia. Furthermore, n = 16 were kidney graft recipients
that did not suffer from any associated diseases (labeled No_AD group). It is worth noting
that the primary diseases factor was also investigated but not reported in the present
study due to non-significance. This could be due to subjects covering a broad range of
nephropathies. See data in Table S1. All patients started immunosuppression therapy
immediately following kidney graft (Day 0). Healthy volunteers (n = 20) provided control
samples to compare healthy and patient gut metabolomes. Each individual in the above-
mentioned cohort signed an informed consent form approving their participation in the
present trial and the sharing of clinical data for research purposes. Samples were collected
in sterile stool specimen containers, immediately delivered in pre-cooled boxes, and stored
at −80 ◦C until metabolite profiling was performed. All subjects gave their informed
consent for inclusion before they participated in the study. The study was conducted in
accordance with the Declaration of Helsinki, and the protocol was approved on 5 March
2018, by the Ethics Committee of the Military Hospital of Tunis N◦05032018. Clinical and
demographic data of study groups are further detailed in Supplementary Table S1.

2.2. GC–MS Sample Preparation and Metabolites Extraction

Fecal water was extracted by performing a successive two-solvent (ethanol and Diethyl
ether)-based metabolite extraction protocol. It has been reported in a recent study that
extraction efficiency was high for ethanol or methanol and isopropanol protocols [15,16].
As methanol is more carcinogenic than ethanol, we chose to use ethanol as an extraction
solvent. Fecal samples were thawed, and 3 g of each stool specimen was mixed with
pre-cooled ethanol (−20 ◦C) in the ratio of 3:20 (g:mL; feces: ethanol). The mixtures were
homogenized by sonication for 30 min and centrifuged at 4000 rpm for 20 min at 4 ◦C.
The supernatants were then transferred and filtered through a 0.45 µm Millex-GV Syringe
Filter. A second extraction was conducted by adding 20 mL of Diethyl ether to the pellets.
The mixtures were well shaken, vortexed for 3 min, centrifuged at 4000 rpm for 20 min
at 4 ◦C, and then filtered through a 0.45 µm Millex-GV Syringe Filter. All filtered fecal
waters were divided into a 150 µL aliquot per Eppendorf tube and dried to the complete
dryness of solvents, under reduced pressure in a speed vacuum at 10 ◦C, to obtain a pellet of
concentrated metabolites. All the extracted metabolites were stored at−20 ◦C until analysis.
For the first step, 2 mg ± 0.01 of each sample pellet was grated and diluted with 500 µL
of extraction solvent. The mixtures were filtered through a 0.45 µm Millex-GV Syringe
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Filter. All the samples were run on GC–MS with a 500 µL blank of each extraction solvent.
The second step was the derivatization: 2 mg ± 0.01 of each sample was derivatized by
adding 800 µL of N-Hexane and 400 µL of (1 M) Sodium methylate to the metabolite pellets.
The resulting solution was then vortexed, 200 µL of H2SO4 (0.1 M) was added and the
mixture was homogenized. An amount of 500 µL of the supernatants was transferred to
GC–MS glass vials. A blank with MilliQ water was prepared and treated the same as the
derivatized samples. It is important to note that exactly the same protocol was applied for
all the tested samples. A triplicate was performed for every sample to validate the obtained
profile. We assessed relative and absolute abundance of chromatographic peaks in quality
control samples as described previously [17]. Malathion and chlorpyrifos were used as
internal standards. Briefly, we used a six-point calibration curve of a mixture of quality
control reference standards, in addition to method blanks and reagent blanks, for each new
batch of analyses starting from the lowest concentration to the highest.

2.3. GC–MS Analysis and Metabolites Detection

The samples were analyzed using the Agilent GC 7890B. MS 240 ion trap Gas Chro-
matography technology equipped with an MS detector (GC–MS) (Agilent, CA, United States).
Injections were in splitless mode for 0.75 min, using a 2 mm I.D. non-deactivated direct
liner. The separation was carried out on a HP-5MS capillary column (30 m × 0.250 mm;
0.25 µm film thickness) (Agilent, CA, United States). The analysis was carried in full
scan mode for 60 min. An autosampler injected 1 µl of each sample, and the separation
was performed using the column in split mode and ionization range from 50 to 1000 mV.
The carrier gas was helium with a flow rate of 1.1 mL/min. The injector temperature was
set at 280 ◦C, and GC oven temperature was programmed at 40 ◦C for 2 min; then, a slope
at 50 up to 250 ◦C was maintained for 20 min. The analysis was carried in full scan mode
for 60 min.

2.4. Identification and Comparison of Volatile Compounds

Mass spectral data processing and metabolite identification were performed us-
ing an Automated Mass Spectral Deconvolution and Identification System (AMDIS)
(AMDIS-version 2.71, 2012) and the National Institute of Standards and Technology (NIST)
(version 2.0, 2011) database. The detected metabolite peaks were identified using three com-
ponents within NIST; these were a match of > 800, a 90% probability of a match to NIST li-
brary standards, and a head-to-tail comparison of the fragments. Metabolite validation was
performed by matching experimental tandem MS spectra, retention time, and cas number
of the metabolic features against PubChem library (https://pubchem.ncbi.nlm.nih.gov/)
(accessed on 1 January 2004) as well as the spectral database Human Metabolomic Data
Base (HMDB) (https://hmdb.ca/) (accessed on 1 January 2007). A compound was con-
sidered to be present when it satisfied these 3 criteria. This process provides a relative ion
abundance; no units of ion abundance are available. A compound with a similarity index
more than 80% was considered as a potential biomarker; therefore, compounds that were
found in less than 20% of the entire sample cohort were removed from further analysis [18].

2.5. Data Analysis

We attempted to analyze metabolic profiling within the two groups by performing
multivariate statistical analysis using SIMCA 16. Initially, the principal component analysis
(PCA) was carried out to identify any outliers within the data set. Then, an orthogonal
partial least squares-discriminant analysis (OPLS-DA) was applied to optimize the sepa-
ration between the different groups. The model robustness was evaluated with the R2Y
(fraction of variance), the Q2 (model predictability), and p-values. Close to 1, R2Y and Q2
values indicate an excellent model, whereas low values are indicative of model over-fitting.
The statistical model was tested for robustness by a Y-permutation performed by PLS-DA,
which confirmed the observed metabolic variations. The statistical model was tested for
robustness by a Y-permutation performed on PLS-DA, which confirmed the observed
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metabolic variations, and by the use of a CV-ANOVA from SIMCA-P 16 (analysis of vari-
ance in the cross-validated residuals of a Y variable). A hierarchical cluster analysis heat
map was obtained using the ward clustering algorithm and Euclidean distance calculation
to further confirm the results of PLS-DA and to show the distribution of metabolites among
all individuals. Pathway analysis was performed using metaboanalyst4.0.

2.6. Selection of Biomarkers

We constructed Receiver Operating Characteristic (ROC) curves to check the accuracy
of the model, using metaboanalyst v 4.0. A forward stepwise logistic regression model was
constructed to design the best metabolite combination. ROC curves were used to test the
accuracy of the model. The global performance of each biomarker was evaluated using
the Area Under the Curve (AUC) and the determination of sensitivity and specificity [19].
The data obtained were subjected to an unpaired non-parametric test (Wilcoxon rank-sum
test, also known as the Mann–Whitney U-test) within MetaboAnalyst, and false discovery
rates (FDR) were calculated by the Significant Analysis of Microarray (SAM) analysis,
which is essentially used for microarray data but also used for metabolomic data (GC–MS;
LC-MS and NMR compounds), to discover if the metabolites were significantly different
between groups [20]. All features with FDR values below 0.05 indicated that these features
can indeed be regarded as potential “biomarkers”. A metabolomic pathway analysis
(MetPA) [21] was applied, by Metaboanalyst v 4.0 (accessed on 1 January 2009), to the
selected biomarkers to find the most relevant pathways involved in renal transplantation.
The area of the circles is proportional to the effect of each pathway, with the color denoting
the significance from the highest in red to the lowest in white.

3. Results
3.1. Clinical Data of Kidney Allografts Patients

Forty kidney transplant individuals and 20 healthy subjects were enrolled in our
study to assess changes in their fecal metabolic profiles. Samples were taken at different
time points from patient to patient following transplantation surgery. It is worth noting
that all patients started immunosuppression therapy immediately following kidney graft
(Day 0). We performed an untargeted metabolomic analysis of fecal contents using GC–MS.
A clinical and demographic data investigation of several factors, including age, gender,
body mass index (BMI), immunosuppressive regimen, graft period, and associated diseases,
was conducted. Detailed information on the 40 stable renal allograft recipients is provided
in Table 1 and supplementary Table S1. The kidney allograft recipients recruited comprised
28 men and 12 women with an average age of 42 ± 6 years and BMI of 23.7 ± 5. Overall,
kidney transplant patients underwent immunosuppressive therapy involving tacrolimus
(FK), mycophenolate mofetil (MMF), and steroids (Str). In the present study, 24 of the 40 pa-
tients suffered from one or multiple complications from the following list: obesity, diabetes,
arterial hypertension, and dyslipidemia (AD subgroup). The remaining 16 patients were
not diagnosed with any of these complications (no-AD subgroup). Primary diseases were
also considered and further investigated, but they were discarded from the results reported
in the present study, as they were not found as major factors to significantly highlight
the shift in the fecal metabolomic profile following kidney transplantation. The control
group comprised 10 men and 10 women with an average age of 44 ± 5 years and BMI of
20 ± 4. Control subjects were not undergoing any kind of treatment nor suffering from
associated diseases.

Table 1. Clinical and demographic data of study groups.

Subjects Age (Y) Mean (SD) Gender Diet BMI Immunosuppressive
Therapy

Period (Y) After Tx
Mean (SD)

Patients 42 (6) 28 M/12 F Low Salt 23.7 (5) Str/Fk/MMF 6 (5)
Controls 44 (5) 10 M/10 F Balanced 20 (4) - -

Y: year; SD: Standard deviation; Str: steroids; FK: tacrolimus; MMF: mycophenolic acid; (-): not applicable; F: female; M: male; Tx: treatment.



Diagnostics 2021, 11, 807 6 of 20

3.2. Metabolomics Workflow

Figure 1 shows the schematic workflow of our global metabolomics study. Fecal sam-
ples were collected from 40 KT patients and 20 healthy controls. Metabolites were extracted
from the fecal samples following gradient of two solvent polarity and analyzed using the
GC–MS approach (Figure 2). Metabolic features were extracted from each individual sam-
ple and aligned to create a metabolite-intensity table for downstream data interpretation.
In total, 75 metabolic features were consistently detected in all fecal samples (Table 2) to
discriminate KT patients from healthy subjects, all metabolic features were analyzed in
principal component analysis (PCA) and orthogonal partial least square-discrimination
analysis (OPLS-DA) (Figures 3 and 4). Further, statistically significant metabolic features
were extracted using the criteria of fold change p-value ≤ 0.05 and visualized using a
heatmap (Figure 5). The potential biomarkers were further extracted using the criteria of
AUC > = 0.7 and FDR ≤ 0.05 (Table 3). Metabolites were then used to construct pathway
enrichment analysis to better understand their biological significance (Figure 6).
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Table 2. Summary of the detected metabolites in the feces of KT and CT group.

Chemical Classes Compounds m/z Chemical Structure

Alkanes

Tritetracontane 57.99 / 71.64 /43.47 MF: C43H88
MW: 605.2 g/mol

1,6,10,14,18,22-Tetracosahexaen-3-ol,
2,6,10,15,19,23-hexamethyl

96/81/41 MF: C30H50O
MW: 426.7 g/mol

6,6-Diethylhoctadecane 57/71/85 MF: C22H46
MW: 310.6 g/mol

nonadecane 57.99 / 43.82 / 71.66 MF: C19H40
MW: 268.5 g/mol

Heptadecane 57.99 / 43.65 / 71.64 MF: C17H36
MW:240.5 g/mol

4-Ethyloctane 57/43/41 MF: C10H22
MW: 142.28 g/mol

1,2-Epoxyoctadecane 82/55/71 MF: C18H36O
MW: 268.5 g/mol

Amines
1-Piperidine carboxaldehyde 113.08/ 56.05/ 84.04 MF: C6H11NO

MW: 113.16 g/mol

Piperidine,1-acetyl 84/43/127 MF: C7H13NO
MW: 127.18 g/mol

1-(Piperidine-1-yl)dodecan-1-ol 127.22/140.85/84.14 MF: C17H33NO
MW: 267.4 g/mol

Alkaloids 2- Piperidinimine 98.06/ 70.55/43.78 MF: C5H10N2
MW: 98.15 g/mol

Amino Acid Tyrosine 218.18/ 71.85/ 43.41 MF: C9H11NO3
MW: 181.19 g/mol
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Table 2. Cont.

Chemical Classes Compounds m/z Chemical Structure

Benzenoids

Phthalic acid,di(oct-3-yl) ester 149/ 167/ 150 MF: C24H38O4
MW: 390.6 g/mol

2,4-Dimethylbenzaldehyde 134.07/ 133.06/ 105.06 MF: C9H10O
MW: 134.17 g/mol

Dioctyl Phthalate 149.99/ 391.66/ 261.40 MF: C24H38O4
MW: 390.6 g/mol

Phthalic acid,di(hept-3-yl) 149.02/ 167.03/ 150 MF: C22H34O4
MW: 362.5 g/mol

Phthalic acid 149.1/ 139.2/ 121.3 MF: C8H6O4
MW: 166.13 g/mol

Mesitylene 105.99/ 120.86/77.98 MF: C9H12
MW: 120.19 g/mol

Carboxylic Acids Acrylic acid 72.2/27.23/55.17 MF:C3H4O2
MW: 72.06 g/mol

Triethyl Citrate 157/ 203/115 MF: C12H20O7
MW: 276.28 g/mol

Carotenoids
Squalene 69.06/81.06/41.03 MF: C30H50

MW: 410.7 g/mol

psi.,.psi.-Carotene,
1,1′,2,2′-tetrahydro-1,1′-
bis[(trimethylsilyl)oxy]

73.99/ 69.53/ 91.51 MF: C42H64O2
MW: 600.49 g/mol

Cumenes m-Cymene 93.02/ 135.11/ 121.08 MF: C10H14
MW: 134.22 g/mol

Dialkyldisulfides Dicyclohexyl sulfite 83/55/41 MF: C12H22O3S
MW: 246.37 g/mol

Dicarboxylic Acids Di2-ethylhexyladipate 129/371/259 MF: C22H42O4
MW: 370.6 g/mol

Long-Chain Fatty
Acids

Methyl 12-methyltridecanoate 74/55/75 MF: C15H30O2
MW: 242.4 g/mol

Stearic acid 117/129/132 MF: C18H36O2
MW: 284.5 g/mol

Palmitic acid 237.3/255.3/227.1 MF: C16H32O2
MW: 256.42 g/mol

Linoleic acid 263.1/256.1/95 MF: C18H32O2
MW: 280.4 g/mol

Short Chain Fatty
Acids

Acetic acid 43/55/60 MF: C2H4O2
MW: 60.05 g/mol

Butyric acid 43.05/87.04/29.04 MF: C4H8O2
MW: 88.11 g/mol

Fatty Acids

Adipic acid 129.1/115.1/119.2 MF: C6H10O4
MW: 146.14 g/mol

Dichloroacetic acid, 4-hexadecyl ester 55.99/69.79/83.76 MF: C18H34Cl2O2
MW: 352.19 g/mol

Valeric acid 60.02/29.04/27.03 MF: C5H10O2
MW: 102.13 g/mol

Z-8-Methyl-9-tetradecenoic acid 55/41/43 MF: C15H28O2
MW: 240.38 g/mol

Ethyl-14-methyl-hexadecanoate 88/55/57 MF: C19H38O2
MW: 298.5 g/mol
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Table 2. Cont.

Chemical Classes Compounds m/z Chemical Structure

Fatty Acids Esters

Ethyl oleate 43.99/55.68/69.67 MF: C20H38O2
MW: 310.29 g/mol

Ethyl 9,12-hexadecadienoate 67/81/55 MF: C18H32O2
MW: 280.4 g/mol

Ethyl-13-methyl-tetradecanoate 88/101/55 MF: C17H34O2
MW: 270.5 g/mol

Ethyl hexadecanoate 257.5/219.3/237.3 MF: C18H36O2
MW: 284.5 g/mol

n-propyl-11-octadecenoate 55/69/83 MF: C21H40O2
MW: 324.5 g/mol

Stearyl Palmitate 257/57/43 MF: C34H68O2
MW: 508.9 g/mol

Fatty Alcohol 1-Hexadecanol 55.99/69.82/83.76 MF: C16H34O
MW: 242.26 g/mol

n-Nonadecanol-1 83/55/97 MF: C19H40O
MW: 284.5 g/mol

Fatty Aldehydes (Z)-14-Methyl-6-pentadecenoic acid 73.05/89.04/43.7 MF: C16H30O2
MW: 254.41 g/mol

Hydrocarbons 5-eicosene 55.99/57.77/43.69 MF: C20H40
MW: 280.31 g/mol

Indoles
Indole 117.05/89.02/101.03 MF: C8H7N

MW: 117.15 g/mol

Skatole 131.07/103.04/77.03 MF: C9H9N
MW: 131.17 g/mol

Ketones Diacetone alcohol 43.02/59.05/57.03 MF: C6H12O2
MW: 116.16 g/mol

Non-metal sulfates
Sulfurous acid,hexyl octyl ester 57/85/43 MF: C14H30O3S

MW: 278.45 g/mol

Sulfurous acid 81.97/53.9/64.96 MF: H2SO3
MW: 82.08 g/mol

Not Attributed
3,9.beta:14,15-Diepoxypregn-16-en-

20-one,3,11.beta.,18-triacetoxy-
429.98/43.67/430.73 MF: C27H34O9

MW: 502.6 g/mol

Alanine,
N-methyl-n-propoxycarbonyl-,

isohexyl ester

144/102/43 MF: C14H27NO4
MW: 273.37 g/mol

5,9,14,18-Anthrazinetetrone,
6,15-dihydro-8-hydroxy-

458.09/49.55 MF: C28H14N2O5
MW: 458.4 g/mol

Phenols
m-Cresol 81.03/91.05/67.01 MF: C7H8O

MW: 108.14 g/mol

Phenol,2,4,6-tris(1-methylethyl) 205.78/220.12/206.34 MF: C15H24O
MW: 220.35 g/mol

Phenylpropanes 2,4-Di-tert-butylphenol 191.99/57.32/41.16 MF: C14H22O
MW: 206.17 g/mol

Prenol lipids 2,6,10,15-tetramethylheptadecane 57.06/71.09/43.99 MF: C21H44
MW: 296.6 g/mol

Quinones 1,4-Naphthoquinone,6-acetyl 217.99/232.91/189.44/43.27 MF: C12H8O5
MW: 232.04 g/mol
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Table 2. Cont.

Chemical Classes Compounds m/z Chemical Structure

Sterols

Coprosterol 388.32/44.05/233.15 MF: C27H48O
MW: 388.7 g/mol

beta-Sitosterol 43.99/ 55.35/41.33 MF: C29H50O
MW: 414.39 g/mol

Cholesterol 43.99/55.89/57. 74 MF: C27H46O
MW: 386.35 g/mol

Ergost-22-en-3-ol (3alpha,5beta,22E) 55.04/69.06/81.04 MF: C28H48O
MW: 400.5 g/mol

Stigmastanol 43.99/107.71/215.7 MF: C29H52O
MW: 416.4 g/mol

Cholestenone 124/43/55 MF: C27H44O
MW: 384.6 g/mol

Gamma-Sitosterol 43/55/41 MF: C29H50O
MW: 414.7 g/mol

4,6-cholestadienol 43.99/143.7/135.63 MF: C27H44O
MW: 384.34 g/mol

Stigmasterol 255/83/159 MF: C29H48O
MW: 412.7 g/mol

Cholesterylene 368/81/147 MF: C27H44
MW:368.6g/mol

Steroids
Epi-coprostanol 215/55/43 MF: C27H48O

MW: 388.7 g/mol

Campestanol 215/233/234 MF: C28H50O
MW: 402.7 g/mol

Cholest-4-ene 370.99/108.92/43.39 MF: C27H46
MW: 370.36 g/mol

Stanol 9,19-Cycloergost-24(28)-en-3-ol,4,14-
dimethyl-,

(3β,4α,5α)-

412.36/369.33/43.05 MF: C30H50O
MW:426.71 g/mol

Tocopherols gamma-Tocopherol 151.99/416.72/ 417.21 MF:C28H48O2
MW: 416.37 g/mol

Delta-Tocopherol 402/138/177 MF: C27H46O2
MW: 402.7 g/mol

MF: molecular formula; MW: molecular weight.

Table 3. Biomarkers identified in fecal metabolic profiles of KT group vs. CT group. a Area under the receiver operating
characteristic (ROC) curve of the biomarkers; b sensitivity and c specificity were calculated from the ROC curve.

Compound FDR FC AUC a Sensitivity b Specificity c Pathways

Cholestenone 0.00168 1.7408 × 10−5 0.86579 0.77 0.951 Steroid degradation
Triethyl Citrate 0.00147 4.4656 × 10−6 0.84013 0.725 0.921 Not identified

Gamma-Sitosterol 0.0161 3.4307 × 10−5 0.81711 0.709 0.916 Not identified

Cholesterylene 0.0153 2.3588 0.79868 0.684 0.906 Steroid hormone
biosynthesis

Ethyl
9,12-hexadecadienoate 0.0133 1.0012 × 10−5 0.78158 0.654 0.906

Primary bile acid
biosynthesis; Steroid

hormone biosynthesis
Adipic acid 0.00158 21.854 0.77961 0.649 0.891 Caprolactam degradation

Nonyl dichloroacetate 0.00769 9.9808 × 10−6 0.76974 0.657 0.876 Not identified
Dioctyl Phthalate 0.0022 9.0143 × 10−6 0.76908 0.641 0.875 Not identified

Delta-Tocopherol 0.0131 20654.0 0.75395 0.607 0.896
Ubiquinone and other

terpenoid-quinone
biosynthesis
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Table 3. Cont.

Compound FDR FC AUC a Sensitivity b Specificity c Pathways

Cholesterol 0.00675 4.46284 0.74803 0.609 0.866
Steroid hormone

biosynthesis; Primary bile
acid biosynthesis

Tyrosine 0.00985 57.844 0.74408 0.619 0.859

Ubiquinone and other
terpenoid-quinone

biosynthesis;
Tyrosinemetabolism,

Phenylalanine, tyrosine
and tryptophan

biosynthesis;
Aminoacyl-tRNA

biosynthesis
m-cymene 0.036354 105790.0 0.74276 0.699 0.866 Not identified

Indole 0.04437 45722.0 0.72763 0.671 0.87
Phenylalanine, tyrosine

and tryptophan
biosynthesis

Epi-coprostanol 0.0337 10665.0 0.71645 0.685 0.838 Not identified
nonadecane 0.0118 0.29481 0.71645 0.599 0.845 Not identified

Sulfurous acid,hexyl
octyl ester 0.00715 0.12937 0.7125 0.566 0.831 Cysteine and methionine

metabolism

gamma-tocopherol 0.00421 2.1326 0.71118 0.644 0.778
Ubiquinone and other

terpenoid-quinone
biosynthesis

Stigmasterol 0.02382 6.593 × 10−5 0.70724 0.656 0.764 Steroid biosynthesis

FC: fold change; FDR: false discovery rates; AUC: Area Under the Curve.
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Figure 3. PCA and OPLS-DA score plots of the fecal metabolic profiles from the KT and control (T) groups. An overview
of the data from all the five extractions confirms that there are no outlying samples within a 95% confidence interval.
(A) PCA scores plot model with R2X = 0.72 and Q2 = 0.54. Red circles represent healthy control samples, and green circles
represent KT samples. (B) Orthogonal partial least squares discriminant analysis (OPLS-DA) scores plot model showing
separation based on all extraction methods with R2(X) = 0.37, R2(Y) = 0.958, Q2 = 0.841, and cross validated analysis of
variance (CV-ANOVA) p = 1.106 × 10−18 values. Red circles represent healthy control samples, and green circles represent
KT samples. CT: Healthy subjects group; KT: Kidney transplant patients.



Diagnostics 2021, 11, 807 12 of 20

Diagnostics 2021, 11, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 4. The permutation test plots for the OPLS-DA models for classification of KT and CT groups with 100 permuta-

tion tests. Green circles and blue squares represent R2 and Q2, respectively. Intercepts: R2 = (0.0, 0,638); Q2 = (0.0, −0.704). 

 

Figure 5. Fecal metabolic differences among groups: heat maps of differential metabolites in Table 2. 

Figure 4. The permutation test plots for the OPLS-DA models for classification of KT and CT groups with 100 permutation
tests. Green circles and blue squares represent R2 and Q2, respectively. Intercepts: R2 = (0.0, 0.638); Q2 = (0.0, −0.704).

Diagnostics 2021, 11, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 4. The permutation test plots for the OPLS-DA models for classification of KT and CT groups with 100 permuta-

tion tests. Green circles and blue squares represent R2 and Q2, respectively. Intercepts: R2 = (0.0, 0,638); Q2 = (0.0, −0.704). 

 

Figure 5. Fecal metabolic differences among groups: heat maps of differential metabolites in Table 2. 

Figure 5. Fecal metabolic differences among groups: heat maps of differential metabolites in Table 2.



Diagnostics 2021, 11, 807 13 of 20

Diagnostics 2021, 11, x FOR PEER REVIEW 15 of 22 
 

 

ma-tocopherol other terpe-

noid-quinone 

biosynthesis 

 

Stigmasterol 0.02382 6.593E-5 0.70724 0.656 0.764 
Steroid biosynthe-

sis 

FC: fold change; FDR: false discovery rates; AUC: Area Under the Curve. 

Significantly altered metabolites (FDR < 0.05) in the feces were then used to further 

analyze the differential metabolic pathways in the KT patients by MetaboAnalyst v 4.0. 

The results revealed that the metabolic pathways of Ubiquinone and other terpe-

noid-quinone biosynthesis (p = 6.07 × 10−9), tyrosine metabolism (p = 1.09×10−6), trypto-

phan biosynthesis (p = 6.89 × 10−5), and primary bile acid biosynthesis (p = 2.49 × 10−4) were 

altered due to the impact of the immunosuppressive therapy (Figure 6). The tyrosine 

metabolism pathway seems to be the most significant pathway linked to the onset of 

kidney transplantation period and immunosuppressive therapy. 

 

 

 

Figure 6. Summary of the pathway analysis with MetPA where all the metabolites were consid-

ered. The area of the bubbles is proportional to the effect of each pathway, with color denoting the 

significance from highest in red circles to the lowest in white circles. The red circles represents 

pathways with the highest p-value (<<0.0001), the orange circles represents pathways with p-value 

below 0.05, yellow circles represent pathways with p-value close to 0.05 and white circles represent 

pathways with p-value>0.05. 

4. Discussion 

Recently, the metabolomics approach has arisen as a promising tool to explore the 

metabolic profile to better assess kidney transplantation management and monitoring. 

Although earlier studies have been established to investigate non-targeted metabolomic 

assessment of serum, plasma and/or urine samples of KT subjects, reliable and consensus 

biomarkers are lacking. 

Figure 6. Summary of the pathway analysis with MetPA where all the metabolites were considered.
The area of the bubbles is proportional to the effect of each pathway, with color denoting the
significance from highest in red circles to the lowest in white circles. The red circles represents
pathways with the highest p-value (<<0.0001), the orange circles represents pathways with p-value
below 0.05, yellow circles represent pathways with p-value close to 0.05 and white circles represent
pathways with p-value > 0.05.

3.3. Analysis of Fecal Metabolic Profiling by GC–MS

Fecal samples were analyzed using a GC–MS approach that has been shown to make
a comprehensive metabolic fingerprint with good analytical characteristics in fecal sam-
ples, and it was a suitable tool to investigate the metabolic abnormality following renal
transplantation. In the above-described GC–MS analysis, we detected about 200 metabo-
lites. Significant differences in the total ion chromatogram of the fecal samples were clear
between renal allograft recipients and control subjects, as shown in Figure 2.

The metabolites were identified after being handled with the NIST’s three criteria:
match of >800, a 90% probability of a match to NIST library standards, and a head-to-tail
comparison of the fragments. After excluding the non-endogenous metabolites (such as
drugs, solvents, and reagents) and those with missing values, a total of 75 metabolite
features (Table 2) were detected, including both hydrophilic and hydrophobic metabo-
lites. All 75 metabolite features were used for the following multivariate (OPLS-DA)
statistical analysis.

3.4. Fecal Metabolic Profiles of KT Patients and Healthy Individuals Are Different

Following both ethanol and Diethyl ether extractions, the 75 metabolites were used
for later statistical analysis. These included lipids (fatty acids and sterols); vitamins
(Tocopherols); short-chain fatty acids; and other metabolites, such as cumenes, indoles,
carotenoids, and amines. The unsupervised PCA was initially utilized on the identified
peaks and the scatter plots using the score of the first principal component (PC1) and
the third principal component (PC3) for each sample. As we can find, the PCA model
showed a clear trend of group clustering between the kidney transplant group from the
control healthy group (Figure 3A). To better show the significant fecal metabolic differ-
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ences between KT and CT groups, pairwise comparative OPLS-DA was conducted with
two orthogonal and one predictive component calculated for the model. The metabolomic
signature showed dramatic changes in response to immunosuppressive therapy. The score
plots between the CT and KT groups in the feces showed clear profile separation between
both groups. The two-dimensional (2D) (Figure 3B) OPLS-DA score plots of fecal metabolite
profiling among the CT and KT groups showed that the two groups could be distinguished
clearly by fecal metabolite profiling with good model fitness and predictability (R2X = 0.37;
R extsuperscript2Y = 0.958 and Q extsuperscript2 = 0.841). Furthermore, to assess dif-
ferences in the metabolic structure among patients undergoing kidney graft over time,
we divided our cohort into subgroups according to the post-graft period, short post-graft
period (“SG”: from 3 months to 1 year; n = 11), medium-length post-graft period (“MG”
from 1 year to 10 years; n = 20), and long post-transplant period (“LG” from 10 to 22 years
n = 9). OPLS-DA plot showed a clear separation between healthy subjects and the associ-
ated diseases sub-groups (AD and No_AD) and showed no discrimination between the
groups of patients according to their health status (supplementary Figure S2). Supplemen-
tary Figure S3 reported a total discrimination between the CT group and the different graft
periods (SG, MG and LG) but no significant separation according to the post-graft period
(supplementary Figure S3).

To validate the model, a permutation test with n = 100 was performed (Figure 4).
Furthermore, the CV-ANOVA test was performed to check the statistical significance of
the differences between the two groups in the OPLS-DA model, this resulted in a score
of p = 1.106 × 10−18, indicating that the differences between the groups within the model
were highly significant.

Fluctuations of the different metabolites between the two groups were investigated,
and the results are exhibited in the heat maps shown in Figure 5. The relative inten-
sity of some sterols (campestanol, coprostanol, Epi-coprostanol); fatty acids (stearic acid
and linoleic acid); vitamins (gamma-tocopherol, delta-tocopherol); carotenoids (squalene),
cumenes (m-cymene); alkanes (nonyl dichloroacetate); indoles (indole), an essential amino
acid (tyrosine); and short-chain fatty acid (Butyric acid) were decreased in the KT pa-
tients vs. CT. However, fatty acids, the majority of sterols (cholestenone, cholesterylene,
and gamma-sitosterol), alkanes (Heptadecane and 4-ethyloctate), and a carboxylic acid
(Triethyl citrate) were increased in the KT patients compared to the CT group.

3.5. Identification of Potential Biomarkers of Kidney Transplants Status and Biological Explanation

To show potential biomarkers of kidney transplant patients and immunosuppressive
therapy, relevant metabolites were selected between the control and kidney transplant
groups using AUC (>0.7) and FDR (<0.05). Following both ethanol and Diethyl ether
extractions, a total of 18 differential metabolites (see Table 3) in feces were chosen as
potential biomarkers of kidney transplant patients.

Significantly altered metabolites (FDR < 0.05) in the feces were then used to further
analyze the differential metabolic pathways in the KT patients by MetaboAnalyst v 4.0.
The results revealed that the metabolic pathways of Ubiquinone and other terpenoid-
quinone biosynthesis (p = 6.07 × 10−9), tyrosine metabolism (p = 1.09 × 10−6), tryptophan
biosynthesis (p = 6.89 × 10−5), and primary bile acid biosynthesis (p = 2.49 × 10−4) were
altered due to the impact of the immunosuppressive therapy (Figure 6). The tyrosine
metabolism pathway seems to be the most significant pathway linked to the onset of
kidney transplantation period and immunosuppressive therapy.

4. Discussion

Recently, the metabolomics approach has arisen as a promising tool to explore the
metabolic profile to better assess kidney transplantation management and monitoring.
Although earlier studies have been established to investigate non-targeted metabolomic
assessment of serum, plasma and/or urine samples of KT subjects, reliable and consensus
biomarkers are lacking.
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According to our results, the fecal metabolome signature was significantly different in
KT patients compared to the CT group. Furthermore, altered levels of the 18 best predictors
metabolites may show significant changes in the metabolic activity of several pathways
and could be associated with the immunosuppressive therapy and transplantation pro-
cess. For instance, the biological interpretation of data relies first on the identification of
significant metabolites and second on mapping those metabolites to biochemical path-
ways. Our study showed no significant discrimination between the different graft periods,
and this in a total concordance with a recent study conducted by Kienana and colleagues
on kidney transplant patients. In fact, they showed that the urine content was quite similar
between 3 months and a year after the kidney graft [22]. Therefore, this study reported that
the urinary metabolic profiles became less marked as time passed on.

Thus, there may be some possible limitations in this study. Mainly, the sample size
could be the reason why it was difficult to identify significant relationships between the
associated diseases as well as the primary disease factor and the kidney transplantation.
Therefore, we aim to increase our cohort and study the associated pathologies one by one
in order to study the association between these pathologies and kidney transplantation.
Nevertheless, we intend in future studies to optimize more targeted metabolic analysis
focused on specific metabolites or pathways to be able discriminate different health statuses
in transplanted patients.

4.1. Relevant Metabolites Highlighted

KT recipients have a long history of chronic renal failure, and so, many of them
suffer from lipid disorders before receiving the transplant [23]. It has been revealed
that lipid classes that are relevant as biomarkers in CKD include fatty acids, glycerolipids,
sphingolipids, and sterols (including steroids). After transplantation, lipid metabolism does
not return to normal, even when renal function is recovered [24]. Accordingly, our results
showed that fecal lipid alteration mainly increased the sterol, steroid, and fatty acid levels
among KT patients. For this reason, we hypothesize that post-transplant complications,
namely, dyslipidemia, hypertension, and diabetes, which are common within KT recipients,
relatively correlate with lipid disorders. Steroids have been of high interest in metabolic
research and kidney dysfunction, namely, the 11β hydroxysteroid dehydrogenase enzyme
was found to control the bioavailability of cortisol in the kidney, which if disturbed can
result in hypertension [25].

Increased serum and urinary cholesterol levels were also investigated in chronic kid-
ney diseases because of his role in the modulation of lipid metabolism [26]. In the context
of kidney transplantation, an increased cholesterol level is a risk cause for cardiovascular
diseases and, therefore, has a significant impact on survival [27]. The present study is the
first to assess fecal cholesterol quantification following renal graft. Herein, we found a
decreased level of some fecal sterols, including campestanol, β-sitosterol, and stigmasterol.
Although campestanol was not described within kidney dysfunction, low ratios of circulat-
ing β-sitosterol and stigmasterol were found by Ceglarek and co-workers [28] in line with
our results. We suggest that this alteration might be associated with a high risk of allograft
dysfunction and impaired clinical outcome following kidney transplantation. Nevertheless,
immunosuppressive medication is reported to be a key contributor to the development
of dyslipidemia in the context of kidney transplantation as well as in other solid organ
transplantation (SOT), such as the heart, liver, and lungs [29]. It is well documented that an
important contributor to dyslipidemia in SOT recipients is the off-target metabolic effects
of immunosuppressive medications, which may alter lipoproteins and their metabolism.
Lipoprotein abnormalities vary in relation to specific immunosuppressant agents and doses
but typically involve increased cholesterol, as demonstrated in our study [30].

Moreover, it is believed that saturated fatty acids (SFA), mainly palmitic acid, are re-
sponsible for lipotoxicity, whereas monounsaturated fatty acids (MUFA), mainly oleic acid,
have a protective effect against the apoptosis of renal cells induced by SFA [31]. In order to
further highlight the potential biomarkers related to kidney health and disease, we ana-
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lyzed fatty acid profiles. Our findings suggest a significant increase in linoleic acid, stearic
acid, and omega-5 levels after kidney transplantation. Accordingly, Linolenic acid levels
in plasma were positively associated with a change in renal function during the first year
after transplantation [32], while a study by Szczuko et al. [33] found that the stearic acid
level was significantly lower in the kidney transplant group compared to the control group,
which was thought to suggest the activation of the pathway of palmitic acid elongation.

In recent years, non-traditional risk factors, such as inflammation and oxidative
stress, have been implicated in the pathogenesis of CKD. However, the majority of studies
have investigated endogenous antioxidants in predominantly advanced stages of kidney
disease [34]. While the precise mechanisms remain unclear, there is substantial evidence
that progressive renal decline is associated with increasing oxidative stress-altered dietary
antioxidant status [35]. In this context, emerging data supports the role of carotenoids,
powerful antioxidant natural compounds, in renal function and disease prevalence. In fact,
a cross-sectional analysis of 570 participants showed a significant association between
ca-rotenoids and a higher estimated glomerular filtration rate (eGFR) [35]. Accordingly,
our results showed a decrease in these metabolites in the KT group compared to the controls.
Nevertheless, our results suggested cumene as a potential biomarker that decreases in the
KT group. Cumene is an endogenous metabolite belonging to terpenes, mainly found in
plants, and is considered as the major constituent of essential oils extracted from plants.
These bioactive natural compounds have been well described to ensure diverse biological
activities, including antioxidant, anti-inflammatory, and antimicrobial. An animal study
showed that cumene has antioxidant potential in vivo and may act as a neuroprotective
agent in the brain [36]. Based on these promising properties, carotenoids and cumene
compounds have potential clinical applications. Altogether, these new response elements
may present a new strategy in the development of treatment for CDK in which oxidative
stress plays an important pathophysiological role.

4.2. Gut Microbiota-Derived Metabolites

It has been suggested that gut microbiota could take part in the modulation of the
plasma metabolome, particularly in the context of kidney disease. Yet, there are no available
data on the fecal metabolome changes in kidney transplantation status. Several gut-derived
metabolites relevant to kidney disease have been described, such as indoxyl sulfate, p-cresol
sulfate, and trimethylamine-N-oxide (TMAO). Perhaps the most interesting advancement
has been the emergence of short-chain fatty acids (SCFAs). Recent in vivo studies have
demonstrated that SCFAs could modulate renal function in mice. However, the precise
mechanism remains to be fully understood.

The lack of SCFAs has been demonstrated to probably contribute to uremic toxicity and
local and systemic inflammation in CKD and end-stage renal disease (ESRD) [37]. Butyric
acid is the most investigated SCFA in kidney diseases. In the current study, our data showed
that SCFAs (butyric acid and acetic acid) have decreased within KT patients compared
to CT individuals. These findings confirm the results found in our recent metagenomic
study of the same cohort. In fact, we previously reported decreased abundances of Faecal-
ibacterium and Prevotella 9 genera in KT recipients after a long graft period. Most of these
microorganisms are anaerobic or facultative anaerobic probiotics and produce short-chain
fatty acids (SCFAs) [38]. Butyrate produced from microbial fermentation has a protective
role and appears to decrease the inflammatory response [39]. Smith et al. [40] found that
butyric acid regulates the differentiation of Treg cells, which plays a major role in limit-
ing the inflammatory response. The typical butyrate-producing bacteria in CKD patients
that have been identified include Roseburia spp. And Faecalibacteriumprausnitzii, as recent
studies demonstrate a significant decrease in these two butyrate-producing species in CKD
patients compared to healthy volunteers [41]. Furthermore, acetate is a crucial player in
the inhibition of enteropathogens through bifidobacteria action. Damaged kidneys seem to
have increased serum and urinary levels of acetate, succinate, citrate, and lactate, which are
generally considered to be markers of Krebs’ cycle distress and tubular acidosis. In line
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with our data, Kienanaand coworkers [22] reported decreased urinary concentrations of
acetate after 7 days of kidney transplantation.

Taken together, the change in SCFAs may show changes in the intestinal flora. In turn,
microbiota dysbiosis could markedly impact transplantation outcomes and comorbidities.

4.3. Relevant Pathways Highlighted

Pathway analysis of the 26 best predictor metabolites associated with post-transplantation
onset showed that the most definitely involved are Ubiquinone and other terpenoid-
quinone, Phenylalanine/Tyrosine, Tryptophan, and primary bile acid pathways.

Vitamin E is best known for its role as a key player in the antioxidant defense systems
in the body [42]. Our results showed a decrease in vitamin E that could be involved
in the impairment of the ubiquinone pathway. Numerous studies have revealed that
plasma concentrations of ubiquinone, also called coenzyme Q10 (CoQ10), are decreased in
patients with chronic renal failure, suggesting a promising clinical effectiveness of CoQ10.
Interestingly, an in vivo study showed that the vitamin E treatment of the chronic rat model
was associated with a noticeable improvement of oxidative stress and renal dysfunction [43].
Moreover, several clinical and animal studies have recognized the beneficial potential of
CoQ10 in preventing nephrotoxicity caused by the immunosuppressive treatment in kidney
transplant recipients [44].

Furthermore, our results suggest that metabolic change may impact the Tyrosine and
phenylalanine pathways. Several human and animal investigations have established that
chronic kidney failure is associated with impairment in the metabolism or urinary excretion
of two important aromatic amino acids, phenylalanine, and tyrosine. Phenylalanine is con-
sidered an essential amino acid, unlike Tyrosine (referred to as a semi-essential), which can
be released from the diet, protein breakdown, and the hydroxylation of phenylalanine
by phenylalanine hydroxylase through a complex mechanism [45]. A diseased kidney is
marked by a reduced conversion rate of phenylalanine to tyrosine. As a result, the circu-
lating tyrosine/phenylalanine ratio is reduced [46]. Moreover, the metabolic disorders
underlying the tyrosine synthesis deficiency is highlighted by the accumulation of toxic
metabolites of phenylalanine and tyrosine that actively set up a state of oxidative stress [47].

Additionally, our results showed an impairment of the tryptophan pathway. Accord-
ingly, it has been suggested that the tryptophan pathway is involved in chronic kidney
diseases. Recently, it has been demonstrated that tryptophan depletion, together with
the accumulation of tryptophan-related toxic metabolites, is associated with kidney func-
tion decline and disease progression [48]. The serum and urinary levels of tryptophan
and kynurenic acid have been recently used as prognostics and for monitoring the renal
transplant function [49].

Bile acids are among the crucial metabolites of the intestinal microbiota. Here, fe-
cal metabolome analysis shows, in line with earlier serum studies, a significantly increased
bile acid level in kidney transplant patients undergoing immunosuppressive therapy [49].
It is currently known that the bile acid pathway is mainly involved in promoting the ab-
sorption of lipids and fat-soluble nutrients into the intestinal tract and in eliminating body
cholesterol [49]. Yet, the impairment of the bile acid pathway results in the accumulation
of waste intermediary metabolites that would damage several organs, such as the kidney.
Nevertheless, the gut microbiota has been suggested to be a pivotal actor in this crosstalk
mediating metabolic complications [50]. For these reasons, we conclude the importance of
fecal analysis to help understand the bi-directional relationship between the gut microbiota
and stable KT subjects revealed by a high throughput metabolomic assessment.

5. Conclusions

In this pioneering study, we performed an untargeted metabolomics approach to
test alterations in the fecal metabolic signature of stable KT patients compared to healthy
subjects. The results obtained by the GC–MS analysis of fecal samples allow us to show
metabolic alterations that clearly distinguish between the studied groups. Major changes
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affected metabolic pathways, namely, Ubiquinone and other terpenoid-quinone, Phenylala-
nine/Tyrosine, Tryptophan, and primary bile acid pathways, which have been previously
discussed within kidney disease outcomes. Nevertheless, this pilot study indicates that
there is no difference in endogenous metabolites between long-term and short-term post-
transplant patients. This may strengthen the relevance of the proposed markers. Overall,
the current results seem to be an interesting matter for further investigation that may
contribute to the discovery of promising biomarkers applicable to the sensitive monitoring
of kidney transplantation and the development of new therapeutic approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11050807/s1, Table S1: Clinical and demographic data of kidney transplantat
patients. Figure S1: Quality control of system suitability for GC–MS metabolomics using two pesticide
compounds: A: the curve calibration of malathion with r extsuperscript2 = 0.950 and B: the curve
calibration of chlorpyrifos with r extsuperscript2 = 0.968. Figure S2: OPLS-DA score plots of the fecal
metabolic profiles from the KT sub-groups with associated diseases (AD) and without associated
disease no-AD compared to healthy subjects: OPLS-DA scores plot model showing no separation
between the two groups based on all extraction methods with R2(X) = 0.617, R2(Y) = 0.507, Q2 = 0.331,
and cross validated analysis of variance (CV-ANOVA) p = 0.89. Red circles represent the CT group;
Blue circles represent AD patients and Green circles represent No-AD patients, Figure S3: OPLS-
DA score plots of the fecal metabolic profiles from the KT sub-groups with different graft periods:
OPLS-DA scores plot model showing no discrimination between the different groups based on all
extraction methods with R2(X) = 0.358, R2(Y) = 0.471, Q2 = 0.293 and cross validated analysis of
variance (CV-ANOVA) p = 0.65. Red circles represent the CT group; blue circles represent patients
with short period graft (SG); green circles represent patients with long period graft (LG); and yellow
circles represent patients with medium period graft (MG).
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